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Precise informations on the poles of the scattering
matrix for two strictly convex obstacles

By

MitSUrli IKAWA

1. Introduction.

In the previous papers [3, 4] we considered the scattering matrix for two strictly
convex obstacles. To say more precisely, let 0 i , j= 1 , 2 , be bounded and strictly
convex open sets in R 3 with smooth boundary F i . Suppose that

fl c12 =Ø.

Set 0 =0 1 U 02, Q= R 3 —.0, F=F, U E 2 .  Consider an acoustic problem

02 u 

u  = 0  

at2  
t l u = 0  i n  Qx(— co, co)

o n  F x(— co, oo),
3 a2

where d = E  „  Denote by Y'(z) the scattering matrix for this problem. About
j= i OX1

the definition of the scattering matrix see for example Lax and Phillips [7, page 9].
We showed in [3, 4] the following facts:
(i) There exist positive constants co and c, such that for any e>0

{z ;  fin z <c o + c 1 —  — B i
i = - 0 0

contains only a finite number of poles of 5"(z), where

B .=  {z ; —  < C ( 1 +1.0 -1 1 2 }

zi =ic o + L
d

r j, d=dis(6 1 , 0 2 ).

(ii) For large Ij ,  Bi  contains at least one pole.

The purpose of this paper is to give very precise informations on the poles in B .
Namely, we shall show the following

Theorem 1. For large I il
(a) every Bi  contains exactly one pole of 9'(z),
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(b) denoting by p i  the pole in B i  we have an asymototic expansion

(1.2) p i— zi+ fi1 j-1-02 j-2+ ••• for I i i o o ,

where 131 , are complex constants determined by 0,
(c) in B i  <99(z ) is represented as

Y (z )f = (f, ili i )+A ;(z )f f or all f e L 2 (S 2 )

where n i  and tit;  e L 2 (S 2 ) such that n i # 0, tki  0 , (  •  , )  stands for the scalar product
of L2 (S 2 ) and .Ytai (z ) is an ..T(L 2 (S 2), L 2 (S 2))-valued holomorphic function in B .

In order to prove Theorem 1 we adopt a means to consider a  boundary value
problem with a complex parameter y

(1.3)
f  (y 2 — z )u  = 0  in

1 u = g o n  r
for g EC Œ ) ( T ) .  For Re y> 0 (1 .3) has a solution u  uniquely in  n  Ilm (Q ). Denote

m>o
the solution by U (p )g . Then U(p) is holomorphic in Re y > 0  as ..r(C (T ), C ( ) ) -
valued function. We shall prove the following theorem on U(p).

Theorem 2. Set for k E R— {0}

Gk= {ye C ; 1/.1-Fikl <c 0 +c 1 , Re —co —(log Ikl) 1 }.

Then for large Ikk  U(p) is represented in Gk n { y eC ; Re y> 0} as

fl(x , p ; k ) (1.4) F(p, k)+(.7(p, k).
U G L I —  g  — Y01 , k)

Here
(i) f i(., p, k ) is a C (Q ) -valued holomorphic function in Gk,

(ii) .9(y)=1— ylle - 2 " ,
where 2, ;1: are constants determined by 0 such that 0 < 2,A<1,
(iii) y(p, k) is a complex valued holomorphic function in G, such that

N-1 21
(1.5) IY(P• k) —  E (E Yi,h(P+ikr)k - 1̀<cNIkl - N

1=1 h=0

holds for p e Gk, w here y , are complex constants,
(iv) F(p, k ) is a holomorphic ...99 (L 2 (F), C)-valued function in Gk,

(y ) C l(p , k ) is a holom orphic Y (L 2 (f ), C '(0))-v alued function in

It follows immediately from Theorem 2 that

Corollary. U(p) can be prolonged analy tically  as ...r(C'(T ), C '(0))-v alued
function into

( G - {y; , 9 ( 1) —  Y01, 0 =  0 1) •
Ihi:large
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Another result on a boundary valued problem (1.3) is the following

Theorem 3. Suppose that kI is large and that g (p )— y (p , k )=0 . Then we have

(1.6) dim 04; p-outgoing solution of (p 2 — zl)u =0 in f2, u =0 on FI =1.

By recalling the relationships between the poles of ,99 (z) and those of U(p) shown
in Lax and Phillips [7], we can derive easily Theorem 1 from Theorems 2 and 3.
But we postpone the derivation of Theorem 1. Now we would like to give a remark
on the method to prove Theorems 2 and  3. The procedure o f the  proofs is a
slight modification of the one in [3, 4]. As in the previous papers, first we construct
an asymptotic solution of

Du =0 i n  S2 x R,

u=eik ( o( x' - ') f(x, t) o n  F x R,

supp u  S-2 x {t; t 0}

for f e CA T x (0, 1)). Here we require only a  first order approximation of the
boundary condition, that is,

lu(x, t)—eik ( * ( x ) - t )f(x , t)I<C e - cotk- ' o n  F x R.

This permits us to  obtain  an  asymptotic solution u(x, t) in  a  simpler form than
in [3 ].  By using this simpler form of asymptotic solutions we can reduce the problem
(1.3) to an integral equation on F 1 , which is also of a simpler f o r m . Consequently
we can solve the integral equation by the Neumann series and obtain a representation
(1.4) by a rearrangement of the Neumann series. This representation (1.4) is crucial
for this paper.

The results of this paper and an outline of the proofs were announced in [6].

2. Remarks on the behavior of broken rays.

W e generealize Lemma 3.3 and its corollary o f  [2 ] to  a  form containing a
parameter k. Hereafter we use freely the notations and results on the broken rays
of §3 of [2], and §4 of [3].

Lemma 2.1. L et e be a  positive constant. For large  k>0  every  broken ray
such that x e T —S(k - c), e  2  and X(x, n S(k - )= 0 satisfies

(2.1) )<1 +C e  log k,

where C is a constant independent of E and k.

P ro o f . The strict convexity of 9 ,  j = 1, 2, implies

(2.2) n(x).x'>.cIx'12 (c>0).

Let x(s) be a  representation of X(x, by a  parameter s the length of the broken
ray from x. For x(s)e L.



72 Mitsuru Ikawa

-d ilx (s) I  =
2 X ;  •  ;  + ( s — l i ) 1 E 2 ,

d which shows that ds lx(s)'I 2 is increasing on (/;, and that

[ d 
d s  " s=ii+o=2X' • "•"-•-'•-•i •

Similarly we have

Thus

lx (sY 1 2_
s = i  0

=2X '. • 7 ' .
j •

(2.3) d  I x (  s v  1 2 1 _ [  d   Ix(s)ds s= +0 ds s=ii-o

=2X 'i  • (E• — _ 1) = 4( — n(X i ) • :Li _ On(X i ) •

First step. Suppose that x' • On Lo , since

d ( Y12 > [ d
d s  x  s d s  l x ( s ) 1 2

1 = x' •
s= +o

we have

(2.4) 1X'11 1x'1 >k - E.

d By the monotonicity o f d s lx(s)'1 2 and (2.3) we have on L1, j,„1

ds lx(s) 12 , 2clx 12 ,

which implies that Pri+112 — IX:J 2 ?---2 c/1IX 2 , namely

lxj+11 2 i ( 1 + 2 cd)IX 2 .

Combining this estimate with (2.4) we have

IX11 2 ,>-(1+2cd)ik- 2 g.

Therefore j  such that <  diameter of 9  must satisfy

j  2CE log k,

which shows (2.1).
Second step. Consider the case of x ' •  '< 0 . Lemma 3.3 of [2 ] shows tha t, if
.T(x, n S(k)=Ø, lx(s) ,  co as s-+ x. Then there exists j o  such that

1X; 0 12 =min 1X12  ( k - 2 c).
j>0

Note that

(2.5) X :i0-1•,17;0-1<0,
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(2.6)X 0 1  •  E  f o , , > O.

Indeed, if (2.6) does not hold we have from (2.3)

lx(s)'12< —ck - 2 o n  L i ° ,d
d

s

which implies

PCJ0 +112 <iVj o i2 .

This contradicts with the choice of j o . (2.5) may be shown by the same argument.
Now by using the first step we have from (2.6)

(2.7) '1*(x, <  j o  +2Ce log k.

Consider a  broken ray Ar(X J 0 ,  —EJ 0 _ 1 ). This ray follows the reverse course of a
part of ,f(x, from x to  X i .. Note tha t E 1 (X j 0 ,  —S; 0 _ 1 ) = —F, ; 0 _ 2 , and X; 0 _ 1 -
Ei 0 _ 1 >X; 0 _ 1 . E./0 _ 2. Then

X 1(X fo
, — E./0- E 1(X Jo,  1)= X

:io - I  
.
(

— E
f o -2 )

>
 X ' j o -  . ( o _ 1 )> OE>

This implies that
"X(X J o , —S i 0 _ i )<1+4Ce log k.

Therefore we have j o  <1 + 4Ce log k. Combining this with (2.7) we have (2.1).

Corollary 2 .2 .  If  we choose (5 > 0 sufficiently small, then for any xe S((1 +3)k- e),
e E  such that X i (x ,  )E (5)1c-c)— S(k - E) we have

°X(x, ) <1 + Ce log k.

P ro o f. Suppose that

(2.8) [ I x(s)' 121 = X ' 0.• 0.
s= /0-

Then we have from (2.3) X', • ck-26. Taking account of we have
from the first step of the proof of Lemma 2.1

< 1 + CE log k.

W hen x e S(k - e), X 1 E ± (5* - 6 ) —  S(k - s ), 1X1 2 ,•-lx'12 a n d  t h e  monotonicity
d ofx ( s ) ' 1 2  imply (2.8).ds
Thus the remaining case i s  t h a t  [ j ' lx(s)I 2 1 < 0  and x S(k - g). By

s=i0 -o
using the monotonicity o f  d

d
s lx(s)' 12 we have

[  Ix(s)I21 a (
x,i2 

I x
 2 )  <  26 k _2 e .

s=i0 -0 d

From (2.3) and k-8 we have

[—d

d
y , ix (s)' 1 2 1 = X — 

 2 3  
 )k-28.

s=10+0 d
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If we choose >0 so small we have

(2.9) VI • C,)

By applying the first step of the proof of Lemma 2.1 we have the assertion.

R em ark. Under the assumption of Corollary, since (2.9) holds, we have I X 2' 12  —

1Xi12 _>-2d k - 2 8 , from which it follows that

IX1.,>.-(1+dc)H 2 k- r>..(1+6)k - c

when is sufficiently small.

Corollary 2 .3 .  Let x n S((1 +6)k - 8 ). Then fo r  any  brok en ray  .91'(y, such
that X ,( y ,  ) =x , y E + SW ') w e have

X i (y , )e  S (k - €) f o r  j = 1, 2,..., q —1.

P ro o f . Suppose that q 2. I f  X , E S(( (5)k - F) — S(k - €), we have X 2  S((1+
6)k - c )  fro m  t h e  a b o v e  re m a rk . T h u s  w e  have X 1 e S(k - '). Repeating this
argument we have the assertion.

3. Construction of asymptotic solutions (I).

Hereafter we fix s as 0<  e< 1/2. Let xj , j=  1, 2, 3, 4 be real valued smooth func-
tions defined on R  such that

1 l < 1 + ( j - 1 ) 6 ,
Zi(1) =  0  

1,>..1+0,

and let vv,, nk, uk , 0, be functions in c - ( r  defined by

wk(x( 7 ))=Z4(lalk e),

rik(x(0)=X3(ialk E),

uk(x(0)=ZzIlalk9 ,

0,(x(0)= X i I10-10).

Let h(t)e QT(0, d/2) satisfying h ( t )  0 and

(3.1) h(t)dt =1.

Let m be an oscillatory boundary data defined by

(3.2) m(x, t; k)=eik(o ( x) - 0 f (x , t; k ) ,

f(x , t; w k(x)h(t ,

where t/f(x)e C(S i ((50 )) satisfying Condition C  o f §7 o f [2], and j ( x )  is the one
introduced in Lemma 5.4 of [3].
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We construct an asymptotic solution for m of the problem

E u = 0  i n  Qx R

u = m  o n  r, x R

u = 0 o n  T 2 X  R

supp u x {t; t 0} .

The procedure of construction is substantially same as in  [3], but the treatment
of the boundary condition is different.

From  now on we denote S i (k
- E), +.5 )k -c ) , S (k )  and S((1 d-(5)k - )  by

S , S k  and gk respectively, and by co(S) a domain surrounded by S1(6), j =1, 2
and a cylinder fx; dis(x, L)= 61. First fix a large integer N  and construct ug (x, t; k ),
q =0 , 1, 2,... in the form

uq(x , t; k)=eikoPg (x)- ov ,(x , t; k ),

Vq (X , t ; k )= E
. f ro  v

. ;

 '
q (x, t;

Since satisfies Condition C of [2 ] we can construct successively a  sequence of
phase functions c,90 , q ,  g 0 2 ,. . .  following the process in pages 136 and 137 of [3].
Note that we have the following

Lemma 3 .1 .  It holds that

(3.4) 192p( • — ((p.( • )+ 2pd + d o ) i . ( 0 4 6 0 ) < C a 2 P ( 0  <a <1) ,

(3.5) 19.4+1( • ) 0.1 • + (2p + 1)d+  d o ) 1 . ( 0 ) ( 6 0 ) )  C„,cx 2P,

where yocc,  are 0  are functions independent of  tlf and do is  a constant depending
smoothly on 0.

P ro o f. Recall estimates (7.9) and (7.10) o f [3 ], and rem ark that w e have
do =d o +d  from their definition. Since 117 92 p i =1, 1 1740 .1= 1 in  co(So ) and ° (

a
P
rfP >0 ,

a t o  >0  on S1(60, and estimate (7.9) on S1(60) implies (3.4). We have (3.5) from
(7.10) of [3]. Q. E. D.

Following [3] we set

0T ,=2  a t  +2 f7 goq I• + z 1 9 ,.

We define vo ,,, q= 0, 1,... as follows:

(3.6) Too,q =  0  i n  to x R ,

and

(3.7) vo,o(x, t ; k ) =f ( x ,  t ; k )  o n  S1(60 ) x R,

(3.3)
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for p

v0,21,_ 1 (x , t; k )  v= -0,2p- 2 (X , t; k) o n  S2 (60 ) x R,
(3.8)

vmp(x, t; k )=B k (x)v m p _ 1 ( x , t ; k )  o n  S 1 (60 ) x R.

Forj 1  we define tvi ,q ) , successively by

(3.9) Tqvi,q = (11 vi  _,, qi n w  x R  for all g ,

(3.10) t; k )= 0o n  S 1 (60 )x  R,

(3.11) t; k )=v i ,2 p (x , t ; k )  o n  S2 (S0 ) x R.

In Section 3 of [3] a  function j ( x )  on S1 (60 ) u S2 (ô0 ) was introduced. Now
we extend it to j(x ) and j(x ) by the following two ways:

(3.12) j ( x ) =j( y ) +l f o r  x= y +117 (pc o (y), y  E Sabo),

(3.13) j ( x ) =j( y ) +l f o r  x =z  + /Pep' „(z), z  e S2 (60 ).

Recalling the proof of Lemma 5.3 of [3] we have

j(x )=j(x )+ d  o n  S2 ( 0 ),

j ( x ) =j( x ) +d  o n  S1(60 ),

and Remark 3 of [3] can be written as

(3.14)3 ( x ) = h 0 3 ( x ) + A X T 1 ( x ) ) — d f o r  x e S2 (60 ) ,

(3.15) ./(x)= h.(x)+3(X T1(x)) —  d for x c S 1(60)

We extend a(x) and ã(x ), which are defined in [3] as func tion s  on  S1(6 0) and S2(60)
respectively, to functions in w(t 0 ) by

a(x )=[G(y  +1V  tp.(y ))1G,..(y )] 1 1 2 a(y),

ei(x)=[G o _(z+117 45.(z))1G (z )]'/ 2 a(z),

where y  and z are linked to x by the relations in (3.12) and (3.13).

Lemma 3.2. Set

vo ,jx ,  t ; ok(Y)a(x)b(t — l(x))

t; k)= ilv k(z)ii(x)h(t —3(x)),

where y and z a re linked to x by relations in (3.12) and (3.13) respectiv ely . Putting

92p+ i (x , t; k )=v 0 ,2, 4 . i (x , t; k)

—bwk (A.,)(21)Pv 0 ,.(x , t-2 d p -1 (A 0 ) — d.,; k),

9 2 + 2 (x, t; k)=vo,2p+2(x , t; k )

—bwk (A 0 )(A ,T)P130 ,.(x, t — (2p +1)d — j(A 0 )—  d.; k ),
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where b, A o  are the ones in Proposition 5.6 of [3], and d„ denotes cl„, 0 , we have

(3.16) ig q l,„(0 02))x R)<C„,q(À.1a)q 12 M„,,

where a is the one in Proposition 5.6 of [3] and

Mm=i fl.(s,(60)x R).

P ro o f . Let XES k . I f  X_ q _ Rt0q)k g l ,k, we have from the consideration
in Lemma 5.3 of [3]

vo,q =O.

W hen X ,(x, ( p q ) E  g i , k ,  by applying Corollary 2.3 we have X _J (x, 17 (pq )e Sk

fo r  1,>.j.„>.q, which implies that uk (X_ i (x, 17 (pq ) )= 1  fo r  1 j q  when X_ i eT i .
Therefore the representation (5.9) in [3] is also v a lid . Thus we have from the proof
of Proposition 5.6 of [3]

(1 1 7 ) 11)0,2p — (?1)PW (40)a(X )bh(t — j(x)-2pd— j(A0) — d.)1m(g2,kx R)

(3.18) iv 0 ,2 p ,  —1(QPw(A 0 )a(x)bh(t —j(x)— (2p + 1)d — j(A0 )— d)1„,(,
&
 x R)

<C„,(À1a)P M „, .

Let x 0)(6 2 ) and q= 2 p . Denote by y the point in S 1 ( 6 2 )  such that

x = y + /17 92p(Y).

Then

v0,2p(x, t; k)=[G,k 2 p (x)IG,, p (y)] 1/2
Uk(y)llo , 2 ,(y , t— Ix—y;

By combining Lemma 3.1 and (3.17) we have the assertion for q= 2p.
a proof is done by the same way.

Remark 3 . 1 .  Since a(x), a(x), j(x) are determined only by (9,
independent of tfr and wk .

Remark 3.2. Set

aTŒ, -2 +217 goo,, -17 +.4cp,„at

T e0 =2 + 2 , • 1 7 +ziefi co .

k).

For q=2p+1
Q .E.D.

130 . c o  a re

Then we have

(3.19) Too v0 ,03 (x, t; k)= 0  i n  co(So ) x R,

(3.20) t; k)= 0  in  w (3 0 ) x R,

and
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(3.21) vo (x, t; k)=i3 0 (x, t—d; k) o n  S  x R- 2,k  - ,

(3.22) V0 (x, t; k)= ;Iv °,  ( ,  t— d ; k ) o n  S 1 , k x R.

Though these are obvious from the process of the definitions of a, d and j, j, we give
som e explanation. It is evident from  the formula (5.2) o f  [3 ] and the  way of
extention of a(x) and j(x ) that v 0

f
Too v= 0 in 5(5 0 ) x R,

v= v k (x)a(x)h(t —  j(x)) o n  S1 (60 ) x R.

Then by formula (5.3) of [3] we have for x e S2 (50 )

v0 ,09 (x, t; k)= A ,„3 (x)a(X 1(x))h((t — h .(x))— j(X _ 1 (x))

by Remark 2 of page 156 of [3] and (3.14)

Let vi ,90 and v•

= Ad(x)h(t —1(x)— d)=t) 0 ,0„(x, t — d; k).

functions satisfying

in (462) X R,
(3.23)

(3.24)

O•vi , =09

T 0 i3j ,90 =1=1 1 _ ,

on

in

S 1 (62) X R,

c°(52)x R,

i3i3 O 0 = vi ,90 on S2(62)x R.

L em m a 3.3. For j >1, we have

(3.25) vi,90(x, t; k )=  E ai d (x; k)h( 1)(t— j(x)),
i=o

(3.26) /31,99(x, t; k )=  E af ,,(x ; oh(o(t— j(0,
i=o

where a1 ,1 and ii1 ,1 are functions independent of Especially  on S 1 , k  we have

(3.27) /31,99(x, t ; k )=  1E ,i (x)h ( ')(t — j(x))

where a7,1(x ) is a function independent of k.

Pro o f . First consider the case of j=  1. Note that 117 ,j(x)1 =  1 . Then

v0 ,99 (x, t; k)= — h'(t — j(x)){2177 • 17 (v,a)+ Aj • (v k a)} — h(t — j(x))A(vk a).

Putting
v (s )..v ,„ (y + s r(p (y ), t+ s ; k ),  y e  5 1(152 ).

From the definition of j(x ) we have j(y + (I) co (y ))= j(y )+  s . Then it follows that

d(3.28) 2 c--E -5 v(s) + (A yo oc )(y + s17' co(y))v(s)
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= (7 'v 1 , )(y + s r(p .(y ), t+ s )

= — W(t — .K.Y))b i(Y + sr ts 0 .0(0 —  h(t — f(Y))bo(Y + sr (P

w here bi (x )=  (217 j • 17 (uk a)+ zlj • uka)(x), bo (x )=A (n k a)(x). B y th e  integration of
(3.28) we have

v(s)= — h( m)(t —j(y))5b„,(y +117 (po o (y))
m=o o

Gq,-(Y + sr (P 00(Y)) 1 112 dl
G,„..(y+lrcp,,,,(y)) _

h(n)(t+ s — j(y+sV(P.(.0)a sr749.( 0  •
m =0

Indeed,

t) = h( m)(t—j(x))a i ,„,(x; k).
m=o

Thus (3.25) is proved for j=  1. Repeating this argument we have (3.25) for j 2.
For (3.26) the proof is done by the same way.

Since y=Xs±2 (x)e SIA for x e SIA, it follows that uk(x)= 1 near y. Then in
(3.28) we may regard 14=1 for all s namely

d 
ds  v(s)= — 11'0 — A 0 1 217i • V a+ A l • al.= y-Fsl7 cpco(y)

— h(t — j(y))(z1a)(y+ s17 9 (y ) ) ,

from which we have (3.27). Q. E. D.

By using a  representation formula (6.6) o f [3 ] for solutions of the transport
equations and Lemmas 3.1 and 3.2 we have the following lemma by induction in j.

Lemma 3.4. F o r j 1 ,  it holds that

(3.29) lbw k(fl o )(..1)Pui ,.(x, t-2pd— j(A 0 ) — d , ;  k)—v i ,2 p (x, t; k)Im(a)(6 2)x R )

jp(/1/1c()PA m+

(3.30) I bwk (A 0 )().1)Pf5j , (x, t —(2p + 1)d — j(A 0 )— c 00 ; k)— v i,2p + 1(x, t ;
 Olm(c0 (6 2) x R )

<C m  jp(A/la)P Mm+2.t •

Since the transport equations (3.6) and (3.9) are satisfied we have for all q

(3.31) uq(x, t; k)=eik (,P,i (x )-1 )(ik )-"E vn ,q  •

Similarly, by setting

X , t ;  1 0 =  e i k ( V ' ( x ) — r ) E ;
i=o

t; k)=eik ( 0 - ( x) - 0  t; k)(ik)-.1 ,
j O

we have
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(3.32) Elucc(x, t; k)=eik ( <P- ( x) - 0 (ik) - "Ev,,, ,

(3.33) t; k)=euc ( 0 - ( x) - 0 (ik) - NEi5N ,00 .

Now combining Lemmas 3.1, 3.2 and .34 we have

Lemma 3.5. It holds that

(3.34) leikca0-i(A0)-d-)bwk(A0)(A.1)Pucc(x, t —2pd —j(A 0 ) — do,„; k)

— U 2 p( )C  t ;  1 01m (a (t2 ) X  R) < c „,kmW coP E m,„ + 2 .k - j,
J =0 J

(3.35) leiko0-f(A.)-a...)bwk(A0)(,11)Pfio0(x, t — (2p + 1)d —j(A 0 ) — k)

— u 2 + 1(x,  4 4 ( 4 6 2 )  R)<c„,km(ALt)P E
j =0

(3.36) leiktdo-to40)-a.,
) b w k ( A 0 ) ( A ; ) P O u 0 0 ( x ,  t - 2 p d  — A A :0 —  d  co ;  k )

—  E u 2 p ( x ,  t ;  k ) 1 . ( 0 ) ( 6 2 ) x  R )  <  C m k
-

N + m + 1

(L IC ) P M 2N + m ,

(3.37) leik(do-f(A0)-d..
) b w k ( A 0 ) i ) P p i i c a x ,  t  —  ( 2 p  +  1 ) d  — j ( A 0 )  —  d a 0 ;  k )

— 1 : 1 u 2 p + 1 ( x ,  t ;  k ) 1 . ( 0 ) ( 6 2 ) x  R ) < C m k -
NA-m+ I WO i ll 4  2N + m •

Note that yoq can be extended into a neighborhood in R 3 of (46 0 ) verifying Irgoq l
= 1 .  Denote one of such neighborhoods by 6 .  Then vi ,q a re  also extended into
1) verifying the transport equations. Similarly we extend goo,„ 0 0,, v i ,„0, i3i ,„, by the
same w a y . Thus we may suppose that the relations and estimates (3.29)—(3.37)
hold in c7.).

Let x(x)e C ( R 3 )  such that its support is contained in  (I) and x =  1 on W O .
Evidently we have from (3.36) replaced 0)(52 ) by et)
( 3 . 3 8 ) l e i k ( d o - j ( A 0 ) - d ° ° )bwk(A0)(2):)Px(x)Euce(x, t-2pd —j(A 0 ) — d ;  k)

— z ( x ) E u 2 p ( x ,  t ;  k ) 1 . ( R
3
 x  R ) < C m k

- N + m + 1

(A/ICOP  M 2N + m •

Denote by u'2p (x, t; k) the solution of

{

Ew= —x(x)Ou 2p i n  R 3 x R

supp w c R 3 x {t; t > 0} ,

and by u'oo(x , t; k ) the solution of

{

E w =  — x (x )E tt„ i n  R 3 x R

supp wc R 3 x {t; * .,13} .

Since supp xEu 2 p c ilj x (2pd—R 0 , 2p+ R o ), we have from the Huygens principle

(3.39) supp u {(x, t); t-2 pd — R 0 < lx 1 < t+ 2 p d + R 0 , t >2pd— Ro l .

From (3.31) it follows
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(3.40) luZp1.(R3 x R ) < C „, / c " ' + 3 (.1L )PM 2 N + . •

From (3.38) we have

(3.41) leik(do-l(A0)-d.ObWk(A0)(Q P1 4(X , t — 2pd — j(A 0 ) — d ;  k )

t ; 0 1 , , , ( R 3  x  R )  C„,k - N + 'n+ 3 (),L)PM 2 N + ,

Evidently we have the same type estimate for g =2 p  +1 , namely

(3.42) le ik "0 -'"0 )-d -)b w k (A 0 )W y fi'o e (x , t— (2 p +  1)d —j(A0 )— d oo ; k)

— u 1, + 1 (x , t; k )1„,(R 3  x  R )<C „,k - - " + "1 ± 3 (A L )PM 2 N + . •

4 . Construction of asymptotic solutions (II).

Let m be an oscillatory boundary data of the form

(4.1) m(x, t; k )— eik ( ox) - t) f (x , t; k ) , f E  Q °(1 " 1 x (T , T +d12))

where 0 e C°D(F 1) is a function satisfying Condition C of or 0(x, g, /3) of Lemma 7.1
of [2]

Lemma 4.1. For a positive integer N  we have a function u (x , t; k )=u '(x , t; k )
+u "(x , t; k )  satisfying

(4.2) E lu = 0  in Q x R,

(4.3) supp u'j 2 ( x ,  t ; ç o )
(x,o.supp f

(4.4) 1141.42R , t)‹ C .,R e' t lrtillm+ry ,km + 1

x E el co- f ( . .) lm +2 i( r i x R ),
.fro

(4.5) lu"1.10, C„,e-c0tiptplm+N,k-u+m+1

x (t— T)Njecor f(• •)ini• + 1(r  x R ),

(4.6) lu — O n g , C m e 'l  VOImi-Auk - N + m

x (t — le" T  f (• +) (F1 X  R) .

P ro o f . We follow the process of the proof of Proposition 8.1 o f [2 ]  except
an argument on estimations of the amplitude function o f  w( N) in  § 8 .  Namely,
instead of the estimate in §8 we use a precise asymptotic formula proved in sections 5
and 6 of [3].

Corollary 4.2. Suppose that m  of (4.1) verifies

(4.7) 5.r(x, (p(x ))< log k f or a l l  x  eProj x  supp f ,

where 9(x ) denotes the one in the definition of  Condition Cor 0 +  
2  

 p 3 / 2
.  Then we3
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have a function u(x , t; k ) satisfy ing (4.2), (4.3) and

(4.8) I/41.10R, 0<Cm,Re - c ° 1 117 (pl.+N, km + '

x (k - 1 (log k+R)Plecorji x R ),
j=0

(4.9) lu"l„,(Q, C„,e'117 (P1.+N ,(k - 1 (log k+ R))_-Fm

f  IN ,+ x R) ,

(4.10) lu — Ce-'11791m +N ,(k-1(log k+ R)) - " n

x lec° T  f Inv + m(r x R) .

Moreover

(4.11) supp Mr ,,R x  [ T ,  T +d  log k +2p 0 ] ,  ( p o =diam eter of  0).

Pro o f . We have from (4.3) and (4.7)

supp u' {(x, t); t T +d log k +P0 +ix 1 } ,

which implies

t— T..<d log k +R +p o  o n  supp u' n (r2R  x R) .

Thus (4.9) follows from (4.4). Recalling the process of the construction of u", which
corresponds to u' in the previous section, we have (4.9) and (4.10). Q. E. D.

Set

(4.12) ntp(x, t; k )=eik ( 0 2P( x) - o f p (x , t; k ),

fp(x, t; k)= (1 — 0 k (x)) Vj' 2p — (X , t; k )(ik ) -  j,

(4.13) m,o(x, t; k )= k o p - ( .) - of „(x , t; k ),

f„(x , t; k )=(1—  O k (x)) vi  ( x ,  t;
1=0

Then (3.17) and (3.29) imply that

(4.14) lbwk(A0)(.11)Pf„(x, t -2pd— j(A 0 ) — d„; k )eik (d-- ( Ao) —  do)

— fp (X ; t ; /On ( F  1 X  R )  Cm,NPN W COP  E  ic - j m2p-m•
J -0

Note that we have from Corollary 2.2

(4.15) '.2-(x, 17 92 p (x)), 179,„(x)) log k for all x e supp (1 — Ok)

By applying Corollary 4.2 to  mp  and m,,,, and we get z i, and z (4.2), (4.8)
(4.11), where T=0 for z „ and T =2 p d  for z,,. Remark that since cc. 2 4 = .1  it

holds that
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le 2pdco f p lm t rk X R) < Cm M„, for all p.

Since the process of the proof of Lemma 4.1 indicates the continuity of a corre-
spondance from { i, f }  to u, we have from (4.14) and Lemma 3.1 the following

Lemma 4 .3 .  It holds that

(4 .1 6 )  lbw k (A 0 )e i k ( do- P A 0 ) - d- ) (.11)Pz oo (x , t - 2pd — j(A0) — d,o ; k)—z p (x, t; k ) I n ( Q R ,  t)

C in,R(0,a)Pe—co(t —2pd)km+ L
J=o

(4.17) E z p = 0  i n  52 x R

(4.18) supp z p Ir x [ 2 p d ,  2 p d  +  d log k+ Po] •

Set

(4.19) rp(x , t; k )=u 2 p (x , t; k )+u (x , t; k )— u 2 p + 1 (x, t; k)

—u'2 p + 1 (x, t; k)—z p (x, t; k),

(4.20) r(x , t; k )=  E rp (x , t; k)
p=0

and

(4.21) r co (x , t; k )=e 1k( d.- 1 ( A0) - d-){u (x, t; k )— u'oc (x, t; k)

t—d; k)— iroo (x, t—d; k))—z oo (x, t; k)}.

We have from (3.34), (3.35), (3.41), (3.42) and (4.16)

Lemma 4.4. It holds that

(4.22) I bwk (A0 )(.31)Pr co (x , t — 2dp — RAO — d k ) — r p (x, t; k)1„,(OR  x R)

‹C m ,R PIC O Pkm +1  E k-1M
2  j +  m  •j=0

Next we consider the behavior of r(x, t; k) on the boundary. Taking account
of (3.8) we have on T,

co
(4.23) r(x, t; k)—m(x, t; k)= {eik ( (P2P- 0 0k (x ) E ( i 1 c ) j

p=0 j=1

+(m p (x, t; k)—z p (x, t; k))—W2 p (x, t; k)+14 p , 1 (x, t; k)} .

From (3.8), (3.11) we have on 2

00

(4.24) r(x , t; k )=  E t; k)+14 p + 1 (x, t; k)—z p (x, t; k)} .
p=0

Summing up the argument up to now we have
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Proposition 4.5. For an  oscillatory  boundary  data (3.2) we have a function
r(x , t; k ) defined by (4.20) verifying

(4.25) r(x, t ;  k ) = 0  i n  f2 x R

and (4.22), (4.23) and (4.24).

5. Laplace transform of asymptotic solutions.

We consider the Laplace transform of r(x, t; k ) with respect to t, that is,

(5.1) P(x, p; k ) = .e - A tr(x, t; k)dt.

First we restrict p in {p; Re p>  0}. Evidently the integral of the right hand side of
(5.1) converges absolutely. Therefore P(x, p ; k )  is an H (Q ) -valued holomorphic
function. It follows from (4.25) that

(5.2) ( p 2  t)P(x , p; k )= 0  i n  Q.

Set

s(x , t; k )=r(x , t; k )—  bw k(A 0 ) (Q P r e„(x , t-2pd— j(A 0 )— d ;  k )
p=0

and we have from (3.39) and (4.22)

(5.3) Isl„,(C2R, <  C ,(lo g  k) e - ( c 0 - 1 - c i ) ( t - R - C e  l o g  k ) k m + 1  
E

— 2 , + . •
1=0

Thus it follows

(5.4) p; k)I„,(QR)<C,n,Re(co+ri)(CE lo g  k+ R )km + 1 k J M 2 j+ m
j= 0

f o r  p e 9,----{p ; Re p >

On the other hand

e- Pt (A;T)Proo (x , t-2pd— j(41 0 )— d ;  k )d t
p=0

00= E  (a ) ,,e - g ( 2pd+ j(A0)+doo)p . ( x ,  p ;
p=0

= g ( p )-1 6,-Aiu(A0)+a->p ca x ,  p ;

where

9(p)=1—  0.e - 2 d2 .

Lemma 5 .1 .  The Laplace transform of  r(x , t; k ) is of  the form

(5.5) P(x, p; k)= bw k(A o )9 (p ) - 1 6, - - A( i ( A0) - i- d. ) A (x , p; k )+g(x , p ; k )

w here Poo (x, p ; k )  is  a  C'(52)-v alued entire function an d  g(x , p; k ) is  C œ ( ) -
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valued holomorphic f unction i n  9 = { p ; R e p >  —co — c1 }  verify ing an  estimates
(5 .4 )for any  R >0  and s' >O.

P ro o f . Beside the fact that r  is entire, Lemma is already proved. The esti-
mations on the support of r,,,(x, t; k), namely (3.39) for u',„ and  'Woo , (4.18) for zoe

imply that for any x e OR the support in t of r o,  is contained in a fixed bounded set,
from which we have the entireness of r oe . Q .  E .  D .

Next we consider the form of P on the boundary.

Lemma 5 .2 .  On T I we have

2  (5.6) P(x, k)=rh(x, p; k)+bw,(24,)e - P( i ( A0) +d-) P.(x
"
p• k ) +  ( x "  k ) ,

g ( l i )  

where §1(x , p ; k ) is Cœ(T i ) v a lu e d holomorphic in and satisfies estimates

(5.7) 1 1(x , p; k)I < Ce (Oax) log k + k - Nle"")M N . f o r  y e  g e ,

(5.8) Igi (x, p; k)I C (O k(x)k - ' + k- NkEN")MN , f o r  Re p —  co —2d(log k) - 1 .

Pro o f . On T ,  we see from the definition

r . ( x ,  t ;  k ) =
eik(do-si(A.)-e..).(eik((p...(x)-

0 0 k ( x )

• E t — d; k)— u'09(x , t; k )+ t; k)} .
.1=0

Set

si (x , t; k )=r(x, t; k )—  m (x, t; k )

—bwk (A 0 ) ( ) ) P r c„,(x, t —2pd—j(A 0 )— d o,, ; k).
p=0

Then it follows from (4.23) that

S i(X , t; k )= [0,(x){eikt (ik ri(e ik ( 0 2, , ( x) ) v. L 2 p 4 .1(x , t; k )
p=0 j=0

_eik ( (p. ( x) +2 0 +do))1)PV i ,„c (x , t— (2p+1)d; k))}

+ {(m p—  zp )(x, t; k)—bw k (240 )( 1)P(m.,— z „„)(x, t-2pd—d o„; k)}

+ {u ; p (x, t; k)—bw k (A 0 )(n )P u '03(x , t-2pd— d oe ; k )}

+ {u 0 _1 (x, t; k)— bw k (A 0 )(2))Pfi'0„(x, t — (2p +1)d — d oe ; k)}

=1 1 +1 2 + 1 3 + 1 4-

First consider / I . Set

1 1,i,p=ek(x)e ik 2 1 ( x ) vi,2p+i(x, t; k)
_  e ik(v.., (x)+ 2 pa+do)(l i)Pi5 t —(2p+ 1)d — d oe ; k )

= o k ( x ) ( e " " " P —
ei k( cp.+ 2 pd+ do) ) ( , )1)Pi3i3O0 (x, t — (2p+ 1)d — d oe ; k)
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+ Ok(x)e ik  ( P 2 P  { V j,2p+ 1 (x , t; k)—(),,I)P113i , o 0 (x, t — (2p +1)d — d oc ;

By using (3.4) we have

iiii,p1,n(ri X  R)< Cm  max (ka 2 P , 2)(A;I:)PMm + 2 J 0k (x).

Then, by setting

logk
E p =  E  / / ; ,p +  E
p=0 p=0 p=log k

we have

11Pin i<C0k(x)e - cot log k  a n d  supp //(! ) c (0, 2d log k +Po)•

Then it follows that

y d  log k+po
k)I<CO 3(x) log k e—cote—Re iltdt

0

--s;... 00k(x)e- 2 d  l o g  k ( — R e  s i — c o )  log k.

Therefore we have

III (l )(x, I t ;  k)l<Cek(x) log k  if R e p —  co  —  2d(log k)-1 .

It is evident that

I1< (J2) (x, P; 01<C 0 k(x) fo r  R e  p< —co —c1 /2.

On / 1, 1=3, 4, estimates (3.41) and (3.42) imply

101<Ck - I v iccw f o r  all p e g ,

and on 1 2  the process of the construction of zp  assures

112(x, p ; k)1<.,Ck - Nicav' for all p e e .

Combining these estimates we have (5.8).
If we use an estimate IH J ,,i < Ok(x)k(ooll)P for all p  (5.7) follows immediately.

Q. E. D.

N ext consider on 1 2 .

Lemma 5.3. On 1 2  we have

(5.9) P(x, p; 10= bw k(A o )e - P " " ° ) " - ) I
9 ( 1 2 )

 oc(x  " p• k )+g 2 (x , p ;  k ),, 

where g2  is a  C , F 2 )-va1ued holomorphic function in  gre  a n d  satisfies an  estimate
f o r  y e .9e  (c' >0)

(5.10) P.(x, p; k)1,.+1§2(x, 11; 01.<C,,k-N+m+eN' M N, o n  1 2 .
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P ro o f . Set

s2 (x , t; k)=r(x , t; k)—  bw k(A 0 ) (A;17)Pr.(x, t-2pd—j(A 0 )— d.; k ).
p=0

Then we have

s i (x , t; k )= { — zp (x , t; k)+ bw k (A 0 )()/1)Pz(x , t-2pd— j(A 0 )— d.; k )
p=0

U ( X ,  t; k)— bw k (A 0 )(0.)Pu',,,(x, t —2pd — j(A 0 ) —  d.; k)

t; k)— bw k (A 0 )(2/1)Pii'.(x, t - 2pd — j(A 0)— d.; lc)j •

Thus estimate (5.10) on g 2 is done by the same way as for /i , 1=2, 3, 4 in the previous
lem m a . For P . recall that r . = z .  on r2 , and we have the desired estimate.

Set

E2( 2) = R 3 0 2

Denote by U( 2 )(#)g for Re p> 0 and g  E 
C c ( r 2 )  the solution of

(p2 — tl)u =0 i n  0 2 ),

=g on F 2 ,

U e L2 (Q( 2 )).

Then U( 2 )(p) can be prolonged analytically into

fp; R e  —fl, (=

for any /3> 0, where Cp  is a constant depending on fl. Moreover,

lui.(Q (R2 ) ) ‹  C m,R,plIg1111(F2) for E 2 ) 1 )

Set

e(x , p; k )=(e - ( P+ik)i ( x)h(p+ik)) - '(P(x, p; k)— U (2 )(p)r(• , p; O ir 2 ).

Now we shall show the following 

Proposition 5.4. L e t  i  b e  a  function v erif y ing C ondition  C . T hen there
exists e(x, p; k) of the form

(5.11) e(x, p; k)— 1b w k (A o ) e i k d o e - ( 4 + i k ) ( i ( A o ) + d . )e,(x , pi; k )+e 2 (x , p; k)
<9 (0

verifying the following:
( i )  e ,  and e 2 are C'(0)-v a1ued holom orphic functions def ined in and e l

is independent and they satisfy estimates

1) See for example, Ikawa M ., Mixed problems for the wave equation, III , Exponential decay of
solutions, Publ. Res. Inst. M ath. Sci. Kyoto Univ. 14 (1978), 71-110.
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(5.12) jel(x, k)1„,(52R ) <C„,,„len+' E k - f M
2 j + mj= 0

for /LE 9 (k )
=  fy; 11 n y + ik l<ik l - 1 /2  — c o  —log k < Re y <1 1 , and e 1( .,  y ;  k)EL 2 (0)

f or Re y>0,
(ii) (y 2 —zI)e(x, y ; k )=0  in 52,
(iii) e(x, k )=0  on f  2 ,

(iv) on T l  e  is of the f orm

e(x, y; k ) = eik (x )w k (x )+[ (g ) k 0bw (A  )eikdoe - (i -f- ik)(i(Ac)+d.)

N  2 ]
x {0k (x)eik 9 -(x) E E aj, i(x)(ik) - i( y +ik ) '+b i (x , y ; k)}1-1- b2 (x , y ; k),J=1 1=o

where b1 an d  b2 are  C ( F 1)-valued holom orphic function in  g  an d  b 1 i s  inde-
pendent of  fr. M oreov er they  satisf y  estiamtes

(5.13) lb , ( , k)1„,(Ti)<C„,k - N - 1 - m
M 2 N ' + m

(5.14) b2(x; y; IO< k- 1 0,,(x) log k +C k - u.

P ro o f .  Form  th e  definition o f  e(x, y ; k )  ( ii)  and  (III) follow immediately.
Note that we have

Rit + c > 0 for all y e .9 ( k ) ,

where c is a constant independent of k. Set

M x; y ; k )=(P.(x , y ; 0 — U ( 2 ) ( 2 ) ( P . ( •  y ; 101r2)(x)Xe - ( P + i k ) ./ ( x ) 1 7 1 02+

e2 (x, y; 0 = 0 ( x ,  y; 10— U ( 2 ) (12 )0 2( . , y ; k)(0 1 e - ( "+ a ) -i( x) ri(y +

From the definition (4.21) of r (5.5) we have

J2 = e ikdoe -oi+a)(i(A0)+ac) e 2 , e 2 is independent of 0.

Lemmas 5.2 and 5.3 imply (5 .1 2 ) . Now we show  (iv). From the definition we have

Acc (x, y ; k )=e 1k( d o - j ( 1 1 0 ) - d°*){0.(X, y ; k ) - 0 '.( x ,  y ; k)

y ; 0 - 1 7 (x , y; /01 - 2 .(x , 1 2 ; ,

and by using (3.21), (3.22), (3.23), (3.24) and Lemma 3.3

û ( x ,  y ;  k)—e - P 4 ,0(x , y ; k)

2 ]
= 19k (X )e i k 9 °° ( x ) E ( i k ) i  E a • i(x ; k )(y  + ik )ie - (  i k ) j ( x ) R 1 2 +

J=1 1=0

Thus by putting

b,(x , y; k )=(— û'cax , p; 10+5'.(x , p; k)— U ( 2 ) (11 )(P.( • , 0 1 0 1 0

.(e-(2+ik );(x )h(p+ioy i,
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b2 (x, p; k )=0,(x, p; k )— U( 2 )(p)(g 2 (• , p; k))(x))•(e - () i ( x ) h ( p + i k ) ) - ',

we have (5.13) and (5.13) from (3.32), (3.33) and the definition u (x , t; k) and frop(x,
t; k), and (5.10). The representation is immediately derived from the definition of e.

6. Definition of U 0  (p).

L e t  g(x)e CA S JO +3(5)k - 9). T h e n  w e  have  b y  th e  Fourier's inversion
formula

g(x(cr))= (270- 2  11 ei( 6 - 1 ")•4 g(x(a))daid

=1wic(x(a))e i k c" # (k )k 2 g ,

where

4(0 = (270-2 5 e1a'4g(x(a))da.

Define P(x, E  C 3(S1 ( 6 0 ))  by

k x (a ), 0 = a

W hen I <1 —(5 (6>0), tk(x, satisfies Condition C and if 11>bo

' X (x ,  c p (x ,  ) )< K

holds for some fixed K .  By using §7 of [2] and U ( 2 )(p) we have immediately the
following lemma

Lemma 6.1.

(6.1)

For k _>-(5, there exists e(x, p; k,

(112 — d)e(x, p; k, 0=0

e(x, p; k, ) =0

e(x, p; k, )= e i k wk (a )+b 2 (x, ft; k,

verifying

in Q,

onr 2 ,
on

where e3  is  homomorphic in Re p >> — co  —c 1 an d  eEL 2 (52) f o r Re /2> 0, and

(6.2) ie(•, k, )ini(t2 R)<C„,,Rlen+ 1 ,

(6.3) 1b2( • k, 0In,(F 1 ) <C„,k - N + m.

Apply Proposition 5.4 for t/f(x)=1,4x, 11 <60 . Denote e(x, p; k), do ,  do o ,
b, A , in Proposition in 5.4 for ifr(x, by e(x, p ;  k, 4 ( ), b( ), Ao( ) re -

spectively. Set

(U i (p ; k )g )(x )= e(x, p; k, )"g'(k)k 2 ck.
R 2

Taking account of the independency of e, o n  we have from (5.11) that
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U l (p; k)g— e i (x, p• k) 
g(t1)

' F o ( p ;  k ) g  +  U , ( p ;  k ) g ,

where

F o (p; k)g = wk(A 0(0)b(0 ikdo
( 4 )e- (124- ikni(A 0(»+d-(4))4(kOk 2 d ,

lo<60

U 1 (p; k )g=1 R 2 b2 (x , p ; k , 0 4 (k )k 2 d .

From Proposition 5.4 and Lemma 6.1 we have

Lemma 6.2. U 1 (p; k ) is 2'(CO°(S 1 ((1 +3(5)k - E)), Cœ)(0))-va1ued holomorphic
function def ined in g  — { j; 9 (p)=0} , and satisfies

f  (-1 2 — A)U i (g; k )g =0 in

t U ,(p ; k )g  =0 on T 2 .2 •
Moreover we have

U,(p; k )g E L 2 (0) f o r  Re p >O.

Now consider the boundary valued of U i g on T .  F r o m  (iv) of Proposition 5.4
and (6.1) it follows that for xEr t

U 1 ( ; k)g =5.
 iv ei " ( x' 4 'wk(x)4(kOk 2 d

0
{ 0 (x )a(x  p

"
• k)+ b i (x , p; k )1F 0 (g; k )g,9 t) k 

b2 (x , p ; k , 0 4 (k )k 2 ck
R 2

1 -=g (x )+ (1,1) E 101; k)g + E 2 (p ; k)g.

Lemma 6.3. For p E g u o  w e have

(6.4) &GI; 09111.2(1-o  ‹C k - ' 12 11942(ro •

P ro o f .  From (5.14) and (6.3) we have

1E2g(X)I 2 dX < 2 5.
r ,  6 1  1 6 .  ûk(X) l o g

k
 k  la(k)1 k 2 d 0

2

 dx

+21 k- N ON INkOlk 2 d 0 2dXr iR 2

<2 (log k)20k(x)2dx 14(k)1 2 k 2 ck
R2 <60

+ C ( k -
N+1+eN)2 k2I C10(k)1 2< 6 °  

<2(log k)2k- ellg 1112 + Ck- N 1 2 110 Q. E. D.
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With the aid of Lemma 2.4 we introduce U 2 (p; k ) as a  slight modification of
U 2 (p) in §9 of [2], namely

Lemma 6.4. There ex ists an  operator U 2 (p ; k ) which is 1 t9 ( C ( F 1 ), C ( ) ) -
valued entire function verifying

U2 (p; k)g E L 2 (2) f o r  Re p >

(6.5) 52 f o r  a l l  p,(112 — LOU 2 (p; k)g = 0  in

(6.6) onU2Gt; k)g =0 1'2 f o r a l l  p.,

(6.7) 11 U2(1,1 ; 091r,11L2(r,)<Ck119111.2(n) ,

(6.8) 1(1—DAU2(11; k)g — g)1(T 1 ) Cm
k-N+m e (-c o -Re p .) lo g  k  4 2 ( F 1 ) .

Now define an operator Uo (p; k ) E .29 (C"(1 1 ), C"(D)) by

(6.9) Uali; k )g= U t (p; k) — uU 2 (2; k)(1 — 7 109 I r i )  +  AP; k) ( 1 — 1109 •

Let us set

M (ft; k )g = Uo(p; k)g r, •

B l (p; k )g=ii k (x)g,

B 2 (ft; k)g = —D k(x)U 2(p; k)( 1 — 1 1 )9  r 1 .

Then we have

(6.10) Mg =g + g(p )- ' E,(13 1 +B 2 ) g  +  2 (131 + B 2 )g + E 3 g ,

where

E 3 (p; k)g = (1 — vk)U2(-t; k)( 1 — k)g Ir, •

It follows immediately from (6.8)

(6.11) E39 H-(r 1) C m k - " + "1119111.2(r,)

We set

E2(11; k)= E2 (p; k )(B ,(p; k )+ B 2 (1; k )),

FAIL; k )=F 0 (p; k)B i (p ; k ) , j  =1 , 2,

F(p; k )=FiG i; 0+ F2(.1; k),

H i (p ; k )=g (p ) - 1 0k (x )a(x , p; k )F(p; k ),

HA Y ; k )=.9(P) - 1 b1(x, i t ;  k ),

M y; k )=H i(P; k )+ HA P; k).

Remark that from the definitions it follows that

(6.12) (B 1+132)H1=H1,
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(6.13) (B1+132)E2— Ê  2  •

If we use the above notations (6.10) may be written as

(6.14) M =i+Ii1 +H 2 +E 2 +E 3 .

7. Explicit representation of U (p ).

Lemma 7 . 1 .  Suppose that A  and B are bounded operators in a Hilbert space
X such that

s1 = A + A 2 + A 3 + ••., =B +B i-i-B 2+•••

converge in the opreator norm and d(asl)i11-<..Crri (0  <  <  1) h o ld s . Set

.saf + +.12/./af + + • • •,

W2 = .1? +./..ef ••.,

W=W l +W 2 .

Then we have

Pro o f . By using

we have

(A + B)W -= W — (A +

A.2, = se' — A ,  B = d— B

A W  (si —  A) + Oaf — A).4 +(d— A)a, .sze +  -

=  — A—Ac .
Similarly we have

B  = Ce2 —  B— BW, .

Thus
(A +B)(W i + W 2 )— AW i +BW 2 +BW ,+ AW 2

=  +  2  —  (A + B). Q. E. D.

Now apply the above lemma to the operators in the previous section.

Lemma 7.2. There exists a bounded operator 8'( 1; k) in L 2 (1 1 ) such that

(7.1) (E 2 +E 3 )e =6° —(E 2 + E 3 ).

‘ (i1, k) is holomorphic in Reg> —c o —log k and satisfies

(7.2) 116° — 12(Bi + B2)Il < C k ,

where
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6"2 =Ê2 +Ei+ Ei +
P ro o f . From (6.13) we have

E= E.(13,+ B 2 ),

then (6.4) assures the convergence of g 2  and

S 2 = 1-
2 (B 1 + B2 ) .

It is evident from (6.11) that

6°3 =E 3 + Ei+ E3+
converges and

ile311 2'(L2( r, ) ) <C k -N

Thus by applying Lemma 7.1 we have immediately (7.1) and (7.2). Q. E. D.

Set

M P; k )=F 0 (131 +13 2 )(0 k(x)a(x, ti;b 1 ( x ,  P.; k))

= F o Bk(x)a(x, k )+ F o (B, +B 2 )b ax , it; k)

=Y1101 ; 0+Y12( 2 ; k).

Then we have

(7.3) A °=H +H 2+H 3+.••

œ ( i ( Y1
J-1 a 

.9 (11) . 1 = 1  g ( p ) )
F =   

F .

Lemma 7 .3 . There exists an ..99 (L 2( r 1 ))-valued holomorphic function .."(it; k )
in Re g> — cc,— log k satisfying

(7.4) (H + E 2  E 3 ) ,W  =,W —(H + E 2  E 3 )  •

Here, , 1  is of the form

a+Sa(7.5) (1 -1 ,# )=I+S + F ( 1 + ) ,

where

Œ(x,k ) =  Ok(x)a(x, p; b1(x, k),

y is a complex valued holomorphic function.

P ro o f . Set

Y2=Fo(Bi +B 2 )6"a(x, k)

=F 0 (B i  + B2)(i2(B i +B 2 )0k (x )a+(‘— ‘7
2 (B i  +B2))Ok a + 6"b1)

= Fo é 2 Ok a(x, k )+{ F(e  —  6 °
2 (B 1 + B 2 ))0k a + F‘ bt}

=Y 2o+Y 2t •



94 Mitsuru Ikawa

Since we have 11 211---<, C V "  f ro m  (6.4) we have

(7.6)
 

11'201-<...Ck-g12.

From (7.2) and (5.13) we have

(7.7) 11'21 1 C k - N + 2 .

Now from (7.3) and the definition of y2 it follows that

(edr)i =(•9(p)-yi)iy - 2 e0tF 0(B1 + B 2 )..

Then

= (e ,e )i
i=

converges in the operator norm and it has the form

=  g o )  _

1

7 1  _  y 2  e c z F o ( B i +  B 2 ) .

Put y =y,+ y2 , and we have

(7.8) y= Fa+ Fea= F(I + e)a.

Then we can apply Lemma 7.1 and

,%/=,Yt° + ,yt°e+ r e + • • • + e + e,e + eAee + •• •

converges and it satisfies (7.4). Since we can rewrite it as

= AP(/+ e)+dr(eyto+(e,ye) 2 +•••)(i+s)+e+(eAa+(eY) 2 +•••)(1+e),

we have

(7.9) i+ .,e = i+ e + R i+ e )
•9 01) - yi

oc F ( I + e )
g(u) — Y < 9 (IY2) — Y F "  e )  g '0 1 )

a e a  =(I + e')+ 
+ ) — Y

 F (I +6).
g ( I 1 

Proposition 7 .4 .  In  goo n {p; Re p > U(p) is represented as

[3(x  (7.10) U(p)— , k )  F(p ; k ) ( I+e (p ; k ) )+ CO.; k),
(I1) Y  GI; k)

where f3(., p ; k ) i s  C"(n)-valued holomorphic f u n c tio n  in
...r(C "(F  1), C'(0))-valued holomorphic f unction in 9

,10-

P ro o f .  Set

(7.11) U(p; k)=U 0(,u; k)(I +.,1(p; k)).

Q. E. D.

g ( k )  a n d  (7(p; k) is
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From the definition (6.9) of U0  and Lemmas 6.2 and 6.4 we have

U(,u; k)g e L 2 (Q) fo r  R e  11 >0,0,

(112 —z1)U( 4i ;  k )g  =0  in Q,

U (y ; k )g  =0 o n  r 2 •

On the other hand on I '  we have

U(y; k)g =(I + H + E2-1- E3)(I + dl)g =g.

Thus from the uniqueness of the solution it follows that

(7.12) U (y ; k )=U (y ) in 9 ( k) n { y; Re p >  .

Now substitute (6.9) and (7.5) into (7.11) and use (6.4), and we have

e l  e +  (I+)Œ
U(g; k )= Fo(Bi+B2)(1+ 

(11)
F y +e ) )

,9 0 1 ) .9 —Y

+0(11;  k)(13 1 +8 2 ) ( I  + + ,
( 1

(
± c t

y  F(I +S ))

+U2 (# ; k )(1 -1 k )(1 +e + ,
1
(
4-
y r̀ zy  F(I + e))

— .9 ( t i
I

)  y  )3(x, y; k)F(1+6 . ) +C(11; k),

where

fi =e 1 +U 1 (B 1 +B 2 )(1+6°)a+ U2( 1 — rik)(I+S)a,

= U 1(131 + B2 )(1+6.)+u 2 (1-10(1+e).

From these formulas we have the required assertion.

8. Proof of Theorems 2 and 3.

First we consider an asymptotic form of y  for k—>x . F r o m  the definition of
F , and Œ(x, ,u ; k) we have

(8.1) eika.(4)e-ik.ffe (x())p(0., k, y)k 2 ci cla,Y 110 , k )=1 5

where

(8.2) p(a, k, 11)=b(Owk(A0(0)e - ( ' + i k ) ( i ( A ° ( 4 ) ) + d ( 4 ) ) 0 k(x(Œ)) :±1
1 D.i,.(x(c))(ik) - j .

Then if we restrict p. in

-6k={11; C=e0d-e1+27r/d,

it holds that
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(8.3) k, p)I<Ck(la1+itioc for all a ,  /3 e  N 2 .

Set

0( 0-, = c10( ) — a • + ((p co ( x(0-) ) .

Lemma 8 .1 . It holds that

(8.4) d0() O.

P ro o f . By the definition of d0 ( ) we have

4 (0 =  lirn (inf {(1a 1 — X(2P— 
1 )1 ±  l x ( 2 p - 1 )  x ( 2 p - 2 ) I „ Ix( 1 ) x ( 0 ) 1  2 0 } )

p-.00

where inferium is taken over X
(2p-1) ,  x (2p-3) , . . . ,  x (1) 6  r 2 ,  x (2p-2) ,x ( 2 ) E  r i

a n d  x(°)e W,,,0 ( . ) (a 1 ). S ince  dis(a 2 , W,,,,0 ( . ) (a 1 ) ) < d  for 0 0 ,  by choosing
2) =  x (2p-4)__ ( )x( 2 P- ') =x ( 2 P- 3 )= •••—xm=a 2 ,  x(2P- =  x 2 a l  w e  s e e  in f . {la, —

x (2p-i)i _ 4_1)c m  x (0 )_  2pd} < 0 f o r  0 O. This implies (8.4). Q. E. D.

Evidently 4 ( ) =0 f o r  = O. Therefore w e have from (8.4)

(8.5) [aii41d0( ) 14= 0] , j ,  1,2 < 0.

From Remark 2 of §3 and Remark 1 of §5 we have

(8.6) [8i,.,,909(x(0")) = did = 1,2 K>0.

It is easy to check th a t  a =  = 0 is a  stationary point of O . Since

  

4)acr Cbc). a3d0 — 1

— I  ON.,

      

det =det
- °44 -.=4=0

      

—a=4=0

c = =0 is a unique stationary point and it is non-degenerate. Thus we can apply
the stationary phase method to an oscillatory integral (8.1). Because of 0(0, 0)=0
we have

11,11 — ri E1,1<2I 
ev(1) P(0-, k, 1, )) ,

< C,k - L E 11);', 4p(0- , k, 14k 2do-cl
ivi<21+5

‹Ck— l+e(21-1-5) ,

w here  is  a constant determined by 0 .  Since all,o,(x (0), 0 = 0 for /300 we see that
N

B P ( C k, p) =0 = ( E  c), h (y+ ik)h)(ik) -

j=0  h=0

and we know q h =0 for lid odd. Thus we have

Lemma 8 .2 .  It holds that

(8.7) Y 1(1, k)— c. (p+ik)h)k-i for co,
J=1 h=0
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where c are constants.

In order to obtain an asymptotic expansion of y20 w e  have to  go back to the
definition o f  12 . D enoting by /4,(x, t; k, th e  o n e  constructed following the
process of §3 for

m(x, t; k)=eik ( - owk (x)h(t— j(x)).

Set

(8.8) 1 p (x )_ 1 1 e ik k o 2 p + , (x ' 4  t) e- i k a. 4 4 - i k o ( x0 7 ) ) hp k 2 d0-Cg,

hp = E v i ,2 „,( x , t; k , )(tk ) - ii9k(x(0))a(x(a), z ,  k ).

Set

op(x, 0)=92p+ a • + 4 0 .(x (a )).

Lemma 8 .3 .  Let p )  be a stationary  point of  ç t i
, , •  T h e n

(8.9) p ( ci,) = ( X )  (2p +1)d.

Pro o f . Note that from the definition of 9 0 (x, we have

• = 9o(x(a),
As in Lemma 8.1 we have

( p 2 p . 1 ( x , f l x — x ( 2 1 I +  
... + l x (1)_ x (o)1}

where infimum is taken over X (2P+1), x (2p-1) , . . . ,  x (1 ) e  F 2 ,  x (2p) , x (2 p -2 ) , . . . ,  x (2 ) e

and X  E  W w (. )(X (0 ) ) .  D enote by 4 1 )) , 4 1 ) ,..., 44 +1 ) th e  p o n ts  which give the
value of the infimum. By the argument in Lemma 4.1 of [5]

a (49 2p+1(x, a • )=IiIn 14°)
 —

where x1°) = W,p 0 ( .. 4 _,A 4 j ) (x(a)) n line passing 4 0) a n d  4 1 ) . Then i f  x(a)0 4° ) i t
fo llo w s  th a t ,3 ( 9 2 p + I ( X ,  ) — fir • 0 0 0 .  S in c e  w e  h a v e  f ro m  (17 9 0 )(x (o ), )—
(17(p.)(x(a))00 th a t 0,(9 0 (x(o), 9 ( x ( o ) ) ) 0  0, if C  p )  is  a  critical point of

p  it holds that

(8.10) r(p0(x(0-p), p) = c o ( X ( a p ) ) ,

and x(cp)= 4 ° ) gives

(8.11) 9 2 p  +1 (x • 9 0 ( X ( U p ) ,  .11)

=inf —x( 2 P+0 .1+ lx( 2 P+11 —x( 2 P) 1+ •••+lx( 11 —x(ap)11.

By taking account of (2.3) of [4] we have from (8.10) and (8.11)

9 2 p  +1 ( x •  1 ) ) — 9 0 ( 4 7 p) • 1 ; ) =  (9  co (X )+ ( 2P  + 1)C0 — c o (X (a p »  •

Thus we have (8.9). Q. E. D.



p (X )—  eik
( 2 p + 2 ) d e i k ( x )

r E  e ,AjE=i

17 . f .

v J.,2„+i(ik) a) k -I,1 121 < Ck- '.

Since 1 9 2p , — „, ,„(70,01 <Coc2P,h 

,i<21 P'

p  r o o l  + ‹ C a 2 P , <Ccx2P we
have

• (D h p(x, t, a ,p ;  k ) ) z p )k - I' 11/2 1..‹,

For x e S i ((1+6)k - E) w e have X f 2 i (X)E S i(k —E ), 1E25(X) ' I <  CŒ2 i  for j  1. Thus
(  =  1 near x(o-

p). By using Cp' so ( x )  =  03 (x) + d on F ,  we have for x  ! ' 1
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Lemma 8 .4 .  It holds that

cc 2j
(8.12) Y20(P, k )~  E  ( E  6 2, ),,(ti+

j=1 h=0

P ro o f .  By the same argument as in Lemma 8.1 we have

92p+ 11a (Pota < ( 2 P + 2 )d
and

2p+1(a 1, 0 )  (Po(ai, 0) = (2p + 2)d.

Therefore we have

[ 8 i,d92p+ 90161 On <O.

Then we have from (8.4) and the above inequality

det 
r p ) ( 7 a p ) a4

—1.
_ ( 74 ( I ) _

Note th a t {17 (p2p ± 1},T,1 is a  bounded set in C '(co (S )) and 1792p , 1 — >I 7 CO °I, as p—*co

in  C '(c o (6 )) .  Therefore O p  can be transformed into a quadratic form uniformly in
P. Thus by applying a stationary phase method to (8.8) we have

l I p ( x ) —
ei k  (2p+11d e ilc ip .. ( L ,P c p  v

Iy i<21

(E200 ) (  )
co 2 f

ei ( x) ( Ci  h (X ) ( t i ik)h)k -  j.
j=1 h=0

Recalling the definition of î  w e  have from the above expansion the required ex-
pansion (8.12). Q. E: D.

By combining (7.8), (8.7) and (8.12) we have
N - 1  2 f

(8.13) Iv(kt, E ( E c i  kJ+ ik) h )k - iI < C N k- N .
j=1 h=0

Proposition 8 .5 .  For an integer 1 we set k=n11d . W hen l is large, an equation

in it

g ( 1e)- 1)(11, k )= 0
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has exactly  one zero ft,_ 0  in  D1= ly ;IY - 12 -11 ‹ +1/1)- 1 / 2 1, Y -1= — 0 0+ i di r  (
- 1

) .

Moreover we have an asymptotic expansion of 1.1( _

(8.14) Ili( — + 1/ - 1 + C21 - 2 + • • • +(pd- ni < C O H N ,

where ( j , j =  1, N , are complex constants.

Pro o f . Note that .9(p._,)= 0 and a 
y

(•9 •  •  k ) ) 1  2 d  — G9(12) —'  a
a

y
k )) is bounded in  Re — c , — c l . By applying the implicit function theorem

we see the unique existence of zero in D,. From (8.13) we have (8.14). Q. E. D.

Let u(x) 0  be an outgoing solution of

(8.15)
f  (4 _ 0 — M u= 0  in Q

u =0 o n  F.

Since we have u(x)E C " ( 0 )  from the regularity theorem for A, u (x) can be
extended into 0  so that it is also in C '(R 3 ). Denote by Ci(x) the extended one. Set

(8.16) (4_0— = f ( x )  in R3 .

Then from (8.15) f (x ) E Cc(R 3) and

(8.17) suppf . c .

Let g(x , y) be an outgoing solution of

(8.18) ( ..t2 — .4)u = f  i n  R 3 .

Note that (8.18) can be solved for all y e  C .  From the uniqueness of the outgoing
solutions of (8.18) we have

(8.19) g(x, ,u,_ 0 )=C i(x )  in R 3 .

Set

v 2(x • Y )= 2( 1)[9( - • 12 )]1 2 ,

h(x• Y )=9(x• y)11 1 — v2(x• P)11, •

We have from (8.19)

(8.20) v2(x, It( _0 ) =0 i n R 3
—  02 ,

(8.21) h(x, ft( _0 ) =0 on r 1 .

Set

v(x, p)=v i (x , p)+ v2(x, 0,

vi (x, y )= U(y ; k )h( • , p)=66(.9 — y ) F(I + )+ C)h( • , y) .

Evidently y  is outgoing and satisfies
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[ ( 22_ A) E, =_ . in

v =g o n  F,

for 0 <1p—p ( _0 1<C(log k) - i. Applying once more the uniqueness of the outgoing
solutions we have

v(x, y )=g(x , i.t) in  Q fo r 0  <  —  y ( _0 1<C(log k) - '.

Since h  is  C (F 1)-valued holomorphic function in  Re p> — c, (8.21) implies
the existence of

(8.22) lim (.9(y)— y(y, k)) -  ' h(x, 1.)= h 0(x) e C"(F ,) .
pc- 1)

Thus ((y)— y(y, k)) - th(x, kt) is holomorphic at /2( _0 . T h e n  v ,(x , y ) is holo-
morphic at it = p (  0 . Therefore lim v(x, p) exists and it satisfies

v(x, y ( _0 )= E/3(x, y; k)F(1.1, k)(1 + (,u; k))11 0(x)] ,,( _, ) .

Since

v(x, y,_ 0 ) =g(x, 111 _ 0 )= u (x )  in Q ,

recalling the fact F(1 + S )h 0  e C, we have

u(x)= c13(x, ce  C.

This shows that

dim {u: outgoing solution of (8.15) } =1.

9. Derivation of Theorem 1.

By using Theorem 5.1 of Chapter V of [7] we have the assertions (a) and (b)
of Theorem 1 from Theorems 2 a n d  3 . Then it suffices to show  (c). By Theorem 5.4
of Chapter V of [7] we have for a e R

Y (cr)= I +.3r(a), (,Y r(a)f)(co)=(±—.
7r
c  -)5 101=1 K(co, 0; o-)f (0)d0,

where K(w, 0; o-)= s(— 0, c o ;  a),

v_(r0, co; a) e '"
— s(0, c o ;  a )  a s  r

v_ is  the incoming solution of

(9.1)

Note that

y_ (x, w , cr)=v + (x, (7),

(o-2 + z)v = 0  in 0,{

v=e - i 6 X . 6 ) o n  F.
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where v, is the outgoing solution of (9.1). T h u s  w e  have

e - ilrv + (r, — w, a)— K(— 0, co, a).

Setting z =a + iv we see that v +  is analytic in z for Im z < 0 and

v+ (x, co, z )= U(iz )(e - l ' I r ) ( x ) .

Taking account of (4.20) and (4.21)' of page 127 of [7] we see from (1.4) that K(0, co,
a) is prolonged analytically into {z; U(p) is holomorphic at p= iz } , and has a pole of
order 1 at z = i1 ( 1 ) . Since we have

,9'(z) = (912)*) -  1  = (I + .Y f(2)*) - 1 ,

we have from the argument of §4 of Chapter 9 of [11],

Ivt
.99 ( z ) f = E 111  ( f, tli,„) +<Y e(z )f  n e a r  z =

m 1 1 Y(l)

On the other hand Corollary 3.2 of Chapter I I I  of [7] says that

dim [null space of (1/1—B)] =dim [null space of ,9 "(i[)]

=dim {eigenvector of .ff(ii=c)* for eigenvalue —1}

=dim tu-outgoing solution of 02 2 — ti)u = 0 in Q, u = 0 on f'}.

Therefore we have M=1 from Theorem 3. This proves (c).
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