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§1. Introduction

Let 0 be a bounded open set in R3 with sufficiently smooth boundary I We
set Q=R3>—@. Suppose that Q is connected. Consider the following acoustic
problem

W Dlu(x, t)=%27‘2i—Au=o in Qx(—o0, )

u(x, 1)=0 on I'x(—o0, )

3
where A= > % Denote by (o) the scattering matrix for this problem.
j=1 0xj

Concerning the definition of the scattering matrix see, for example, Lax and Phillips
[8, page 9]. It is known that &(o) is a unitary operator from L2(S?) onto itself for
all e R and

Theorem 5.1 of Chapter V of [8]. (o) extends to an operator valued function
&(z) analytic in Im z <0 and meromorphic in the whole plane.

Concerning how the scattering matrix &(o) is related to the geometric properties
of obstacles

Theorem 5.6 of Chapter V of [8]. The scattering matrix determines the scat-
tering.

About a question as to a concrete correspondance of geometric properties of @
to analytic properties of &(g), Majda and Ralston [10], Petkov [14] and Petkov
and Popov [15] made clear relationships between ¢ and the asymptotic behavior
of the scattering phase of #(¢) for 6— + co when @ is non-trapping. But concerning
relationships between ¢ and the poles of &(z) we know a few facts. The results
we want to show in this paper are

Theorem 1. Let 0=0,U0,, §,N0,=¢. Suppose that O, and 0, are
strictly convex, that is, the Gaussian curvatures of the boundary I'; of 0, j=1, 2
never vanish. Then there exist positive constants ¢y and ¢, such that
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(i) for any €>0 a region
{z:Imz<co+c,—e}— U {z:|z—z;|<C(|j|+ 1)7"/2}
J=—®
contains only a finite number of poles of &(z), where
. T, .
zj=ico+ 1], d=distance (0, 0,),

and C is a constant independent of ¢,
(i) there exist infinitely many poles of &(z) in

O tzlz=zl<Cii+ D,

Remark on constants ¢, and ¢,. Let a;, j=1, 2 be the points such that a;eT;
and |a; —a,|=d=distance (0,, 0,). The constant ¢, is determined by d and the
principal curvatures and the principal directions of I'; at a;, j=1,2. An explicit
formula for ¢, will be given in §6, and ¢, is also estimated by using d and the
principal curvatures and directions of I'; at a;.

Concerning the location of the poles of &(z), Lax and Phillips [7], with the
results on the uniform decay of local energy by Morawetz, Ralston and Strauss [13]
and Melrose [11], shows that *‘if @ is non-trapping there exist a, b>0 such that a
region

{z:Imz<alog(1+|z|)+ b}

contains no poles’’. On the other hand, Bardos, Guillot and Ralston [1] shows,
under the same assumption on @ as our Theorem I, the existence of an infinite
number of poles of &#(z) in {z; Im z<elog|z|} for any ¢>0. Note that ¢ is always
trapping if @ consists of two disjoint objects. Then their result shows a difference
in locations of poles of the scattering matrices between cases of trapping obstacles
and of non-trapping obstracles.

Our Theorem 1 gives a very precise information on the position of poles of #(z),
and represents clearly a reflection of some geometric properties of ¢ in the distri-
bution of poles. At the same time it shows that a conjecture of Lax and Phillips
[8, page 158] on poles of the scattering matrix for trapping obstacles is not correct
in general. Namely even in a case of a trapping obstacle, when it consists of two
strictly convex objects, all the poles of (z) have the imaginary parts >a>0."

If we take account of another part of Theorem 5.1 of Chapter V of [8] the first
part of Theorem 1 is derived immediately from

Theorem 2. Suppose that O satisfies the assumption in Theorem 1. Denote by
U(p)g a solution in N\ H™(Q) of a problem
m>0

1) This fact is already shown in Theorem 2.1 of [5].
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w—Au=0 in Q
(1.2)
u=g on I
for Re u>0 and g e C*(I'). Then U(y) is analytic in Re u>0 as £(C™(T'), C*(Q))
valued function and prolonged analytically into a region

a0
Z,={u; Rep>—co—cy+e}— U {p; [p—pwl <CUjI+ )72 = {pu; [u=C,}
j=-—o

for any ¢>0, where #(C™(I'), C*(Q)) denotes a set of all linear continuous
mappings from C*(I') into C®(Q),

ST
”i=—c0+’7J=’Zj~

and C is a constant independent of e. Moreover an estimate

m+7 )
> sup [DE(U(W)G) ()< Crom,e 2 |21 1GIame7-icr)
|1B|<m xeQr Jj=0

holds for all pe 9,, where Qp=Q n {x; |x| <R}.

The second part of Theorem 1 follows from

Theorem 3. U(uw) has an infinite number of poles in
,Uw {ws lp— ) < CjI+ 1)~ 12,
P

In order to prove Theorem 2 we shall construct a parametrix of a mixed problem
Ou=0 in QxR
(P) u=f on I'xR
supp u=Qx [0, o)

for fe CP(I" x (0, 00)). Our method of construction of a parametrix is the same one
used in the previous paper [5]. But we examine carefully properties of asymptotic
solutions constructed there, and pick up some typical behavior of solutions caused
by the existence of a ray which plys a,; and a,.

§2. Properties of phase functions
Without loss of generality we may suppose

a;=(0,0,0), a,=(0, 0, d) (d>0).
Let
I'io={)(0); 6€(=010, 010) X (=030, 020)=1,} (010, 020>0)

and



130 Mitsuru Tkawa

Tyo={z(n); n€(=N10 N10) X (=20, N20)=12} (N10> N20>0)

be representations of I'; near a, and I', near a, respectively, and suppose that they
satisfy

y(0)=ay, z(0)=a,,
dy _ 0z _ .
(2.1) '53_7(0) = W(O) = Yj’ j=12,

where Y;=(1, 0, 0), Y,=(0, 1, 0). Set Y;=(0, 0, 1).
Let ¢(x) be a real valued C* function defined near I';, which satisfies

@2 Poi= (g [42]) " =1

Set Po(y(0))=i(a)=(i1(0), i5(0), i3(0)) and

jl(a)’ sz(a), st(a)),f= 1,2,
(2.3)

k11(0)  Kq2(0)
A (o) = .
k21(0)  K22(0)
We suppose that
(2.4) li(6)—Y3|<06, A (0)>0 forall oel,

where ¢ is a small positive constant. Remark that from iy(6)>1-34, |if0)| <6,
I=1,2and

diy . 2 0i,

la=
3 160’

(2.5)

it follows that

(2.6) | Ol

e GIEIGERIELOT]

where |(0)| denotes the operator norm of #'(c). Define a mapping ¢ from
'y %[0, o) into R3 by

D(y(a), )= y(a)+1i(0).
Since

2 6y 2
2.7 );I ~(9)-Y,|<Cs,  forall y(0)eS,(6)®

the Jacobian determinant of (o, I)— y(co)+ li(o) satisfies

D(®)

28| > det [1+164°(0)] ~ C(30+ )

2) §,(9,) is the connected component containing a; of {x=(x;, x,, x;); x € I';, x}+x}<s3},
and S(d,) = S1(00) U S2(80).



On the poles of the scattering matrix 131

where I denotes the unit matrix in R2. Then when §, and § are small ¢ is a one
to one mapping. Then for each y(o) € S;(d,) there exists /(o) € R such that

Wo)+1(0)i(o) € I'yy.
Set
(2.8) z(n) = y(a)+(0)i(a).

Lemma 2.1. For y(6)€ S(dy) and z(n)e S,(6o) linked by relation (2.8)
we have

(2.9 [ 52z ] | —t+dx (| <ceo+o)
Ng dp=1,2
ql1,2
ol
(2. 10) aa = I; ~9
where C is a constant independent of 6, and KA.
Proof. A differentiation of (2.8) by #, gives
0z dy 0i ol \\ Oop
(2.11) an, —‘72_) 3o, +laa + 30, i o

from which it follows that

0z (0z N._ &[0y _ [y N, 0i 0o
(2.12) on. (371.1 ‘>"p§l[aa (66 l>l+l oo ]6;11,'

q p p p q

Taking account of (2.6), (2.7) and

g[ ~7,|<cs,

41

z . dy .
| = zl+‘ i I‘SC(50+6) forall z(n)eS,(5,) ,

we have by the projection to (x,, x,)-plane of (2.12)

|1-a+ixon| 5 ]m <

Thus we have (2.9). The scalar product of (2.12) with i gives

gnq l_z Ba s )(g;:> . 2

Since

)

’ St 6yp i] < 3o+ 9)

we have (2.10) with the aid of (2.9). Q.E.D.
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Hereafter we will denote often o€ S;(d,), n € S,(d,) instead of y(o)e S{(y),
z(n) € S,(8,) for brevity. Denote a mapping from S,(d,) into I',, defined by (2.8) as

z(n)=6(y(0)) -
For x=(x,, x,, x3) denote by x" a point (x,, x,, 0). Suppose that
(2.13) y(0)-i(e) =y(6) -i(a) =0 for all y(o)e€dS,(do)
holds. Then we have for y(¢) € 05,(5,)

[2(y(0), D)'|?=1y(0)'|?>+21y(0) - i(0) + I2]i(a)'|?

=|y(o)'[2.
Therefore
O(5,(30))= 52(90) -
Note that
(2.14) li(0)— Y| <280/d  if O(¥(0)) € S5(8o), o€ S,(5o).

Then for each ne S,(6,) there exists uniquely o€ S(d,) such that O(y(a))=z(n).
We denote this correspondance y to g by

(2.15) c=¥().
Let r() be a R3-valued C® function defined by
(2.16) r(n)=i(o) — 2(i(a) - m(n))m(n)

where m(n) is the unit outer normal of I', at z(y), and ¢ and # are linked by (2.15).
Lemma 2.2. Suppose that (2.13) holds. Then r(n) defined by (2.16) satisfies
2.17) r(n)-z(n)' >0  for all z(n)edS,(d,).

Proof. From (2.13) it follows that ©~!(z(n))=y(0) € S1(d,) for z(n) € 3S,(dy),
from which

|(¥(0) +1i(a)) |2 < [(¥(0) + I(0)i(0))'|? for all 0<I<I(o)

follows. Then we have [% l(y(a)+li(a))’lz:| >0, which is equivalent to
)

I=1(
2z(n) - i(n)' 2 0.
On the other hand the strict convexity of I', implies
m(n)-z(n)' Zclzm)'>  (¢>0),

and (2.14) and m(0)=—Y; imply —i(6)-m(n)>1—Cd,. Then we have for all
z(n) € 3S5(Jo)
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Hn) - z(n) =i(o)' - 2(n)' —2(i(a) - m(m))m(n) - z(n)’
>2(1—-Cdy)clz(n)'|2>0. Q.E.D.

Let us set

om(n) _ 3¢ =
ar]p - = khp (n)Yh’ P—l, 2a

K,= [kf,f,)(O)] 1,25
p+1,2
and
G.={A"; A is a 2 x2 real matrix such that ¥ >cl}.
Define a mapping F, from %, into istelf by
Fy( )= (I+dA) 1 +2K,.
For r(n) defined by (2.16) set

or

(2.18) ony
9{7('1) = [th(rl)]h—vl,Z'

pi1,2

3
(’7) = El 'zhp(n) Yhs p= 1, 2;

Lemma 2.3. Let r(n) be defined by (2.16) for i(a) which satisfies (2.13) and
(2.14). Then it holds that

(2.19) 147 () — Fo(AH (o) S Cooll# (0)||  for all ne Sy(8o)
(2.20) 1%31(m] + 1R 32(m)] < Codo || (0 for all neSy(do)
where C is a positive constant depending only on T.

Proof. A differentiation of (2.16) by 7, gives

or 2, 0i do, 2, [/ 0i )60,,
= —2 —_—
on, ;.;1 dc, On, =1\ 0o, " on, m(n)
(2.21) s
;. Om\ .. Om
2(1 an, )m 2(i-m) an, -
Fromi-i=0 m—i—ai =0 and (2.14) we have
do, ’ oo, ’
0i 0i . Om
’ao_h M m’ SC&O 3-&7’, ‘l' ar,p SC(S().

Therefore by comparing the x, and x, components of the both sides of (2.21), with
the aid of Lemma 2.1, we have (2.19). And x; component of the right hand side of

(2.21) is estimated by C5, 3. laaTil’ from which (2.20) follows. Q.E.D.
h=1 h

Corollary. Suppose that R3-valued C® function r(n) defined in S,(5,) satisfies
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.17, [r(n)=1 and

(2.22) Ir(n)— (= Y5)| < C8o, A (1)=0.

Correspond y(c) eIy, to z(n) by a relation

(2.23) yo)y=zm+h(mr(m)  (h(m)>0),
and define i(c) near S;(6,) by
(2.24) i(e)=r(n)—2(r(n) - n(e)n(s),

where n(c) denotes the unit outer normal of I'y at y(a). Then it holds that

(2.25) |2 (6) — F (A ()| < CSoll o ()|
(2.26) %31(0)] + K 32(0)| < Cooll A (M),
where

Fl(f)=f(l+df)_l+2Kl fOV fego,

3
K= DOy s 22O = 5 k()Y
p

qi1, h=1

Next we consider estimates of higher order derivatives of r(n). For f(x) defined
on 'y, we set

[ fln(y(0))= max [ Xy Xpr oo Xonf(y(o)l,

16 |<1,1<IS
0<j<m

|f|m(51(50)) = ~ max ) lflm(y(a)) ’

o)eS1(do

where

0

do,

Xy =b" + b4 660 , b9, I=1, 2 are constants,
2

and for f(x) defined on I',, we set

|]|m(2(’7))= max |Xh(l)"'/?h(i)f(z(y’))|
1b(H <1,
1<j<m
|f‘|m(5’2(60))= max |f|m(Z(}1)),
z(n)eS2(d0)
g — B 0 (OR) 4
Xb(]) bl a}”l +b2 ——anz .

Lemma 2.4. Let r(n) be defined by (2.16) for i(o) satisfying (2.13) and (2.14).
Suppose that ' (6)=c>0 for all 6€S,(5,). Then we have for m=2, 3,....

(2.27) [Fln(S2(80)) < (1 +cd) ™! + Coo)™*i],,(S1(80)) + Conlilm- 1(S1(80)) »
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where C,, is a constant independent of i.

Proof. A differentiation of (2.11) by n, gives

2 & [ oy el . % _\do, 0o,
(2.28) B, = 2 30,00, | 9a,90, i+1 90,00, /0n, on,

ol . 0i

oy 0%a, & 0l 0i 0o, do,
+ ;.;(60,, + do, i+l 60,,) on,0n,

2 .
+ ns=1 do, dog On, on,

Set

L 0i ' oy _ (0y . ) >>:|
[<P<6al <60', > +la o, ))’ <P<60'2 0o, H_l
where P denotes an orthogonal projection from R? onto R?, that is,
P(xly X2, X3)=(X1, x2)'
Consider components orthogonal to i in (2.28) and we have
0%, } 2 < 0% < 0% > ) do, do,
!H[ on,on, Jnit,2 +IP h,s21 00,00, 00,00, ! on, on,

< C{il4(81(80)) +1215(52(80)) + 1¥12(S1(60))}

_ . 0% __ 0i o o .
for all p, q=1, 2. Since 35,00, i= o, " do, follows from 3o, i=0, we
have
0%c, } _ 1y 2 0% do, Oo,
. e — =—-H1 P
(2.29) |: onpon, Jdnit,2 z=: 00,00, 01, 0;1q

where A=B means |A—B|<C{|i|;(5:(60))+1¥|2(51(60))+12|2(S2(80))} for some
constant C independent of i and r. Since

0% _ i 0% 0g, 0oy n 2 0i 0%,
on,0n, w5=1 00,00, On, 0n, =1 0o, On,0n,

we have by using (2.29)

P 62’ = i( |:< aal) <P 00, >]IH_1>P 506;.25% g:: gf’:

(2.30)
W . _1p_ 0% 3o, do,
[( (601 ( l)’)) ( <6az (662 >>>] Paf’ha“ o, 5'7‘1
Then
o . 2 0%
— Wpdp Y °
Xy Xy Pi(0) p’§=1 bybg" P on,on,

—= Z Z, da, (1))(2 oo (z))"’ —1 0%
‘hél(,;gf‘_an,, o) (2, G ) TH Py
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where Y= |:'<P< gi_’l — <6ac;'v, ~i>i>>, t(P(;gz —<aa:2 z>z>>:| Note that

2 904 1 -1 ()
(p; o b >h“’2‘s((l+cd) +C8) 6]

holds for I=1,2 from (2.9). Then by using || YH™!| <(1+cd)~'+C3, we have
[Pi]y(z(m) < ((1 +cd)™ + Céo)|Pil ,(y(0))
+Clil;(¥(0) (1 +1215(S2(80)) + 112(S1(d0))) -
By using (2.5) we have
lila(z(m) < (1 +ed)™" + Co) il x(¥(0))
+Clil;(¥(0)) (1 +1215(S2(80)) + [¥12(S1(50))) »

from which (2.27) for m=2 follows immediately. For m>2 we may obtain the
desired estimate by the same reasoning.

Corollary. Suppose that r(n) satisfies |[r(n)| =1, (2.17) and (2.22). Then for i(o)
defined by (2.23) and (2.24), if

A (m=>c forall neSyd,)
holds, we have

|iln(S1(60)) < ((1+cd) ™" +60) ™" Fl(S2(60)) + Conl L= 1(S2(80)) -

Let ¢(x) be a real valued C® function defined near S,(d,) satisfying |Fo(x)|=1.
Set Po(y(c))=i(c) and suppose that (2.13) and (2.14) hold. Then, by extending
@ by o(y+1Pp(y))=p(y)+1, ¢(x) may be considered a function in @(S;(do) x
[0, o0)) verifying |Fp(x)|=1. Note that we have @(S,(d,) x [0, ©0))=S,(d,) from
(2.13). Denote this ¢ by ¢, and define ¢,(x) by

[Fo(x)|=1

(2.31) @ 1(x)=o(x) on  S,(d,)

o _ 09q (. N
W’I—(x)_ W(ﬂ\) on §,(do),

where v denotes the unit outer normal of I' at x. From (2.31) it follows that
(2.32) P (x)=Fp(x)—2(FPp(x) - v(x))v(x) for all xeS,(d¢),
that is, by setting r(n)="Fe¢ (z(n))
r(n)=i(a) = 2(i(c) - n(n))m(n).
Then Lemma 2.2 assures that

rn)-z(n) =0  forall nedS,(S).
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And from Lemma 2.3
A (N) = F (A (0))— Coo | (o)l = 2K, + | # ()| (1 +cd)™! — Céy) -

As remarked on ¢(x), @,(x) can be defined in {x(1)+hr(n); ne S,(dy), h=0}(<=
S1(8o)) verifying |Pp,(x)|=1. Then we can define ¢,(x) by

[Py(x)=1

(2.33) 02(x) = (x) o

=

S51(d0)

55!;: (x)=— a—(;pvl(x) on S;(do),

and define successively @3, @g,..., @4 @gr1°°bY

[Ppgl=1
(2.34) ?4(x)=@y-1(x) on S, (d)
aaq:,q (x)=— 6—‘5—‘;‘—‘@) on S, (8,
where
1 for q even
e(q)=
2 for g odd.
Set

iq(a) = V(qu(y(a))’ rq(r,) = Vq)lq+ 1(2('7)) ’

0is(6) _ S org(n) _ @ ~@
#’:——- = sgl K:sz (G) Ys’ aqnh - s;l "sh (”[) Yh

H (o) = [Kﬁ‘;‘l’(a)]m:%, Hy(n)=[RP ()]
Note that from (2.33) or (2.34)

(2.35) r(n) =i 0)=2(i ) m(n))m(n)
(2.36) ig+1(0)=ry(n) —2(rn) - n(o))n(o)

hold for ¢=0, 1, 2,...,.
By using Lemmas 2.1 ~2.3 at each step we have

(2.37) 1 (m) = Fo(H (o) < CoollH (o) s
(2.38) 1 () = F (A ()| < Coll Ay y(m)] -
Let

K,, K,>C,.

Then from (2.37) and (2.38)
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(2.39) H(0), A [n)>2Co—Cdy forall g>1.
Remark that, since

F(A)—F(x ) =(+d)y (A - )YI+dx")?
we have for ", X' €%,

|F(H)—F(A ) <A +cd) 2| =", I=1,2.
Set

FIA)=F((Fo(A),  Fo(A)=F(F(X)).

Then for any ", ' € &G,
(2.40) |F ()= F () <A +ed) -2, I=1,2.

Proposition 2.5.  {Fp,; =0, 1....} is a bounded set in C*(®), where w is
a domain surrounded by S(8,), I=1, 2 and |x'| =6,.

Proof. Since for all 2" >0
ot (I+do Yt < 1/d,
we have »
IF )< 1/d+2K;, I=1, 2.
Then for all g>1
14 @), 1 g(mll <1/d +2 max (| Ky, [K2[)+ Cdo.
From Lemma 2.3 and its corollary we have for all g>1
1P0gl 1(Seq)(G0) < 1/d+2max ([ Ky, Ky )+C do.
Next suppose that for m>1
(2.41) 1P ln(Seay(90)) < C,pe
Applying Lemma 2.4 and its corollary we have
lighn+1(81(00)) (1 +¢d)™ +C0)™"rg— tlm+1(S2(0)) + C,,
|7 glm+1(S2(80)) <((1 +cd) ™ + Co) ™" Higlm+ 1(S1(30)) + Cy

for some C,,. Therefore we have

2
lighn+1(S1(d0)) < Zq Co((L+cd)™! +Cop)~(m+ DI

Jj=0
+((1+ed)™' +Cdg)~m*D24|jg),, . 1(S1(d)) .

Similarly
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|rq|m+ 1(82(50))S Z

2
j=0

! (1 +cd)! + Cog) 1)

+((L+cd)™" +Cb)~ " D24[ig|,, 4 1(S1(80)) -

Thus we have

|V(pq|m+ I(Se(q)(éo)) < Cm+ 1 fOl‘ all q.

By induction (2.41) holds for all m. Since we have

sup m‘émlDﬁ(V@q(X))l S Col PPl m(Se(a(90))

X€EW

Proposition follows from (2.41).

§3. Convergence of phase functions

139

Let i(0), j(6) be R3-valued C* functions satisfying |i(¢)|=1j(0)|=1 and (2.13),
(2.14). We denote 2 x 2 matrices defined by (2.3) for i(¢) and j(o) by ¢~ (o) and s#(0)

respectively. Suppose that

3.1 X (o), #(0)>2C, forall o€S,(d)-
Lemma 3.1. Suppose that y(o), y(G) € Sl(éo) and

(3.2) z2(n) = y(0) + U(0)i(0) = (6) + h(8) j(6) € S5(J0) -

Then it holds that

3.3 [I(6) — h(G)| < Cdylo— 4] .

Proof.
)= 3@)= 3 (@0 |, (L Jo+1G—o)ds

= i (O‘,,—&,,)Y,,(O', &)-

=1
From (2.7) it holds that for all g, 6 € S,(d)
(3.4) |Y,— Y(a, 6)| < Cdy.
from whict it follows that
[1y(6) — p(6)|> = |o — 6|2 < Cdolo — 612

Since l(0)i(6)= y(6)— y(a)+ h(6) j(6) we have
(0 =1&) ~ Yo + @Y+ 2h(@) & (@4= 7 (Y@, 0)-j(0)).

(3.4) and (2.14) imply
1Yi(8, 0)-j(6)| < Cdo.
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Then we have

[(6)? — h(6)?| <(1+ Céy) |6 — 6|2+ Coylo — 6] .
Thus we have by using l(g)+ h(G)>2d

L

1(0) = h(@) <

(L+Céy)lo—é|+Cdy)lo— |

from which (3.3) follows because of |6 —&| < Cd,. Q.E.D.
Denote by a(n) and 6(n) mappings from S,(J,) to S,(d,) defined by
z(n)=y(o)+l(0)i(0),
z(n) = y(6)+ h(8)j(6),
respectively.
Lemma 3.2. It holds that
(3.5) max |j(6(n) — i(o(m)| < (14 Cod)™' +Cbo) max |i(o)—j(o)|.
neS2(do) aeS1(do)

Proof. Set
# (0, &)= [(PS; —;—;I—(a+t(&—a))dt>, '(PS; -(%iz—(a+t(&—a))dt>]
Y(o, &)= ['<P§; %(a+t(6—a))dt>, '(PS;%(aﬂ(a—a))dz)],

A= max)li(o-) —j(o)l.

aeS1(d0
From (3.2) we have
W(8)—y(0) + (o) (i(8) - i(0))
=(l(0) — h(6))j(8) + I(6) (i(&) — j(6)) .
Then we have
3.6) [Y(o, 6)+ (o) (0, 6)]'(6 —0)
=(l(a) = I(6))Pj(6) + U(0)P(i(6) — j(5)) .
Since Y(o, 6)+ (o)X (0, 6)> 14 Cy2d — Cd, we have
|6 — o]l <(1+Cod) *{|l(0)— h(6)| + (a)A}
by using (3.3)
<1+ Cod)1CéplG — o] + (1 + Cod)~(d + d5) A.
Then
3.7 |6 —a| <(1—Cdg)" Y1+ Cod)"1(d+50)A.
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Substituting this estimate into (3.3) we have
(3.8 [I(6)—h(6)| < CdyA.
Note that
P(i(6)— i(0)) = H"(a, 6)'(6 —0)
by using (3.6)
=4 (0, ) [Y(a, 6)+l(0)A (a, 6)]~{l(0)P(i(6) —j(5))

+(l(0) — h(8))Pj(6)} -
Then

P(j(6)— i(0))=P(i(6)— i(a)) + P(j(6) — i(6))
={l(0)# (0, 6)[Y(0, 6)+(0)H (0, 6)]~' — I} P(i(6)— j(6))
+ X (a0, 6)[Y(0, 6)+ (o)X (0, §)]~'(I(a)— h(6))Pj(6) .
By using (3.8) and a relation
16)A (o, &) [Y(0, &)+ (o)X (5, &)1 —1
=—Y(o, 6)[Y(o, 6)+(0)X (0, 6)]!

we have
[P(j(6)— i(o))| < ((1 4+ Cod)™! + Cog) A+ Cdy A.
Since
173(6) — i3(0)l = /1= |Pj(&)]> = /1= [Pi(a)|> < Cé,| Pj(&) — Pi(0)|
we have (3.5) from above estimates. ‘ Q.E.D.

Lemma 3.3. Let i(c) and j(6) be R3-valued functions defined on S(6,)
verifying |i(o)|=|j(o)|=1, (2.13), (2.14) and (3.1). For i(c) and j(o) define r(n)
and s(n) by

r(n) =i(e) —2(i(a) - m(n))m(n)
s(n) =j(6)—2(j() - m(n))m(n).

Then we have

(3.9) [r—5]0(S2(80)) < ((1 + Cod) ™' + Cdy) |i —jlo(S1(d0))
and for m>1 _
(3.9)m [r = 51m(S2(00)) (1 + Cod)~" + Cdo)™* i — jl.(S1(S0))

+ Con{lilm+1(S1(80)) + jlm+1(S1(80)) } i —jlm—1(S1(80)) -
Proof. Set
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rizor=[ (382 (42 Y. (30~

do,
2G5 )= [,P<6z(n) (05’57) .i(a)>i(a)>, ‘P (‘35;;7) <5g’§;1).i(a))i(a)>_].

We define Y(j; &), Z(j; n) by the same way. Then (2.12) may be written as
2005 ) =[Y(: )+ X @] 5.

where

Similarly we have

Z(j: =LY a)+h(aw<a)][

SQz
;I

On the other hand
oy =[(pEGL) (p A Y]
N2
-[(r3e) (ea))5]

=A'(0) [Y(i; o)+ o)A (0)] 7' Z(i; m)
=A(0)Y(i: o) '[I+1(0)X (o) Y(i; 0)"' ] Z(i; 1)

holds. Similarly we have
wn=|( P‘aj(a&n(,")) ). (e aj(;(:)) )]

=#()Y(j; 6)'[I+h(&)# ()Y (j: 6) ' 17'Z(j: n).

Set
E=X(0)Y(i; 0)~' —o#(6)Y(j; 6)7".
Then
E=[4(0) = (6)]Y(i; 0)~' +H(6) (Y(i: 0)™! — Y(i; 6)7")
+H(6)(Y(i: 6)7' = Y(j; ) ) +(AH(6)—#(6)Y(j: 6)7!
=E,+E,+E;+E,.
We have

E, <|a—a|‘g ——(a+t(0 ))dt
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by using (3.7)
< Clil(S1(80)) i =jlo(S1(80)) -
Similarly we have
E2[I < (1 (o)1l | ¥12(S1(80)) i —j10(S1(0)) ,
IEs[I < 1 (@) y]1(S1(Bo) |i—jlo(S1(0)) ,
[E4l <(1+Cdo) x| I (6)— (o) -

Then
M (n)— N (n)
=A(0)Y(i: o) '[I + (o)X (o) Y(i; 0)"" 1" HZ(i: ) —Z(j; m)
+ U+ (o) (0)Y(i; 6) 1 E[I + o)s#(6)Y(j: 6) '] Z(j: n)
+#(&)Y(j; &)W+ U0)# () Y(j; )1 = +h(&)# (&) Y(j; 6)7'17Y)
Z(jym=M,+M,+M;.
M| <Clt (o) i—jlo(S1(d0))
M|l (14 Cod)™ + Co)*{(1 + Cdo) c";1312});0)”Ji”(cr)—«%”(U)II
+ C(1i15(81(80)) + 1¥12(S1 (6o |1 —jlo(S1(80))} »

IM 31 < C(1 j11(S1(86)) + Co) 1i —jlo(S1(J0)) -

o[ (250, (750
Fo=[(752). (2552)]

and we have from the definitions of r(y) and s()

Set

|7 () — ()| < | A () — A ()] + Cli—jlo(S2(0))
<((1+Cod)™ 1 + Cdo)"4(1 + Cdp) max | (a)—5#(a)|l
+ C(lily +1jl2 + 1yl +1z12) [ —jlo(S1(0)) -

This shows (3.9),.
Next consider the case of m=2. (2.30) may be written as

%i(a(m) _ o N-17-1 R 0% 9o, do,
? on,0n, [+ 1o)X (o) Y(iz 0)7'] h,sz‘hpaa,ﬁas on, Oon, +R(n)
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R(n) can be written by derivatives of z(n) and y(o) of order <2 and derivatives
of i(o) of order <1.
Similarly

(5 (n) _ i & 04 08, 06,
PEIED) (1@ @ ¥ )1 S GO S G R,

Since we have from (2.12)

[%r_] =Z(i; MY (i; o) I +1(0)H ()Y (i; 0)~']™!
Ta Jr313

[‘l} =Z(js MY(j: G50 [T+ h(@)#) Y(j; 6)1]".
My Jra1.3

L)

Then from these relations we obtain
1X X (i(a(m) =GN (1 + Cod) ™ + Co) | X 1 X 5(i(0) —j(0))|
+ Cli—j11(81(30)) {I¥13(S1(80)) + 12]5(S5(0))
+1713(81(80)) +1i13(S1(80))}

where d =[a—a]a and b =|:a—0:|b.
on on

This shows that (3.9), holds. And for m>3 we can prove (3.9),, by the same
way. Q.E.D.

Corollary. Let r(n) and s(n) be R3-valued C® function defined on S,(8,)
verifying |r(m=|s(m)l=1 and (2.17), (2.22). Then i(6) and j(c) defined by

i(e)=r(n(a)) —2(r(n(0)) - n(a))n(o)
J(0)=s(ii()) — 2(s(7f(0)) - n(6))n(0)
satisfy
(3-10), [i =jlo(S1(86)) < ((1+ Cod) ™" + Cbo) Ir — so(S2(60))
and for m>1
(3.10)  |i—jln(S1(80)) (1 + Cod)™" + Cbo)™* 'r —s1,,(S2(S0))
+ Clr =51, -1(S2(80)) {I7lm+ 1(S2(80)) + I5|m+ 1(S2(80))
+1Yln+1(81(80)) + 2]+ 1(S2(80))}
where 1(o) and 7j(c) are defined by
(o) = 2(m) +m)r(m) = 2() + R (Ds(7) -

Now we consider a convergence of a sequence of phase functions ¢q, ¢, @,,...,
Q41> @g--- constructed in the previous section. Fix 6,>0 so small that
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a=(14Cod)1 +Cp<1.

Note that from Proposition 2.5 {i }7, and {r,}7=, are bounded set of Z%(S(6))
and #*(S,(d,)) respectively. Set

lig—iolm(S1(0o))=A,, m=0,1,....
Taking account of (2.36) and (2.38) we have from Corollary
(3.10)o ligs1—iglo(S1(8o)) <alry—r,—110(S2(d0))
(3.11),, ligs 1= iglm(S1(80))
<™=y (S 2(30)) + Clrg = g 1= 1(S2(80))
and Lemma 3.3 shows
(3.12), g = rq—1lo(S2(00)) S atlig—ig— 110(S1(80))
(3.12),, lrg=rg-11n(52(80))
<amt i, =iy 1|m(81(80)) + Coulig—iq— 1lm-1(S1(60)) -

From (3.11), and (3.12), we have

lig+ 1 —iglo(S1(80)) <24 Ay,

[P+ 1—Tglo(82(80)) S a?a*! A,
Then there exists R3-valued function i (g) on S;(8,) and r(n7) on S,(8,) such that

a(q 1)

(3.13), lig—il0(S1(90)) < Ao

2 -
(3.14% qu—rwn(sz(ao»s/io{"_"—z

Then by using (3.11),, and (3.12),, we have inductively for all m> 1|

(3.13), lig= ol (oo>)<Am°‘l” 4Gy g2

(314)m | oolm(SZ(éo))<Am | — +C Am la2q "

Thus we have

Proposition 3.4. For a sequence of phase functions {@,}5-¢ there exist R3-
valued C*® function i(a) on S(8o) and r(n) on S,(6¢) such that(3.13), and (3.14),,
hold for all m>0.

Remark 1. i, and r satisfy

(3.15) ix(0)=Y;, ry(0)=-Y,
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Indeed, take a function Y(x) satisfying |Py|=1, (2.4), (2.13) and PY(a,)=Y.
Construct Yq, ¥4, ¥,,... according to the process in §2 for . Then it is evident
that

(3.16) Poa)=Ys, Pypei(a)=-Ys.

On the other hand, by using (3.9), and (3.10), successively we obtain
(3.17) [P 24— P24l 0(S1(80)) < 0?4~ D|Fep — Pifr|o(S1(0)) »
(3.18) 17924+ 1= P 2q+110(52(80)) <2471 |Pp — P | o(S1(S)) -

From (3.13),, (3.16) and (3.17) we have i,(0)= Y5 and from (3.14),, (3.16) and (3.18)
we have r(0)= — Y;.

Remark 2. Note that

(3.19) r (1) = i(0) = 2(ip(0) - m(m))m(n) ,
where ¢ and # are linked by z(y)=y(6)+ ()i (c). And also it holds that
(320) ioo(a) = roo(rl) - 2('.00(’7) * n(a))n(a) 5

where y(0)=z(n)+h(p)r,(n). Let 2 (c) and A, (n) be matrices defined by (2.3)
for i (o) and r(n). Since 0 =0 corresponds to n=0 (2.38) for 6=0

19£5o(0) = Fa( A o(O)]| < Coo |, (0|
holds for any §,>0. This implies
3.21) Ao (0)=F,(A,(0)).
Similarly we have
3.22) Ho(0)=F (A (0)).
Then #'(0) is the fixed point of &, and 4 (0) is the fixed point of £,.

Remark 3. In the course of proof of Proposition 3.4 a constant a=(1+ Cyd)™?
+Cd, in (3.13),, and (3.14),, is used as

I(Y(igs o)+ o)A (o) || <a
I(Z(rgs m)+ b Am) ™| <o
But Proposition 3.4 assures that
1LY (ig5 0)+ U@)H ()] < (T +dA (0)) 71 ]| + Cdo
ILZ(rgs m)+ () A m1 | < I +d A (0) 7 ||+ Cdo
holds for large q. Therefore by setting

og=max (|(I +dX o (0) ||, [I(I +dA5(0))1)
we have
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(3'13):” |lq_ lwlm(sl(éo))s(ao+C50)2(q_1)A;n
(3.14),, [7g =T eolm(S2(00)) < (g + Cdo)*11 4,

where A,, is a constant determined by A,, and §,.

§4. Convergence of broken rays

147

We will use freely the notations concerning broken rays in §3 of [5]. Let ¢(x)
be C*® function satisfying |Pp|=1 and (2.3), (2.13). Let ¢, ¢;, ¢,,... be a sequence
of phase functions constructed in §2. Denote by @, the mapping @ in §2 for Fp,,

namely
D,: Se(y(60) X [0, 00) —> R?

defined by

D (x, D=x+1Pp(x).
And we denote by @, a mapping @ for Fgp,, namely

0, Se(60) — L'eg+1),0-

As remarked in §2 we have from the assumption (2.3)
“.1) O (Sc((60))2 Sc(q+1)(0) for all gq.

By using this notation we have

4.2) Xq(y9 V(P)=@q°@q—1°"'°@1°@0()’) for yeSi(o)-

Let ¥,, be a function defined by

O, (y(¥2 M) =2(n)  for neSy(do)

and let ¥,,,, be a function defined by

([OPN 1(Z(q'2q+ 1(0)=y(0) for oe€S,(d,).

In other words

02;EM)=y(¥2,(),  O244:1(¥(0))=2(¥3441(0)) .

From Lemma 2.1 we have

|2 — 1+ sty gy

i <C5,
4.3)

“ a¢23;1(6) — U+ dA($24+1(0))] 7! | < CS.

Define X _ j(x, Po,) for xe S_;(d0) and 0< j<g by
X_j(+, Pp)=071;, 10071, 10+-007(x).
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And set
Y=oV jrro oW 1o,
Let ¢ (x) and @, (x) be real valued C* functions such that
Pp.l=1, Féol=1,
Vo o(3(0)=ix(0),  @(a)=0,
V3 o(z(m)=ro(n), P x(az)=0.

Let us denote ¥ defined for i, and r,, by ¥, and ¥, respectively. And we denote
by O, and @ mappings @ defined for i, and r,, respecitvely. Similarly we can
define X4 i(x, Po,,) or X, (x, Fp,,) for a sequence of phase functions Vo, V.,
Poo,.... Set
X.fx, Pp,)  for xeS,(3)
0 —_
ij(x)" -
Xy i(x, V@) for xeS,(d).
Define ¥, (o) and ¥, (1) by

WY, 1(0) for jeven
X2(y(o) =

z2(¥Y,,;(0) for j odd,
2P, )  for jeven

X2z =1 _
V¥, i) for j odd.

Hereafter we denote oy + Cd, by a.

Lemma 4.1. For 1<j<q we have

(4.4) > |03¥, (9 <Cptd,
1<f<m

where C,, is a constant independent of q and j.

Proof. From the chain rule of derivatives of composed functions we have

@3) [Pt ][ Wacses (v, o)) ][ Hgzisz (w0 |-

do
_“[agg% (qu,,(a))] [%‘%‘1 (0) ] :

%]

except a finite number of g. Then we have

Remark 3 of §3 says that

|£a

[ <cr
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For derivatives of higher order diffderentiate the both sides of (4.5) and use the
boundedness of {95y}, for any B we have (4.4) for all m. Q.E.D.

By the same reasoning we have

Lemma 4.2. For j>1 we have

4.7 2 105¥0 ()< Cpotd,
1Z[|g|<sm

(4.8) > 105P ., ()] < Cpotl.
1<p<m

Remark 1. Set

Y(&)=X—2j(}’(a)» Fo,,) .

Then 6=V¥,,,/(0). Therefore

9@ 3@< [ 22021 [0 -0 < Ca1(0) - y(o).

Namely it holds that for all x, y € S;(,)
|X—2j(xs V‘qu)—X—z,‘()’, V(qu)| <Ca?i|x—y].

Evidently an estimate of the above type holds for x, y e S,(6y). Then for all 0<
j<q and x, y € §,(8) (x, y € S5(do)) we have

(4.9) |X_j(x, Po)— X _{y, Pp )l < Cal|x—yl.

Lemma 4.3. It holds that
(4.10) [ X2 (x)—a | +]1X2; - 1(x)—a,| < Ca?i|x|
for xe S,(d,) and
4.11) [ X2 0(x) —ay| + X2y 1(x)—a,| < Ca?i|x'|
for x e S,(6,).

Proof. Let y(c)eS(dp). Set XZ,i(y(a))=y(6). Then ¢=Y¥ ,;(0). From
4.7

|52 )0

By using ¥, ,;(0)=0 we have |G| < Ca?/|g|, which implies
|X%23,(x)— ;| = |9(8) — (0 < Ca o] .
Similarly we have
| X255~ 1(x)—a,| < Ca?ilo].

Thus (4.10) is proved. (4.11) is also proved by the same reasoning.
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Lemma 4.4. For 1< j<q it holds that
(4.12) 1X (-, 7o) = X2 (S 00) < Cpart™,
for m=0, 1,..., where C,, is independent of q and j.

Proof. Let q is even. Since X%;(x)=X_,(x, Fp,) we have with the aid of
(3.13),,

T 1K (0, Pog =X (@< ot

Suppose that

P2 05X —(9(0), Ppg) — X2 (O < Cpoet ™ (L4 a2 + - +a267D).
Since X—s— l(y(a)’ V‘Pq) =X_ I(X—s(y(a)s V(Pq), V(pq—s) and X ‘Ps— 1()’(0'))
=X_ I(Xgos(y(o')7 V(Pao)) we have

M= “?Smlag(x—s—l(y(a)’ V(pq)_Xo—os—l(y(a)))l

< |ﬁ|ZSmlag(X_ I(X—s(y(a)a V¢q)’ V(pq—s)_X— I(X—s(y(a)’ V(pq)5 V(poo))l

+ 3 1K (X ((0), PR, Pp) =X o (XZ((0), Po))
=M,+M,.
Then from the above remark we have
M <C,a17s,
And by using the assumption we have
M, < Cpo-af 5t (14 a2+ +02572).,
Therefore
M<LC, o7 5(1+ o2+ +a2).
Thus (4.12) is proved. Q.E.D.
Lemma 4.5. There exists a point A€ S{(8y) such that
(4.13) | X,(A, Ppo)—a,| < Ca?e
(4.14) 1X20+1(4, Ppo)—a,]| < Coe.
Proof. Let m>q=0. Set
Apg=X _am+ay, Vo2)
B o=X_am+1)+4(d2, VPom+ -

Suppose that g is even. Then 4,, ,€ S;(do). Let n>m.
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(4.15) 1 X —2(0-m(@1> PP20) — a4
=X _2n-m(@1s PP20) = X220 - mf@y)|
from Lemma 4.4
< Co2n=(2n=2m = Co2m,
Since
Apg— Apmyg= X—2m+q(X—2(u—m)(x’ V®20), VP om) — X—2m+q(a1 s Voom)
we have from Remark of Lemma 4.1 and the above estimate
|A

Ay gl < Co?mo2m=a= Co*m=4,

ng

Then for each g, {A,,}@-, is a Cauchy sequence. Therefore there exists A,
such that

Apg— Ap,y 88 m—> 0.
Evidently it holds that
| Ay — Aco,ql < Ca*ma,
From the definition we have for 2m>p>gq
X, [(Ang Vo))=An,-
Then
X, (Aw,p FP)=Ax,p forall p>gq.
This implies that
(4.16) X (Ap,0 Poo)=An 4 for all gq.
In (4.15) setting m=gq we have
|A,,2— a1 < Ca?e
and letting n— o0
|[A,24— 01| < Ca?4.

Taking account of (4.16) the above estimate shows (4.13).
By the same method we have

Xq(Bco,Oa V¢O) =Boo,q
and

|Bos,2g+1— a2l < Ca?.
On the other hand

lay—X _1(az, PPoms )| < Ca®™
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and
| Am,0=Bumol =1X - 2m(@1, PO2) = X —2(X - 1(a2, PO2pn 4 1)s PP2)| < Ca?™.
Then we have A, =B, . This completes the proof.
Proposition 4.6. It holds that for 0< j<gq
(4.17) l (1) X, Po2)— X2()]n(S1(90)) < C,p0
(ii) IX—2q+j( ) V‘qu) - Xj(A’ Poo)lm(S1(60)) < C,pn

and

[ (1) X Porg01) = XZ5()n(S2(60)) < C
(4.18)

(ll) |X—2q— 1 +j( T V(p2q+ 1 ) - Xj(A’ V(pO)lm(SZ(50)) < Cmaq .

Proof. (i) of (4.17) and (4.18) are nothing but Lemma 4.4. Let g is even.
From Lemmas 4.3 and 4.4 we have

(4.19) | X _ (%, o) —a | < Cad.
Note that
X 204 /(X, P29 — X (A, Pipo)
=X - X - (X, F@320), Vo) = X _ (- i\ X (A, Fo), Fo,).

And (4.19) and (4.13) imply

IX —(x, Po2.) — X (A, Vo)l < Ca?.
Then Lemma 4.1 shows

X (X g% 7920), PO = X - (X (A, Ppo), Pp,) < Cattai.

For m>1, since

X 24+ j(0(0), Fp2) = Y(¥ 34,24 (6))
Lemma 4.1 shows that

IX oy /(55 P02)1(S1(80) < Ca?477
Then (ii) of (4.17)is proved. We can show (ii) of (4.18) by the same method.

§5. Transport equations (1)

Let ¢(x) be a real valued C® function verifying (2.2), (2.4) and (2.13) and let
{@,}7-, be a sequence of phase functions constructed for ¢ following the procedure
in §2. Set
é

Tq=2 ’gt‘ +27(Pq V+Aq0q.
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Following §3 of [5] we choose 0<d,<d;<d, so that Lemma 3.3 and its corollary
of [5] hold.

Let v;(x), j, I=1, 2 be functions defined on I'; satisfying
1 x€Si4,)
vj(x)=
0 x&S5;(d3)
and v;(x)+v;(x)=1o0nI';. Set
W, ={P/(x, ); x€S,)(d3), 0<I<|O(x)—x]}.
Note that, if |i(0)— Y5| <83,
(5.1) w,cw for all ¢

where w is the one defined in Proposition 2.5.

Definition 5.1. Let f={f,}7, be a sequence such that f, € CF(S(0) x (0, o0))
and g={g,}7, be a sequence such that g,e CF(@ x (0, 0)). We say that a sequence
v={v,}7=o such that v, e C§(® x (0, 0)) is a solution of

Tv=g in wxR
[ v=f on S(J,)x R
when
Tw,=4, in oxR
{ Vg =Ve(q)1Vq—1+fy on S.,(0) xR
holds for all ¢=0, 1,..., where we set v_, =0.

Let y(x) be a real valued function defined in an open set % = R3 satisfying
|7y|=1. Then any solution of an equation

2—@%—’;’_1 ()P olx, )+ AP(x)o(x, H)=0  in xR

satisfies

(5.2) (x4 1Py (x), 1+1) = [ Gw(xgwé!;)w(x)) ]"2 o(x, 1)

for all x, x+1Py(x)e«, where G,(x) denotes the Gaussian curvature of a surface
€ (x)={y; ¥(»)=y(x)} at x (see, Keller, Lewis and Seckler [6] and Ikawa [3]).
Set for x € S¢ 4+ 1/(0)

Ag(x)=[G,(x)/G, (07 (x)]"/2.
Then for v, satisfying T,v,=0 in @,x R we have from (5.2)

(5.3) v (x, =A (X (O (x), t=h(x)), h(x)=]|x—OF'(x)|
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for all x € S.(5+1)(d0)-
Let f(x, 1) e CP(S1(8,) X R) and let j is a non negative integer. Set

(5.4) Sf={f}e-0 where f,;=f and f,=0 for g#2j.
Let v={v,}7-o be a solution of

Tv=0 in wxR
(5.5)

v=f on S(6y)x R.

The definition means that v, g=0, 1,... satisfy
(5.6) Tw,=0 in wxR for all ¢
and

v,=0 for g<2j
5.7 v(x, D=f(x, 1) on S;(60)xR,
and for g>2j
(5.8) 0 (Xs 1) =Vgq),1(X)0,—1(x, 1) on S, xR.
Note that for all xe S ,4)(03) we have @, (x) € S¢(,(d,). Since

v(x, )=0v,_(x, t) on S.,(6,)

follows from the definition of v;;(x) and (5.8), we have the following lemma by
applying (5.3) successively.

Lemma 5.1. For any q>2j and x € S¢y4 1y(63)
(5.9) v(x, )=Ay(x)- Ay {(X _1(X, P@))-++ Az (X _ (g 25(X, Ppg)) -
JX —(g-2pp-1(%, Fpg)s t =y (X))
holds where

q=2j
hq,Zj(x)= lgo hq—l(X—I(x# V(pq))'

Set for x € S,(d¢)
Ap(x)=[G,.(x)/G, (O (x))]'?
A=A4,(a3), ho(x)=|x— O (x)|
and for x € S,(d,)
A (%) = [G4..(%)[G3..(O (x))]'/?2
A= Au(ay), ho(x)=|x—03! (x)].
Define aj(x) on S,(d,) and d;(x) on S,(d,) by
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Ao(x) Ap(X2(x) | Aw(XZ542(%)) Ax(XZpj41(x))
ji A ji J)

aj(x)=

) = Ao LX) Ao(XZ21() Ao(X%310)

Remark 1. Because of (2.1) and (3.15) the principal curvatures of %,_(a,) at
a, are the eigenvalues of & ,(0) and those of €, _(a,) at a, are the eigenvalues of
A (0) (I +dxX(0))"'. Therefore

A=[det(I+dx ,(0)] /2.
Similarly we have
A=[det (I +dA(0))] /2.
Lemma 5.2. For xe S,(6)

a(x)= }Ln;aj(x)
exists and
(5.10) la—a;|,(S1(0)) < Co?
holds. Similarly for x € S5(d)
a(x)= jlirg ajx)
exists and
(5.11) |d— d;|(S2(60)) < C0?i
holds.
Proof. Since ¢, and @, are C* functions we have
A y(x) € C2(S1(80)), Au(x)€ C*(S5(80))-
Then (4.10) implies
(5.12) | A (X Z2p+ 1(%) — A (ar)] < Ca?P for all xeS,(dg).
Note that
Ao X234 1 (W) = Ae(N(¥ 0,25-1(9))) -

Then Lemma 4.2 shows that

o B ALK (OIS Cor.

Set

A w(Xioz,ﬁ 1())/A=1+ Y2p- 1(%)
and we have
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¥2p-11n(81(80)) < C,a?? .
By the same way, if we set
Ao(X20,(0)A=147,,(x)  for xe8,(50)
we have
[72plm(S1(80)) < Cpt?? .

Therefore we see that
2J
ax)= IT (1+7,()

converges to some function a(x) and (5.10) holds. And (5.11) may be proved by the
same way.

Remark 2. Since

j01(x) = 4~_I(X_) Aw(Xft(x)) ......

Aw(X?ngXfl (%))

- /sz(ﬁ)_ 3,(X=, (%)) .

Letting j— oo we have

a(x) = i‘%(ﬂ a(X2(x)) forall xeS;(5).
Similarly we have
d(x)= AwT(x) a(X®(x))  forall xeS,(S).

Lemma 5.3. Set

by o= Aj(X5i(A4, o)) Azjri(Xaji(4, F o))
2j.2h ,1 Z

Az Gen (Xag+n (4, 7 @o))
1 .

Then b2,=’}£1’{; by, 2n exists and
(5.13) |byj—byj2nl < Ca2UTh |b,; —1|< Ca?i
holds.
Proof. From (3.13) we have
[A25(+) = A (In < Cp??.
Then (4.14) implies
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IAZp(X2p+ 1(A4, Ppg))—Ag(ay)| < Ca?r.
Similarly we have
[A2p41(X2p+2(4, Fpo)) — A pla,)| < Ca?r

Therefore from these estimates (5.13) follows by the same reasoning as in Lemma
4.2. Q.E.D.

For x e S(6o)
joo,q(x) = hoo(Xgoq(x)) —d.
Lemma 5.4. For x e S(8,) there exists j,(x) € C*(S(6y)) such that

(5.14) JESERFAFQINETIEIES

Proof. Let xeS,(dy). From the definition
h (X 22 (3)) = | X Z20) = X5, ()
<|X2(x)—ay|+1X25,_(x) —az|+la—a,
by (4.10)
< Co??P+d.
Taking account of h(x)>d for all x € S(dy)
0< jio,2p= hoo(XZ2p(x)) —d < Ca?? for all xeS;(dp).
By the same way we have 0< j,, 5,4+, <Ca?P*'. On the other hand for |5 >1
105 (X 22 (WO = 105V (P 0,2(0)) = 2(¥ 0,2, 4+ 1(0)))]
<18Y(Y 20N +1052(¥ o 2 41(0))]
by (4.7) and (4.8)

2
<C|ﬁ|0( P,
Thus we have

> 105 ) (MO < Cpa??,
1<|B1<m

from which
fjool+)— Eljw,p(-)lm(sl(tso))SCma“

follows. For x € S,(8,) we have the same estimates. Therefore (5.14) is proved.
Q.E.D.

Remark 3. As Remark 2 we have

joo(x) =joo,1(x) +]oo(Xi°1(x)) = hao(x) +Joo(Xu—ol(x)) —d .
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Lemma 5.5. Set

d,=1,(A, Ppo)—d.

Then
J+h
lim Z dp=d00.j
h—o p=1
exists and
J+h 3 .
(5.15) lde,j— X dpl <Cali*®, |d,, ;| < Cal
p=i
holds.

Proof. 0<|X,, (A, Ppo)—X,,+1(A, Ppo)l —d
<|X, (A, Ppo)—a;| +1X 2,4 (A, Ppo) —az| +la; —a,|—d
from Lemma 4.5
<Ca?r.
Then we have
0<d,,<Ca?r.
Similarly we have
0<d;y, 41 <Ca?rtl,
From these estimates (5.15) follows immediately.

Proposition 5.6. Let v={v,}2, be a solution of (5.5) for f of (5.4). Then
v, q=>2j are decomposed as

V=Wt 2,
where

Ap*1=iJe=ia(x)by;f(Azjy t=juo(X) = oo 25— (2p+1—2)d)

for q=2p
(5.16) wy(x, )= )
(AZyP*1=3 G(x)by 1 f (s t—Jeo(X) = dug,2;— (2P +2—2))d)
for q=2p+1

Ay;=X, (A, Vo), and z, verifies
(5.17) |Zglm(Sea+ 1)(03)) < C(q — 2)) (M) 412D\ f,(S1(80) x R)

where C,, is a constant independent of f.

Proof. Let xe S,(83). Using (5.9)
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v2p(x9 t) - WZp(x’ t)

159

= p+1]p { Azi(x) A2p~1(X—1Z(x; Fo2p) Azi(X—zp+3i(x’ Fo,p)) —a(x)b}

S(X_gpr2j-1(%, P@ap), t—hyp 5;(x))

+'1p+]1pa(x)b{f(X—2p+2j(x» P©2p)s t—hap24(X))
—f(Azjy t—jou(X)—d oy 2;—2p=2))d)} =1, +1,.
For /< p we have from (3.13) and (3.14)’
[Azp-20(+) = A ()]m(S1(d0)) < C,o2r=2t,
(5.18) -~
'Alp—21+ 1( . )_ Aoo( . )Im(SZ((SO))S C'"aZp—-ZH-] .

Then for I<p
105(A2p - 26X - 2/(1(0), Pp2,)) — A(XZ2(y(0)))]
<108(A2p- 20X —21(¥(0), Fp3,) — Ae(X - 2/(y(0), Fp2,)
+105(A (X - 2(¥(0), P92,)) — A (X Z2(1(0))))]
by (5.18) and (4.12)
<C,02r72,
By the same way
105(A 2 - 214 1(X — 214 1(0(0), F92,)) = Ao(X 2514 (@D < Cra?P 2141

Then we have for all 0<I<p

1A2p- 20X 21+, PP A= (14721 Nl S1(86) < Cr2P21,

1 42p- 204 1(X - 2051, POz A— (1472021 (- DIn(S1(80)) < Cpa?P=21*1,

and

App() Azp_ (X4 (-, Po2p)) Az (X zp-)(-» FP2p))
A i A

2(p-1)

= I (1474(-))| (51(80)) < Cp2(p— Damin(2h2(e=1),

h=0

By combining the above estimate with (5.10) we have

(5.19) A35(+) AZP-I(X-L(” 703p) ... A2(Xospini(-, F@3p))
' A 7 )

—a()| ($1(60)) S Co2p—2D)a mina1 2=,

Suppose that p>2j. Then (4.17) implies
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|A2j+h(X—2p+2j+h( ) V(pr))_A2j+h(X2j+h(Aa Foo)n(S1(d0))
<C,o? for 0<h<p-2j.
Then we have for p<2/<p+1

Azl—l(X—zp+gl—|(', Poap)) Azj(X—2p+zlj(', F¢ap))
A

—baj| (51(80)) < Culp=2f)0rr.
Then by choosing | as p<2I/<p+1 we have from (5.19) and (5.20)
11118 1(80)) < C,(2p — 2)A2* 1 2Pa?| f1,(S(80) X R) .
When p<2j we have from (5.19) for I=j and |b,;— 1| < Ca?/ < Ca?(P~4)
1 41,(S1(06) < C,2(p—j)a2tr=in.

Next consider I,. Suppose that p>2j. Then (ii) of (4.17) shows that

(5.21) IX _aps2j—1(+s P@ap)— Azl n < Cp?

and (i) of (4.17), (3.13)" and (3.14)" imply that

(5.22) 1ho(XZ1()) = hap X - (- P2 ) n(S1(86)) < Cpt? .
Then

» P
quo (Joo,f(+)+d)— IzZo hyp X (-, P Dlm(S1(80)) < Cpppa?,
from which, with the aid of Lemma 5.4,

(523) |th,p( : )_jw( : )+ Pd|m(s1(5o))3 Cmpap

follows.
By the same way from (ii) of (4.17) we have

|’72j+r(X-2p+2j+l(.' Vo2, — h2j+l(X2j+1(A» Po))ln(S1(60))
<C,ar for 0<Ii<p-2j.

Then by using Lemma 5.5

-2

(5.24) pZJ |th+l(X—2p+2j+l('a 7902,,))—dao,zj—(P”zj)dlm(sl(‘so))ﬁCm(zp—zj)a”-

1=0
And (5.23) and (5.24) show that
|172p,2j(')—joo(')_doo,zj—z(P_j)d|m(S1(5o))Ssz(P—j)O‘p-
When p<2j we have from (5.23) and Lemma 5.4

1h2p,2i(-) =) —=(2P—2/)d],(S1(60)) < C,i2(p =)o .
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Taking account of
|d o2l < Cai < CaP,
we see that (5.24) holds for p<2j. Note that
(5.25) IX - 2p+2/(+ PP2,) — Azjln(S1(0)) < C,xP ™

holds for all p>j. Indeed, if p>2j, (5.25) is nothing but (5.21). Suppose that
p<2j.

1X —2p42,(+5 F@25) — A3 jln(S1(0))
SIX Capaaf(cs P@2p) = X 225020 )m(S1(80))
H1X 22512/ )—ay|m(S1(8) + 1Az —ay]

by (i) of (4.17), (4.13) and Lemma 4.2

<C, 0¥ '<C,ar.
Then it follows from (5.24) and (5.25) that

Lf(X —2p+25(+ P@2p)s t—hap2 (X))
—f(Agjy 1=jo(*) = de 2= 2p = )A)|(S1(d0)) < C,. 2(p — j)aP .

Then we have

13]n(S1(80) < Cu2(p—j)(2A0)7~1| f1,(S1(J0) X R).
For g odd we can prove (5.17) by the same way.

Remark 4. A representation of solutions (5.9) of an equation (5.5) for a data
(5.4) shows

suppr,c V&L, ix, 1, Vo).

(x,1)esupp f
Therefore, if
suppf = S:(63) x (T, T,),
it follows that

supp v, @, _,; x [Ty +(q—2j)d, T,+(j—2j+)d+d,+ ssu;g )jw(x)].
xeSi(d3

§6. Transport equation (2)

In order to consider properties of solutions of the transport equation of higher
order we introduce some spaces of functions.
Set

L 7 (0)= — L 1
6.1) 0= 47 log det (I +dxt,(0)) (I +dA,(0)) 3d log A4,
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(6.2) 0y=— zl—d log ((1+doCo)~! + Cdy).

We set
F={v={v,, U,}0; v, U,€ CF(@ % (0, 00)) such that
supp v,, i, @ x [2qd, (2q+2)d+d+ dw,0l>

sup  sup e(|DE v (x, 0| +|DE B (x, )< oo for all §},
R

0<g< (x,t)ewX

and forveF

IVlem= sup  sup > e (|Dfv(x, DI+ DB (x, D).

<®© (x,t)ewXR |f|<m
For vy ={v,,,, Dy, o} im0 and v, = {v; 4, D3, 4} 50, @, b€ C we define av,+bv, by
avy +bv,={av, ,+bv, 4, ab ,+bb, 70 € F.
For p positive integer

F(p)={{vy D}5~0 € F; v,=0,=0 for q<p},

F(p)={{v,, 5,}3-0 € F; v,=5,=0 for q#p},
Ky(p)= {1y Bo} =0 € F(P); v,(x, =D f(x, t—2dq), 4> p

for some feC{(@ x[0, ©)) and ,=0 forall g},
Ky(p)={{vy Bi}5=0 € F(D); (x, )=(ADY (x, t—2dg), 9> p

for some f(x, f)e CP(@ x (0, 0)) and v,=0 forall gq},
K(p)=K(p)+K4(p).

Since

sup  sup _eso!| D!, (AD)ag(e, 1—2qd)|

0<g<® (x,t)ew*XR

= sup ew24(1)¢ sup RlDﬁ,t(e“‘g(x, )l

0£g<® (x,t)ewX
we have for v e K,(p)
(6.3) C gl x R)< ||V p,m < Clglm(@w % R).
Set

My(p)={v={v, 320 F(p); sup sup {(1+1)melcoret
0<g<o (x,t)

(D%, (x, DI+ DL x, DD} <o forall B},

and
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vl p,,m=sup sup { 3 (1+1)7" elcotenr
@ () 1piEm

(1D, 0q(x, )| +1DE,,5,(x, )} -
Remark. From the assumption on the support of v,, #, sup [e®'v,|<co and
~ q
sup [(A4)4y,| <o are equivalent. Similarly sup |[(1+41)""elco*<Viy <00 and
q

sup |q"(U~.oc)‘lvq| < oo are equivalent.
q

Let us set N.={0, 1,...} and Ns={J;=(j, Jja2s--sJs); IEN4, I1=1,2,..., s}
Denote j; +j,+-+j, by |J]. We define classes (CH),, s=0, 1,... of sets of func-
tions. (CH)o={f; fe CF(® x (0, 0))}. We say {fY)(x, t)};n, belongs to (CH),
when
(i) fYUXAx, t)eCP(wx R) for all je N,

(ii) there exists t; >0 such that supp fU)c@ x [0, t,] for all j,
(iii) there exists f(®)(x, t) € CP(® x R) such that

sup j~la~i | fD) —f)| (@x R)<oo  forall m.
J

For {f¥} v, € (CH), we define semi-norms |- |cx), m m=0, 1,... by

{9} jenlcctyim
=[f)| (0 x R)+maxj~ta~I|fU)—f()| (X R).

And for s>1 we say {9}, _y: belongs to (CH); when

(i) fU9eCP(wx R) for all J,e N%,

(ii) there exists ;>0 such that supp fV9) c@ x [0, t] for all J,

(iii) there exist a linear continous mapping B, from CZ(@® x R) into (CH); and
{gVUs-9},,_ en3-1 € (CH)s_, such that

{fUs-vb}p = BgUs-0  forall J_,.
Note that {fUs-0:®},  ys-1€(CH),_, and for each j
(fUs-0) —fUs-@} e (CH), .
We define |- |cu),,m DY
HS Y cmyem=HT Y=} crryamrum

Hsup jlad [{f Us=1d) — f U=t} |
j

Definition 6.1. We say W={w}, y: belongs to #(l) when
(i) w9 e K(J | +1) for all Jye N5,
(i) if we set

w9 = {(AD)f U(x, t—2dq), (AD)FV(x, 1 —2dq)} 421,141
then {fU9}, cvs { U9} ens €(CH),.  And define semi-norms in s#£(I) by
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IWl2m= {9} soentlccmysm+ LT U} s enslccaryem:

Definition 6.2. Let f={f,, f,}%, be a sequence such that f,e CF(S(Jo)x
(0, )), fqug‘f(Sz(éo)x(O, o)) and let g={g,, §,}70 be a sequence such that
9y G,€CP(@x(0, 0)). We say that v={v,, J,}7-0 is a solution of

Tv=¢g in oxR
v=f on S(d,) xR
when
T0,=9, in ox R
V=04 T, +f, on S,(60)x R
and
Ty0419,=4, in wxR
5q=vzylvq+fq on S,(0g)xR.

Remark that the definitions 5.1 and 6.2 have only a difference in assigning a
number to elements of sequences. Hereafter we will use Tv =g, v=f in the sense of
Definition 6.2. '

Lemma 6.1. Let geﬁ(p) and let v be a solution of
Tv=g in oxR
v=0 on S(J,) x R.
Then v is decomposed as
v=w+2z, weK(p), zeM,(p).
Moreover it holds that
1w l5m < Cunll &l pm

”z“Ml,mSCm“g”Mo,m
where C,, is a constant independent of g and p.

Proof. Setg={g, J,ti-0.v=1{v, U} q=0. Evidentlyv,=#,=0forq<p,

T,,0,=4g in oxR
(6.4) [ e
v,=0 on I' /xR,
T2p+lﬁp=gp il’l w X R
(6.5)
B,=0,,1(x)v, on S,(6;)xR

and for g>p+1
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T,,0,=0 in wxR
(6.6)

v,=0y ()0, on S,(6,)xR
and

Ty 19,=0 in oxR
6.7)

U,=0,,,(x)v, on S,(5,)xR

Then we have from (6.4) and (6.5)

(6.8) QA P{[vpln(@ % R)+15,|( x R)}

ol
< CoAD) PG @ X R)+17 (@ X R Coll gl pm-
Applying Proposition 5.6 we have for g>p+1
V=W, +2,, I,=W,+Z,
where

W= AT 10 Pa(x)b B Ay 1= (X) = d g 2y~ (24 + 1= 2p)d)

wq = (lz)q_pd(x)prﬁp(A’ t_joo(x) - doo,Zp - 2(q - p)d) s
and

|Zglm(@ X R)+|Z,|n(wx R)< C,i2(q — p) (M) 0|0 10,1,(S1(80)  R).
Then by using (6.8) we have
| 1911 < Col AD)P15,/(S1(82) X RY Coll€ |l m -
Similarly we have for all ¢
47 (T2 (@ x R)+ 12 (@ % R)}
<2C,(4a)7{lg,| (@ X R)+ 1§ ln(wx R)}
< Cl &l
which implies |21y, m < Cull& I proum- Q.E.D.
Lemma 6.2. Let g={g,. §,}5-0€ M, (p). Then a solution of
Tv=g in wxR
v=0 on S(J,)xR

can be decomposed as

v= OZOZ witz, weK(j), zeM,,,(p).

j=pP

And they satisfy

(6.9) WO < Crnjod [ 81 4ty m
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(6.10) 120 mt, s 2 < Con el 81l -
Proof. Set
£ =10, 30"} 20
where g$’=g,, §{’=3; and g{"=g{? =0 for g#j. Evidently it holds that
g= 3 g
j=p
and

I8Pl r,m=<j" /| &l py,me

Let vU) be a solution of
Ty =gt in wxR
v =0 on S(d,) x R.
Applying the previous lemma to each v/) we have
) =wl) 4 z(), w(f)eK(j), z‘f)eM,(j),
WOl p < Cull &9 p,m < Con "0 1181 bt mo

”z(j)”Mth Cm“g(j)”Mo.mS ijr “g“ Mo,m*

Setz= 3 zU). Then

Jj=p

sup 3 (M) 7 g2 DE 2 (x, 1)

(x,t)eEwXR |B|<m

<g1y Y (M) g D2 (x, 1)
=q sup a) *q x,t2q \ X,

j=p (x,t)eoXR |B|<m

q . q .
<g ' Y 2PNy, m<a™ 2 19V Iro,me
i=r i=pr

And we have

q )
; ”g(““Mo.m

sup g~}
gq21 Jj=p

<supgt £ I 57 I8t
<C,lglm.m
Thus we have (6.10). Q.E.D.
Lemma 6.3. Let g € K(p) and v be a solution of
T,v=g in wxR

v=0 on S(d,)xR.
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Then v is decomposed as

v= 120 w wDeK(p+j).
If we set
g=1{94(x, 0, §(x, D}gzp={(A0)7g(x, t=2pd), (AD)1G(x, t—2qd)} s>,
wD ={(D)f(x, 1—2qd), QDT (X, t=2qd)} 12p+

then there exist h={(AX)'h(x, t—2Id), (AL)'h(x, t—2ld)}2, € K(0) and zeM,(0)
such that

{(AD)S(x, t=21d), ADS(x, t=2ld)} 2o=h+z.

Moreover there exist linear continuous mappings & from (CF(wx R))? into
(CZ(w x R))? and A form (CF(w x R))? into M,(0) such that

{h, h}=s{g, §}
z=A4{g, §}.

Proof. Set g0={qu’ qu}Z‘;o where Jdo,0=9(x, 1), go,o=g(x, ) and Jdoq=
Jog=0for g>1. Let vo={vg,, Uo,}5=0 be a solution of

Tevo=2go in oxR
vo=0 on S(6,) xR.
From Lemma 6.1 we have
(6.11) vo=wy+ 2z, woe K(0), ze M,(0).

Set
wo={(A)?h(x, t—2qd), (AT)®h(x, t—2qd)}2, .

Denote by 7; a mapping from F(p) onto F(p+j) defined by
'cjv=(/11)f{vq_j(x, t=2jd), 5, j(x, t=2jd)} o p+j

for v={vq(x9 t)’ vq(x’ t)}qu'
If we set

g0 ={g, G 70 9301=9pr1 GR1=Fpr1, 9P =3P =0 for g#p+1

we have
(6.12) gV =1,,180,
and
o0
(6.13) g= IZ_‘,Og(’).

Let v) ={o{), 3{P}=_, be a solution of
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T yHD=g® in oxR

v =0 on S(4,)xR.

Since T,t;v=71;T,v for all ve F, we have from (6.12) and (6.13)

n—
vW=1,,v,

y= f: v,
i=o

Namely

VO(x, )= (AP g g enx, 1=2p+Dd)  for g=p+1
(6.14) .

BP(x, 1) =(AA)PH Do 4 (pa (X, t=2(p+1)d) for g>p+I.
If we set

w) = {W;“s Wf,l)}?=p+l= {vgq—p—l), 5£Iq-p—l)};o=p+l,

it follows from (6.14) that for g>p+1
wWi(x, 0 =(Ad)no (x, t—2g —Dd)

WiO(x, 1)=(AT)abo (x, t=2(q = d).

Then w® e K(p+1). Since v\’ =0 for g<p+1 we have

TR =L PRI S NN VISR BT\
> owll=Y vt =% vl=3% v}
1=0 1=0 1=0 1=0

Similarly we have

IMs
=2
a2
Il
IMs
<
N

These equalities imply

i =y,
)

Ms

o0
3 wih=
1=0 1

The linearity and the continuity of mappings g, to v,, w, and z show the existence
of & and A with the properties mentioned in our lemma. Q.E.D.

Lemma 6.4. Let G={gVs'}, .ns € #(p) and let v be a solution of
> gV in wxR

Tov=
JseN§
v=0 on S(d,) x R.
Then v is represented as
wils o W= {wlsr 0}, v € # ().

(6.15) y=

s+1
Js+1ENY
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Moreover
(6.16) I W12 Conl Gl
Proof. Denote by vUs) a solution of
T,v=_g"s in woxR
v=0 on S(J,)xXR.

Lemma 6.3 shows that

00
yUs) = z w(\’s-j)’ W(J"j)GK(lJS|+P+j)-
i=o

Then ©
v= z pUs) = Z 2 wt/ssJ) = Z wls+1),
JseN% JseN3 J=0 Js+1eN5T!
If we set
gV ={(A1)1gVs)(x, t—2qd), (AN)1GV(x, t—2qd)} g2 +p
wls i) = {(AN)IfUsd)(x, 1t —2qd), (AL)1f U= D) (x, t—2qd)} gz 1.1+ p4 )

a mapping {gVs), §Us'} to {f"s-f’,f“s'f’}ﬁo is linear and continuous from
(C3(w x R))? into (CH),. This shows that

{(FU0Y L enyrs (JYU0} vyt € (CH ) g1,
which implies W= {wUs+0},  ys+1€,,,(p). Q.E.D.
Lemma 6.5. Let G={gVs}; ys € #,(p) and let v be a solution of
Tv= Y gUs in woxR

JseN%
v=0 on S(5,)xR.
Then v is decomposed as
(6'8) y= Z wds+n) + Z u(j).'.z
-/s+|EN.’|.+l Jj=0

where
W={wls+},  nir1€# (D),
uDNeK(p+j), z€My,(p),

and the following estimates hold:

(6 18) ” W”é’,+ 1.m + |z|Ms”,mS Cm”G“,ﬁ“,,m
|"(j)|F,mS Cm.is+laj||G||.?’,,1n .

Proof. Let w be a solution of
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Tw= > gUs in woxR

JseN%

w=0 on S(,)%xR.

Then the previous lemma shows that

w= > wllss) W= {W””')}J,Helvi“E%’sﬂ(,ﬂ)-
J,»+1EN.'..+I

Note that

Wolm(@x )< 3 |ws|,(wx R)

Js4leN.'g.+l

g()'Z)q #{Js+l; |Js+ 1|Sq}” W “éf'ﬁ.l,m

S Cm(AZ)qqs+l “ W ”2":+ 1sm*
Thus

(T-Te)weMy(p).
Since v satisfies
Tw—w)=—(T—T,)w in oxR
v—w=0 on S(5,) xR

we have from Lemma 6.2

o0
v—w= Y uD+z, uDeK(p+j), zeM,, ,(p).
Jj=0

Thus (6.17) is proved. Estimates (6.18) follows from
l(T— Tao)wlM,.+ 1,m < Cm” G“Z’,,m
and the estimates of solutions in Lemma 6.2. Q.E.D.

Proposition 6.6. Let f(x, 1)e CF(S,(d,)x R). Set f={f,, 0}72o fo=f f,=0
for ¢>1. Define v, successively by

[ Tv,=0 in wxR
vo=f on S(d,)x R
and for r>0

{ Tv,=—£.—|:|v,_1 in wxR

v,=0 on S(6,)%xR.

Then v,, r>1 are decomposed as

r o0
(6.19) =T w35 % wili-p)+z,

JreN% =11=0 j,__,eNi™*
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where

(6.20) W,={wl"} , ni€3£,(0),

(6.21) W= Wb, v € (1),
(6.22) z,€M,,(0),

and it holds that

(6‘23) ” Wr”.?r,m’ |zr|M2,-,m S Cr,mlf|m+ 2r(Sl(62) X R) .
(624) “ Wr,h,l”.?',--;.,m < Cr.mallr—h|f|m+2r(sl(52) X R) .

Proof. Proposition 5.6 shows that v is represented as
Vo=Wo+2Zo
where w, € K(0), zo€ M(0). Let v, o be a solution of
{Tv=%[lw0 in woxR
y=

=0 on S(5,)xR.

Taking account of —:— Ow, € K(0) and

|[FOwo| < Culwolr,me2 < Cul f lns2(S1(52) x R)

ym

we have from Lemma 6.5

Vio0= 12‘.0 w4210, (W} jen, €5#£,0)
and z, o€ M,(0). Let v, be a solution of
{ Tv=-+ 0z,

v=0.

Then Lemma 6.2 shows that
< .
Vi = :2=:o wi+2 wi e K, 2y, € My(0),
and

W 11l pm < Co 1] f |14 2(S1(92) X R)..

Thus Proposition is proved for r=1. Suppose that (6.19) (6.24) holds for r=s.
Let v, 4,0 be a solution of
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Tv=—1 S Owd»  in oxR

JseN%

v=0 on S(d,) X R.
Since {Ow!)}; v;s € #,(0) Lemma 6.5 shows that

— (Js+1)
Vo= 2 wostU+ Z u +1+zs+l 0
Js+1eN3!
J )
Wei={wis Y, enyr1€#541(0),

“‘sﬂ €#5( ), Zs+1,0€ Mys12(0),

[ p o < Cotd Y f st 2

Denote by v, ,, a solution of

Tv=—}— 3 Dw“s ») in oxR

Js—heNS"
v=0 on S(6,) xR
and we have
— u )
vs+l,h,l Z i hws+sl+l r +zs+] h,

Js+1-neNy

Ws+1.h,1={”’_£i’1*}. h)}.ls”_;.eN’“ n €y —n(l)
” s+1,h, I”#’ﬁ,l_h,msCs+l,ma,[s+l_h'flm+2(s+l—h)(S1(52) X R)

1254 1,0, 1] M0 20sm < Cott,m@ B f s 20s41-0)(S1(62) X R)
Let ¥,,, be a solution of
== Dzs in wxR
v=0 on S(d,) x R.
Then we have from Lemma 6.2

Ver1 = Zw,+|+zs+., ngleK(l)s Zer1 €M 45(0)

[w§ +1|F,m— Cor1,m®' 1272 f | s 25+2(S1(32) X R) .

Since

Q0 aC
Ver1 =Vsi1,0t hZO ’z_:o Vsri,n1 T Vst

we have the required properties from the decomposion and estimates of each
element.
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§7. Asymptotic solutions of (1.1)

Let us set
7.0 u(x, t; ky=e*e0y(x, t; k),
N .
o(x, t; k)= 3 vix, k.
j=o0
Apply O to u of (7.1) and we have

Dutx, 13 k)= —etko=n 3% k=2l Py + 1y,
Jj=0

+i(2.2%0 4 2per, + Agu; ) - Ovyf
where we set v_, =v_, =0y, =Un4+,=0. Then, if
(7.2) Pol>=1,
(1.3) 2000 270 Po,+ Apv;= L 0oy =0, Lo, N

hold, we have

(7.4) Ou=ei*te D k=Noy.
Let
(7.5) m(x, t; k)=e*@O70f(x, 1), f(x, 1) € CF(S1(35) x R)

be an oscillatory boundary data given on I'y x R. Suppose that ¢(x) satisfies con-
ditions (2.2), (2.3), (2.4) and (2.13). Let g, . ¢,,... be a sequence of phase func-
tions constructed in §2, and let v, ={v, ,(x, 1), §, [(x, )}5zo, r=0, I, 2,... be solutions
of transport equations constructed in Proposition 6.6. Set

N
u(x, t; k)= etk(@2a(x)=) ,go v, (%, k™"

(1.6)
N
i (x, t; k)y=e'*(02ar1(0)=0 %" 5 (x, k™,
r=0
(1.7) u(x, t; k)={u,(x, t; k), i (x, t; k)}3=o.

Taking account of the above remark and the equations which v, satisfy we have

(78)  Oulx, t3 k) =kN{er@n 0oy ,, ek =005y ) 2.

From (3.13) we have

|§02q(az) - ‘qu(a )= (@x(az) — 9.(ay)) < Ca?a.
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On the other hand ¢ (a,)— ¢ (a;)=d follows from (3.15). Then

|@24(a3)—@2(a;)—d| < Ca?e.

Similarly we have
1920+ 1(81) = @2q4 1(a2)—d] < Cos.
Recall that @,,(a;)=@2,+1(a2) and @,,42(a1)=@24+1(a,). Set
3 (020000 =020~ 20)=ds.
Then it holds that

|9 24+2(a1) —@o(a) —2g + 1)d —do| < Ca?4,

Combining this inequality with (3.13) we have

(7.9) [02q+2(:) = (Pol - ) +2(q + Dd +do)|m(S1(60)) < Cpx®e.
Similarly we have
(7.10) Q2+ ()= (P(+)+2qd + Jo)lm(sz(éo)) <C,0*

for some constant d.
By using (6.19) we have

N r o
01 wesR=F k(T a0+ £ 3 ey vi)

JeN% h=11=0j_ _, cN; "
where
ugm — {eik(¢u+2qd+do—z)w£fa)’eik(¢m+2qd+ao—r)w£{a)}qzurl’
A ) SV
and

ﬁ'= {eik(‘PZq_')z' - eik(¢2q+l_')2r q}:’:O
+ {(eik((p;q—l) —_ eik(¢n+2qd+do—l))vr @ (eik(¢2q+l_’) —_ eik(¢m+2qd+ﬂo—t)5r q};0=0
Then (6.20) and (6.23) imply
Ur= {uilr)}J,eNie';fr(O)a
(7.12)
" l]r".a",',mS Cr,mkm-Bm+2r,
where B,, denotes | f|,.(S1(6,) x R). Similarly we have from (6.21) and (6.24)
[ Ur,h.l = {u&,’;:,_lh)}.l,_ neN, " E ‘#r—h(l)9

" lJr,h,l“.}!",._;.,,,.S Cr,mallr_hkmBm-#-Zr'

(7.13)

Concerning u, we have from (6.22)
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leik (924707, | (@ X R) +|eik(e2a+1-DF | () x R)
<G, ,k™29g%" B, i,
Since
Ieik((pzq—!) — eik(¢m+2qd+do—l}lm(w X R) S kam+la2q
follows from (7.9), an estimate
|07, glm(@ X R)< C,(A2)1q% By 5,
which is proved in Proposition 6.6 implies
[(eik(02a=0) — gikl@mt2adtdo-t))y | (o) x R) < C,km*1(AL)%029,
By the same way we have
l(eik(q);.,“—t) _ eik(q';,..+2qd+ﬂo—t))5r’q|m(w x R) < kam-l-l(lZ)q 024,
Then
i,.eM,(0),
(7.14)
1% M0 ,m < Cony k™ ' By s

Thus we have the following

Lemma 7.1. u(x, t; k) defined by (7.7) and (7.8) is decomposed as (7.11) where
(7.12), (7.13) and (7.14) hold.

Corollary. [u is decomposed as

N ©
Ou=k™MT g+ ¥ 3 3 gin”+én}
JN h=11=0JN-n »

where
(7.15) [ Gy=1{g™}, eny €54(0)

Gl y,m < Cnymk™ ' By oy,
(7.16) [ G 1= (8% Vo pentos € Hv-4(0)

Gy n,ill - ym < Cn k™ Lt IN =R
and
(1.17) [ £ eM;n(0)]
1&|p2n,m < Crymk™ 1 By oy

Extend all the elements of gUm ={(A1)igUn)(x, t—2qd), (AD)2GV™)(x, t—
2qd)},>145) by a fixed manner in to @ and denote them as
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Let u,Y™), 7Y~ be solutions of

Ou,Y% =(Al)1g'Vx(x, t—29d)  in R*xR
Da;(.ln)=(,11)qg~/(.ln)(x’ t—2qd) in R3x R

such that the supports < R3 x {t>0}.
Denote by #2r(p) and #[(p) the spaces defined by the procedure of Definition
6.1 replacing w by Qg and I respectively. Then if we set

it follows that

(7.18)

Construct u,/¥:» for g{x-» and iy for gy by the above manner.

(7.19)

and

(7.20)

Then, setting

we have
(7.21)

Set

(7.22)

Note that

w UM = (IR, 1), TV ) gz

l U'={u'""}, eny €#77(0)

” U ”,ﬁ“ﬁk,m < CN.m,ka+lBZN+m'

[ U= {”}J,J;.'fz"')}JN_,.eNﬁ,""E%ﬁfh(l)

” U;\I,h,l".ﬁ"’#",rnS CN,ln.ka+]a’1N_thr+2N

{ i'e M93(0)

['7’|M§,{,‘,mﬁ Cn,m, REK"™ ' By o
N © -
W=k I+ Y S ul i)
In h=11=0Jn=n 7
O(w—u")=0 in wxR.

u(x, 1; k)= g:o(uq(x, t: k)—ii(x, 1; k)

o N
— ZO Zo k“’(e“‘“"“_”v,,q— eik(¢2q+|—l)ijnq).
4=0 r=

supp u | rxr = S(do) X R

follows from Remark 4 of §5 and we have from Proposition 6.6

gV ={(A2y1g'IN(x, 1—2qd), (2D IV(x, 1=2qd)} g sy-

Then we have
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m(x, 1; k)= 3 3 k~reikox0u, 55, on S(30) x R
=0r=0
(1.23)  u(x, t: k)= !

f fj kretk(e2ar10y, H, on S,(60)%XR
4=0r=0

and

(7.24) u(x, t; k)=m(x, t; k) on S(d,)%x R.

Set

. N —_ -~ . - N —
f= {fq; fq}zo=0= {_elk(¢2q_t) Eok ’Dl,zvr,qa eik(02q+171) 'gok " UZ,ZUr.q}

Recall that Corollary of Lemma 3.3 of [5] shows that
¥ (x, Fp)) <K+1 for all x e Proj, (supp f,)
¥ (x, Ppyav1)<K+1  forall xeProj,(suppf,)

hold for all g. Let uj(x, t; k) be an asymptotic solution constructed for an oscil-
latory data f, on I'; x R following the procedure in §7 of [5], and let #7(x, t; k) be
an asymptotic solution of an oscillatory data f, on I'; x R.  Set

u'(x, t; ky={uy(x, t; k), dy(x, t; k)}o.

With the aid of considerations of Corollary of Proposition 8.1 of [5] uj(x, t; k)
satisfies

N
(-5 )@ x R)< Cp gk B0 K77 101, glm 4+ (S1(02) X R)

r

Ou2=0 in woxR

q

N
(5 ) =Sl % RYS Copk N 3 K77 10r gl v 44/(S1(00) X R)

supp uglrxr =TI x[2qd, 2qd+d,] for some d,.

Estimates of the same type hold for @#;. Taking account of Proposition 6.6 and the
continuity of a correspondences of f, to uy and fq to ii; we see that #” can be de-
composed as

N
W=3 kT (T4 Y T wp il
r=0 I =100, bt
where
[ Uy ={u;V"}; ony €#7%(0)

” U””&"ﬂ",m < Cr,mkm+1Bm+2(N+N’)’

:
" _ "(J = s (Jp=h _ Q
[ rh 1= {"r,h,'l,h)’ ”r,(h,'t )} ir-nenir€H#7R (1)

10 ]r—h
MU bl 228, m < Cp o g™ 10 2B 5 vy
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i" e M,,(0)

~n +1
|y |M§‘,R,m <Com, R Byia vty

Now denote u —u’' —u” by u again. Then we have

Proposition 7.2. For an oscillatory data m(x, t; k) on I'y X R given by (1.5),
there exists an asymptotic solution

u(x, t; k)= >3 (uy(x, t; k)= (x, t; k)
q=0
with the following properties .

(i) u(x, t; k)={u,(x, t; k), @,(x, t; k)}3=o is decomposed as

N r o
u= Y E{Su?+ 335wl il
r=0 , = 21y

I1=0Jp-hn

where it holds that for all R>0

[ U,={u"};,en e #7%(0)
1 U 282,m < Cp o, rRE™ Bt 28>
[ U, pi={ulip Yoo nenih€#ER, (1)
1U, 5,1l 295, m< Crom, gK™ e 1" "By 2 vanvys
ii, e M$7(0)
18, 32%,m < Cr,m, kK™ Brrg 2N 48y
here B,, denotes | f|,(S;(6;) X R).

(ii) Ou(x, t; k)=0 in oxR.
(iii) suppucQx{t;t>0}.
@iv) If we set

on I'ix R

fa
ifq on I';xR,

q=0

f={fp [0 is decomposed as
N © -
f=kMTfIV+ 2 3 T S+
ix =1 S0unn Vb
where
[ Fy={f§"}snen€#50)

| Fyll 5, m < Cnyk™ ' B2 (v 487y
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[ Fyon={f37 incnent-r€ 54 (0)
I Fnn, il 25 um < Cnymk™ N "By o (viny
[ fyeMEx0)

| S mlym < Cnmk™ ' Boganany

§8. Laplace transformation of functions in 5%,

Denotes by S a mapping from F into CF(w x R) defined by
Sw=3 (w—w,)  for w={w, W},
q=0

Note that w(x, t)=Sw satisfies

|W|m(w9 t) < Cme_cmlwll",m'
Then the Laplace transformation of w(x, 1)

W(x, @)= Sw erw(x, dt
is defined for Re u> —c¢,, and we have for any ¢>0

(e, WIn(@) < CpelWlp,n  forall Reu>—c+e.
Let w={(AD)1f(x, t —2qd), (AL)f(x, t—2qd)},>,€ K(p). Since

g°_° e mOI)f(x, 1—2qd)dt =(ATe4)f(x, p)  forall peC
we have for w(x, t)=Sw and Re u> —c¢,
#Cx = 3 (e 91(Jx, 1) —fCx, 1)

= (Ade~2mayp(1 — Me=200)1(F(x, )= (x, ).

Since the right hand side is meromorphic in the whole complex plane we have the
following

Lemma 8.1. Let w(x, {)=Sw, we K(p). Then the Laplace transformation
of w

w(x, /.L)=S eitw(x, f)dt

converges in Reu>—co,. And it is prolonged analytically to a meromorphic
function in C of the form

@8.1) W(x, p) =(Ade244)p(1 — Ade 244)"1F(x, 1),
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where F(x, y) is holomorphic in the whole complex plane. And a mapping from
{f, f} to F(x, p) is linear, and continuous in the following sense

(8.2) IFC-, Wln(@) < Cpfleteor O f | (@ x R) + el |, (0 x R)}
for all Re u> —(co+c¢), ce R.
Lemma 8.2, Let W={w}, v e€#(p). Set

wix, )= Y Swlh),
JjeNs+

Then the Laplace transformation of w(x,t) converges in Repu> —c, and it is
prolonged analytically to a meromorphic function in {u; Re u> —co—c,;} of the
form

(8.3) W(x, p)=(2Ae~244)P{(1 —Ade 244)~1F y(x, p)
+(1—Ae"214)"2Fy(x, p)}

where F,(x, p) and F,(x, w) are holomorphic in {u; Reu>—co—cy}. Moreover
correspondences W to F, and F, are linear, and continuous in the following sense;

(8.4) sup  |F;(-, DIn(@) < Cpol Wiz, me

Reu>—(cotcy)+e

Proof. Let us set w()={(A)sfW(x, t—2dq), (AD)af (x, t—2qd)}>p+; and
w() =Sw(), By using the result of the previous lemma we have

P(x, ) =(1Te-2may+ (1 = ATe~20ay L FO(x, ).

From the property (iii) of the definition of (CH), we have f(*)(x, 1), f(x, t) e
C¥(w x R) and

[F(j)(°9 #)—F(w)(' s N)Im(w)
<C,, {leCor 0t (fD—f )], (@ x R) +|ecorent(fL) — =), (wx R)}

for Reu> —co—c;+¢&. Note that

S (Me2#4)IFO(x, p)

j=o

FO)(x, 1) — F)(x, p)
al :

Ms

(M 24) I F)(x, p)+ 3, (Moe~20d)
j=o

j=0

[
Il

Then for Reu> —co—c; +¢

$ | Jae-ma)i | ELZF2
i=o a.l
J

< sup|(FD) — F)od| 3 |ATue=204)d
J j=0

<(1- Mzae_z"”)_l(l{f(j)}jezv+|(c11),,,n+|{f(“}je1v+|(cu).,m)

<Cr e Wllarm



On the poles of the scattering matrix 181

Therefore
12:0 (Aae=21d)i(F) — F(®)o~i = F,(x, p)
is holomorphic in {y; Re u> —co—c, +¢&}. On the other hand
go (Me2u8)IF(x, p)=(1— e 244)~ 1 F)(x, p).

Then setting F,(x, p)=F()(x, u) we have (8.3). The linearity and the continuity
of mapping W to F; and F, already shown. Q.E.D.

Proposition 8.3. Let W={w\"}, \-es,(p). Set

w(x, )=y Swln),
Jr
Then the Laplace transformation

wx, =

[co]
e *w(x, t)dt
a0

converges for all Re u> —cq and it can be prolonged analytically to a meromorphic
function in Re u> —c—c, of the form

(8.5) P(x, @) =(Me2nyp 31 (1= Me=214)=D1F (x, )
P2

where F;, j=0,1,...,r, are C®(w)-valued holomorphic function in {u;Rep>
—co—¢,}. Moreover a mapping W e #,(p) to {Fy(x, W}j=o is linear, and con-
tinuous in the following sense;

r

(8.6) sup X [Fi( 5 Wl @) < Cop ol Wllar, me

Reu>—co—c1te j=

Proof. First admit the following
Assertion. Let B be a linear continuous mapping from CP(wx R) into a
set of a C*(w) valued holomorphic functions in {u; Re u> —cy—c,;} such that

sup I(B) (-, WIn(@) < Cp el fInl@ x R).

eu>—co—cy

Then for {g/9)}; ;€ (CH), we have

12(116‘2‘“’)”"(35"")(x, D)

= 3 (1-Me 2y DG (x, ),
Jj=0

where G(x, p) are holomorphic in {u; Re u> —co—c,} and

Sllp + IGJ( ’ :u)lm(('u)S Cm,el {g(Js)}[(CH)s,m

Reu>—co—cy+te

holds for j=0, 1,..., s.
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Let us prove Proposition by using the above assertion. Note that the assertion
of Proposition for r=1 is nothing but Lemma 8.2. Suppose that r>2 and W=
{wU)}, v1 € #,(p) such that

WD = (A1) I (x, t=29d), O}z, 4
From (iii) of definition of (CH), there exist B and {gV/r-9} e(CH),_, such that
{fUr-1in}®_o= BgUr-v forall J,_;.
Since we have from Lemma 8.2

0

3 (Wi ()

=
= (Ade~2md)lJr-il+p gl (1 —‘lie‘z‘“’)‘fF}Jr-l)(x, 1,

it follows that
B.7) lx, =2 (Swtr)(x, 1)

= (Ade~2nd)p Jél (1 —lie‘z““)‘erZ-:l(lZe'Z“")”r-l'FS-J'-')(x, 0.
Taking account of the linearity and the continuity of a mapping {fUr-1:/0}; v €
(CH), to {F{~-V},_, ,, which we denote by B’, we can write

{F§r-0} ;_ ,= B {fUr-1in}®_;= B BgWr-0=BgWr-1

from which the linearity and the continuity of B follow. Then Applying Assertion
we have

S (M) Il F e (x, p)

Jr-1

= go (1—ALe~2wd)=¢=DF, (x, p).

Substitute his relation into (8.7) and the assertion of Proposition follows. For
W={wUs} e s£(p) such that
wls) = {05 (/'Lj.)"f(")(x, t_2qd)}q2|.l,»| +p

Proposition is proved by the same way.

We turn to the proof of Assertion. For s=1 it is proved already in Lemma
8.2. Suppose that Assertion is ture for s=r. Let {g¥/r+}e(CH),,,;. Then the
property (iii) of (CH),,, assures the existence of B and {g/~} e(CH), such that

{g(.,r'jr+l)}ﬁ¢|=0= Bg(-’r) for all ‘,r‘

The assertion in the case of s=1 shows
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S (Ade~2udyirss(BgUriire0)(x, p)

Jr+1=0
=(1—=Ale~ )" 1GY ) (x, u)+ G (x, u) .
Therefore

(8.8) 3 (;Jle—zud)um|(§gur+1))(x, )

Jr+1

=(1—Ade2nd)~1 JZ (Ade20d) 101G (x, p)

+ ;(Me‘““)“rngJ')(x, M.
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The linearities and the continuities of Band {gt/r/r+0}? _o to {G}Y";-, , imply
that a mapping g/» to {GY~};-,, is linear and continuous. Therefore we can

apply Assertion in the case of s=r to {GU"} and we have

3 GY(x, ) (e 201
Jr

= EO (1 —}.j.e_z“d)_('—l)Gj,,(x, “) .

Substitution of the above relation into (8.8) derives that Assertion is also true for
s=r+1. By the induction Assertion is true for all s>1. Thus the proof of Propo-

sition is completed.

§9. Proof of Theorem 2
Let h(x, ) e CP(S,(d,) x (0, d/2)). Then it holds that

h(¥(©), )=w(y(0), 1) §~--§e-f*<f-">ef<<f'-v'> h(y(e"), 1')do'dt' dEdk,

where w e C3(S(do) x R) verifying
1 for (x, t)e S1(6,) % (0, d/2)

w(x, t)=[
0 for (x, )& S,(6;)x(—d/2, d).

Set
(71h)(y(0), )= w(y(0), 1) So--SIkIZl e—ik(t—=t") gi&(a—a’)

[ NN gt g
0 '/i)l—kI) h(y(a"), 1')do’' dt’ dkd,

Voh=h—9"(h,
where x(I) e C¥(R) such that
1 <1
[ 0 [I[=2,
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and B, is a constant which will be fixed later. Then we have

(Hm @), D=00), 0| k| dn{ap({ardo

|k|= nes
ekpne=o== Ny (BBo)h(y(0"), 1)

Let —2B,<B<2B,, neS'={(n;, n2); ni+n3=1} and let o(x; B, n) be a real
valued C® function verifying

[Fo|=1
9.1) o(y(0): B, n)=B<o,n>

op
o >0.

Fix fo>0 so small that ¢(x; B, n) satisfies (2.14) and (2.17). Define a mapping
a, from CZ(S,(8;) x (0, d/2)) into C*(2 x R) by

0 @ o={ ed(an|apuce o k8o BIBG 8.,

where
ik, B, m)= gg ¢ KW=Ba" ) h(y("), )do'dt’

and u(x, t; B, n) denotes an asymptotic solution in Proposition 7.2 for an oscillatory
data

m(x’ t; k, ﬂ’ ”)=e“‘(‘l’(-"§ﬂ’ﬂ)_”w(x’ t).

Concerning ¥5h, if we choose §;>38,>0 sufficiently small, we can construct
following Corollary of Lemma 3.3 and Proposition 7.5 of [5] an operator %, from
CP(S,(8,) x (0, d[2)) into C*(Qx R) with the following properties:

9.3) supp Zh={(x, 1); t—t; <|x|<t+1,}

where t,, t, are positive constants.

9.4) |50, (R X RYK C,, glhl s s(I' X R) for R>0.
9.5) O%,h=0 in QxR.
(9.6) |%yh— ¥ 3h|, (T x R)YS C,|hlo(I’ x R) for m<N-—-1.

Therefore if we set
U,(uh= §°° ey h) (x, )t

we have from (9.3) and (9.4)
.7 U ,(u)h is holomorphic in C,



On the poles of the scattering matrix 185

and for any R>0and m<N -1

(9-8) 2, W1U G0k (@) Co il st ROR,

and from (9.5) we have for all ue C

9.9 2= A)U,(wh=0 in Q,
from (9.6)
(9.10) éo |1l 1U 2(1)h = (A3 1) ()] — {(T) < Cpol oI X R)e™PRex,

Moreover we see easily, with the aid of the energy inequality of (P), from (9.5) and
(9.6) that

©.11) U,(Whe N HY(Q)  if Repu>0.
m20

Now we turn to consideration of Laplace transformation of #;h. Note that it
follows from Proposition 7.2 that

u(- 5 B MIn(2rs )< CroymtVe k™1

Then the Laplace transform
v h={" em(ah x, nar
converges absolutely for Re u> —c¢,. Therefore

(9.12) U,(w)h is holomorphic in Re u> —c,.

Next consider an analytic continuation of U,(u)h. Let us set

0uh={ - femtu e, 13 B, mkhC, B, mix,(BlBok2dKaBandt
Qo= femu, i x, 15 k. B, M-k, B, myzu(BIBoIK2akdBandt

Oph={--fewiix, 12 B wkh(k, B, myx,(BIBoEdkdpands
where
wlx, 1k, fom)= T Sul s, 13 B, )

JeeNs

ur,h,l(x’ t; ka B9 '1)= JZ S"E-{;:'—[h) (x7 t; k’ B’ ”)
h-r

i (x, t; B, m=Sax, t; k, B, n).
We have from (i) of Proposition 7.2

lar( 5 k’ B’ n)lm(QR’ t)SCN.m,R,ee_(c°+c1_e)ttrkm+l’



186 Mitsuru Ikawa

from which it follows that

9.13) 0,(1)h is holomorphic in Re u> —co—cy,
and

9.14) |10 (1A (QR) < Crpmyr,el Hlms sS(Tx R)  for Rep>—co—cy+e.
By applying Proposition 8.3 to S e #u(x, t; B, n)dt we have

(9.13) Qu(wh=(1—A%e24)r"Y(F,h) (x, p)

where
Fhix, )= % (1 — ey | kad f an a8 Fpux s B0
1=

k" x1(BIBoYA(k, B, ).
(8.5) and (8.6) imply that &#,h is holomorphic in Re u> —co—c¢; +¢ and

(9-16) |ul EO 11l () (5 )lm- Q)< Crvmroal i+ s X R)

for Re y> —co—c; +&. Similarly we have for Reu> —co—c;+¢
9.17) Qrn(Wh= (Ade2md)i(1 — Ade~2md)y=r=m=LF,  h(x, )

where &, ,, /h(x, p) is holomorphic in Re u> —co—c¢, +¢ and

(9.18) T WVIEE AV QTR G

< Cxmpr,E I |y s(I' X R).
Note that

U= % Qi+ 3 35 0,uioh+00h)

and for Reu> —co—c,+¢
b

1=0 j

20 |#|f|/11e‘2“d|'|(3’r,h.lh)( i) #)‘m—f(QR)

< Cymr 1+ 3 [arTe2n4|r=bh],, . (T x R)< 0.
=0

Thus by setting
O(wh=U,(wh+Uy(wh,
we have

Lemma 9.1. A linear mapping U(u) from C¥(S(8;) x (0, d/2)) into C*(@x R)
is of the form :
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(9.19) OGoh= 3. (1-1e"2s8) =1 Zh(x, )
r=0

where Z.h(x, u) is C*(Q) valued holomorphic function in {u; Repu>—co—c,}
satisfying an estimate for Reuy> —co—c, +¢

(9.20) ,So 1 Zh (s W= (28) < Cny g, 1+ 1) " LRl (I % R).

Next consider the boundary value of O(u)h. We have from (iv) of Proposition
7.2

Ui(wh=(#1h) (e, ) =(1 = 2Ae~20)™N"1gh(x, i)

where Zh(x, p)is C*(I') valued holomorphic function in Re u> — ¢y, —c¢; and satisfies
for Rep> —cy—c,+¢

N=5
,go | 1Zh(-, )y j-s(D)< Cy |1 —Ade 24| ~N 1| b o(I" x R).

Combining this estimate with (9.6) we have

Lemma 9.2, It holds that for all he CF(S,(,) % (0, d/2))

N-=5 o~ -
,éo I UWA—=h(-, @)|n-s-;(I)
< Cy. |1 —Ade=21d|=N=11p| (T x R) for Repu>-—co—c,+e.

Until now we restricted boundary data to be in Cy(S,(d,) %< (0, d/2)). But as
remarked in the proof of Proposition 8.1 of [5] we can remove this restriction, that
is, from Lemmas 9.1 and 9.2

Lemma 9.3. There exists a linear mapping U(y) from CP(I' x (0, d/2)) into
C>(Q) with a parameter pe D={u; Re u> —cy—c,} withthe following properties:

_ N . ~
(i) Uwh= % (1—2ide"24)=r= F h(x, p)
r=0
where Z.h(x, p) is holomorphic in D and has an estimate
_[;0 |#I"|'-¢;h( b #)l"l_j(QR)S CN,m,R,s(l + |l‘l|)—r|h|m+5(r X R)

for D,={u;Reu>—co—c,+¢}.

(i) (W2—2A)0wWh=0 in Q.
(i) O(h—h(x, @)= —Ade~2rd)yN~1gh(x, u) on I

where $h(x, u) is holomorphic in D and has an estimate
N=5 _
,go lIZh(-, Wly-s- (MSCylhlo(Tx R)  for peD,.

(iv) O@when HNQ) = forall Reu>0.
m>0 - o
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Let m(f) be a function in CF(0, d/2) such that

m(t)>0 and Se“m(t)dt=2.

Set for k real
m()=e*'m(1).
Since my(u)=m(u— ik), there exists a,>0 such that
9.21) |m(ik'+{)|>1 for all |k'—k|<aq and 1>({>—co—c;.

Set D, ={{+ik'; 1>({>—co—cy, |k'—k|<ao}. For each ke R define an operator
U,(y) from C=(I') into C*(Q) with a parameter u e D, by

Uk(u)g=mt7<u)h for geC*(I)

where h(x, £)=g(x)m(t). Since |h|, (I x R)<C,k"|gl,(I') we have from (i) of
Lemma 9.3 for pe D, ,=D, n D,

(9.22) 3 Rl Tl (2R)

Jj=0
N
<Cmre 2 11 — e 28| =i (14 | ul) k™3| gl 5(I) .
j=

Similarly we have from (iii) of Lemma 9.3 and (9.21)
N=5 .
(9.23) ,};o 21U w)g —9gln-s- A1)

< Cppmoll — e 20P| TN 1|g|o(I)  for peDy,.
Take N=24. It follows from (9.23) that

(1+1uD'?|0(1)g — g17(I) < C,|1 — Me214|241g| ().

Then for
9.24) pe {55 (+IDI1 = Ade 2422 > C,f 0 Dy =D,
we have
10 =T eeriry,crarn < 5
Set

Vi = % Oy —1).
Then we have

(9.25) 1V g crry,crarn <2
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and
(9.26) Ow)-Viw)=1 in C'(I') forall pe Dy...
Set for ue D,
Uwa=0w-Viwg  for geC(I).
Then it holds that

Udwg=g on I.
From (9.25) and (9.22) we have U,(u)g € C%(Q) and

[U()g12(28) < Cr ol k|"|g|+(T) for peb,,.
Evidently it holds that
(W= A)U(wg=0 in Q.
From Lemma 9.3 and the definition of U,(u) we see that U,(u)g is holomorphic in
V) ﬁ,m and U(u)g € HX(RQ) for Re u>0. The uniqueness of solutions of the problem
>0

Ww*—Au=0 in Q
u=g on I'
in H%(Q) for Re u>0 implies
Ul()=U,(p) for peDy,NDy,.

Set

and define U(u) for ue D by
Uw=Uu)  for peb,,.
Set

.

a0 j=0, +1, +2,....

Kj= —Co+i
Then we have
~ @ 0 -
D2 ={u; 12Repz —co—crte} = U s lu—pl<CU+[)77

for some C>0. Thus we have
Theorem 9.4. For ge C'(I'), U(wg is C*(Q)-valued holomorphic function in
9=\U 2, satisfying
e>0
W-A)U(g=0 in Q
Uwg=g on I.
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And it holds that

[U(w9g12(Qr) < Cr (1+1u)7Igl,(I)  for pe 2,
U(wg e HX(Q)  for Reu>0.

Remark. The regularity theorem for A derives from the above theorem that
for ge C*(I')

U(wg e C*(Q)

and

m+7 .
U091 m(R2r) < Crom,e J§0|u|1|g|m+7—j(r) for peg,.

§10. Existence of an infinite number of poles of U(z)

To prove Theorem 3 it suffices to show that for any ¢>0 a region {u; Re u>
—co—¢} contains an infinite number of poles of U(x). Suppose the contrary:

(A) There exists g,>0 such that a region Dy={u; Re u> —cy,—¢,} contains
only a finite number of poles.

By exchanging &, a smaller one if necessary we may assume that there are no
poles on a line {u;Reu=—cyo—¢g}. Let ¥ be a simple closed curve in
Dy n {Re u<0} containing all the poles of U(x) with Re u> —cq—e&,.

Consider a mixed problem

Ow=0 in QxR
(10.1) w(x, t)=m(x, t) on I'xR
supp we Q2 x [0, 00)

for a boundary data m(x, t)e CJ(I"' x (0, d/2)). Then the solution w(x, t) of (10.1)
is represented as

(10.2) w(x, 1)= S“’ e@tioUa+ik)m(-, a+ik)) (x)dk

where a is a positive constant and
(x, ”)=S etm(x, f)dt .

Note that the integral of the right hand side of (10.2) is independent of a>0. By
using an estimate of U(u) in Theorem 9.4 we can obtain from the assumption of the
finiteness of poles

(10.3) |U(wgl2(2r) < Cr,(1+1ul)Igl,(I)
for all |u| sufficiently large and Re u> —co—c; +¢.

Since
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(10.4) (e, WIS Cpulmly I x R)(1+|pul) e~ Rerdi2

holds for p, =0, 1, 2,..., we can change the path of integration of (10.2) as

0
el-(eotert i U( — o — 8o+ ik)M( -, —co— 8o+ ik)dk
o0

w(x, t)= S

+S M UG-, p)dy
€

=w(x, )+ wy(x, t).

With the aid of (10.3) and (10.4) we have

Lemma 10.1. [t holds that _

[Wil2(Qgs 1)< Cre~(cotetm| (' X R).

Let w(x, t; k) be a solution of (10.1) for a boundary data
(10.5) m(x, t; k)=e*(e=H7Df(x)p(t)
where fe C*(I') and p(t) € CZ(0, d/2). Then

Mm(x, u; k)=e*e=f (x)p(u—ik).
Since
[PWI<Cy(1+]u)™  forall Reu>—co—c,

we have

max |p(u—ik)| < Cyk=N for k>1.
HEE

Taking account of ¥ = {Re u<0} we have
[wa(- 5 k)| 2(Qg 1) < Crnk™ forall t>0.

Thus combining this estimate with Lemma 10.1 we have

Lemma 10.2. Assume that (A) holds. For an oscillatory data m(x, t; k) of
(10.5) a solution w(x, t; k) of (10.1) satisfies

(10.6) W 5 K)|2(Rg, 1)< Crem(eore ki + Cp vk~

for all t>0, where Cr and Cg y depend on f(x) and p(t), R and N, but independent
of k.

Let fe C¥(S,(5,)) such that
(10.7) flay)=1
and let p(t) e C¥(0, d/2) such that
(10.8) pldj4)=1.
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Construct an asymptotic solution u(x, t; k) for m(x, t; k) of (10.5) with (10.7) and
(10.8) following the procedure in the previous sections. In this case u,, i, in Pro-
position 7.2 are of the form

) N
uy(x, t; k) =eikle=(x*2qd-1) ZO v, .(x, kT
=

i, (x, t; k) = eik (@) ¥20d-0 r"go 5, (%, K.
Remark that
supp o, 4(ag, - )={t; 2q+1/2)d<t<(2q +1)d}
sutpp Uo,4(a0, - )={t; 29 +3/2)d<t<(2q+2)d}.
and
vo,{(a2, (2 +5/4)d)=Ae+1]a
where a, denotes the middle point of @, and a,. Then we have
vo,o(a0, (2 +3/4)d)> v, [(a,, (29 +5/4)d)=A9+1)]4
Vo, (a0, (29 +3/4)d)=0  s#g¢q
Bo,(ao, 2q+3/4)d)=0  for all s.

Thus u(x, t; k) in Proposition 7.2 satisfies

(10.9) |u(ao, (29 +3/4)d; k)| = (AD)+1 — C(A ) ﬁl krgr
(10.10) Ou=0 in QxR
(10.11) u(- 3 &)= m(- ; k)| (T, 1)< Cpk—Ni2Ne=eot,

Denote by z(x, t; k) a solution of
Oz=0 in QxR
z=—(u(x, t; k)—m(x, t; k)) on I'xR
suppz<=Q x {t>0}.
Then from (10.11) we have
(10.12) |z(aq, t; k)| < Cyk~Ne2N forall >0.
Evidently we have w(x, t; k)=u(x, t; k)+z(x, t; k). From (10.9) and (10.12) it
follows that for all g and k

Iw(ao, (29 +3/4)d; k)| = (A2)%(1 - Cy }i k7rqr)— Cyk™Ng?N.
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Combining this estimate with (10.6) we have

Cre(cote)(2a+3/4)d f16 L C o k=N

>@DI(1=Cy 3 k-rqr)— Cyk-Ng2M |
r=1

Recall that e=2¢0d=11. Choose k as

k16= eeo(2q+3/4)d/2‘

N
And take N=[2¢y/ep]+3. Then (1—Cy Y. k™"gq")>1/2 holds for large q. Thus
r=1

we have

CRe—(co+ao/2)(2q+3/4)d

> — e~ c0(24+3/4)d _ C, g2V e~ (coteo/2)(2a+3/4)d

YR

Letting g— oo we have a contradiction. Thus our assertion is proved.
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