Precise informations on the poles of the scattering matrix for two strictly convex obstacles

By
Mitsuru Ikawa

1. Introduction.

In the previous papers [3, 4] we considered the scattering matrix for two strictly convex obstacles. To say more precisely, let $\mathcal{O}_{j}, j=1,2$, be bounded and strictly convex open sets in \boldsymbol{R}^{3} with smooth boundary Γ_{j}. Suppose that

$$
\overline{\mathcal{O}}_{1} \cap \overline{\mathcal{O}}_{2}=\emptyset
$$

Set $\mathcal{O}=\mathcal{O}_{1} \cup \mathcal{O}_{2}, \Omega=\boldsymbol{R}^{3}-\overline{\mathcal{O}}, \Gamma=\Gamma_{1} \cup \Gamma_{2}$. Consider an acoustic problem

$$
\begin{cases}\square u=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0 & \text { in } \quad \Omega \times(-\infty, \infty) \tag{1.1}\\ u=0 & \text { on } \Gamma \times(-\infty, \infty),\end{cases}
$$

where $\Delta=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}}$. Denote by $\mathscr{S}(z)$ the scattering matrix for this problem. About the definition of the scattering matrix see for example Lax and Phillips [7, page 9].

We showed in $[3,4]$ the following facts:
(i) There exist positive constants c_{0} and c_{1} such that for any $\varepsilon>0$

$$
\left\{z ; \operatorname{Im} z \leqslant c_{0}+c_{1}-\varepsilon\right\}-\bigcup_{j=-\infty}^{\infty} B_{j}
$$

contains only a finite number of poles of $\mathscr{S}(z)$, where

$$
\begin{aligned}
& B_{j}=\left\{z ;\left|z-z_{j}\right| \leqslant C(1+|j|)^{-1 / 2}\right\}, \\
& z_{j}=i c_{0}+\frac{\pi}{d} j, \quad d=\operatorname{dis}\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right) .
\end{aligned}
$$

(ii) For large $|j|, B_{j}$ contains at least one pole.

The purpose of this paper is to give very precise informations on the poles in B_{j}. Namely, we shall show the following

Theorem 1. For large $|j|$
(a) every B_{j} contains exactly one pole of $\mathscr{S}(z)$,
(b) denoting by p_{j} the pole in B_{j} we have an asymototic expansion

$$
\begin{equation*}
p_{j} \sim z_{j}+\beta_{1} j^{-1}+\beta_{2} j^{-2}+\cdots \quad \text { for } \quad|j| \longrightarrow \infty, \tag{1.2}
\end{equation*}
$$

where $\beta_{1}, \beta_{2}, \ldots$, are complex constants determined by \mathcal{O},
(c) in $B_{j} \mathscr{S}(z)$ is represented as

$$
\mathscr{S}(z) f=\frac{n_{j}}{z-p_{j}}\left(f, \psi_{j}\right)+\mathscr{H}_{j}(z) f \quad \text { for all } f \in L^{2}\left(S^{2}\right)
$$

where n_{j} and $\psi_{j} \in L^{2}\left(S^{2}\right)$ such that $n_{j} \neq 0, \psi_{j} \neq 0,(\cdot, \cdot)$ stands for the scalar product of $L^{2}\left(S^{2}\right)$ and $\mathscr{H}_{j}(z)$ is an $\mathscr{L}\left(L^{2}\left(S^{2}\right), L^{2}\left(S^{2}\right)\right)$-valued holomorphic function in B_{j}.

In order to prove Theorem 1 we adopt a means to consider a boundary value problem with a complex parameter μ

$$
\begin{cases}\left(\mu^{2}-\Delta\right) u=0 & \text { in } \quad \Omega \tag{1.3}\\ u=g & \text { on } \Gamma\end{cases}
$$

for $g \in C^{\infty}(\Gamma)$. For $\operatorname{Re} \mu>0(1.3)$ has a solution u uniquely in $\bigcap_{m>0} H^{m}(\Omega)$. Denote the solution by $U(\mu) g$. Then $U(\mu)$ is holomorphic in $\operatorname{Re} \mu>0$ as $\mathscr{L}\left(C^{\infty}(\Gamma), C^{\infty}(\bar{\Omega})\right)$ valued function. We shall prove the following theorem on $U(\mu)$.

Theorem 2. Set for $k \in \boldsymbol{R}-\{0\}$

$$
G_{k}=\left\{\mu \in \boldsymbol{C} ;|\mu+i k| \leqslant c_{0}+c_{1}, \operatorname{Re} \mu \geqslant-c_{0}-(\log |k|)^{-1}\right\} .
$$

Then for large $|k|, U(\mu)$ is represented in $G_{k} \cap\{\mu \in C ; \operatorname{Re} \mu>0\}$ as

$$
\begin{equation*}
U(\mu)=\frac{\beta(x, \mu ; k)}{\mathscr{P}(\mu)-\gamma(\mu, k)} F(\mu, k)+\tilde{U}(\mu, k) . \tag{1.4}
\end{equation*}
$$

Here

(i) $\beta(\cdot, \mu, k)$ is a $C^{\infty}(\bar{\Omega})$-valued holomorphic function in G_{k},
(ii) $\mathscr{P}(\mu)=1-\lambda \tilde{\lambda} e^{-2 d \mu}$,
where $\lambda, \tilde{\lambda}$ are constants determined by \mathcal{O} such that $0<\lambda, \tilde{\lambda}<1$,
(iii) $\gamma(\mu, k)$ is a complex valued holomorphic function in G_{k} such that

$$
\begin{equation*}
\left|\gamma(\mu, k)-\sum_{l=1}^{N-1}\left(\sum_{h=0}^{2 l} \gamma_{l, h}(\mu+i k)^{h}\right) k^{-l}\right| \leqslant C_{N}|k|^{-N} \tag{1.5}
\end{equation*}
$$

holds for $\mu \in G_{k}$, where $\gamma_{l, h}$ are complex constants,
(iv) $F(\mu, k)$ is a holomorphic $\mathscr{L}\left(L^{2}(\Gamma), C\right)$-valued function in G_{k},
(v) $\tilde{U}(\mu, k)$ is a holomorphic $\mathscr{L}\left(L^{2}(\Gamma), C^{\infty}(\bar{\Omega})\right)$-valued function in G_{k}.

It follows immediately from Theorem 2 that
Corollary. $U(\mu)$ can be prolonged analytically as $\mathscr{L}\left(C^{\infty}(\Gamma), C^{\infty}(\bar{\Omega})\right)$-valued function into

$$
\underset{|k|:: \text { large }}{\cup}\left(G_{k}-\{\mu ; \mathscr{P}(\mu)-\gamma(\mu, k)=0\}\right) .
$$

Another result on a boundary valued problem (1.3) is the following
Theorem 3. Suppose that $|k|$ is large and that $\mathscr{P}(\mu)-\gamma(\mu, k)=0$. Then we have

$$
\begin{equation*}
\operatorname{dim}\left\{u ; \mu \text {-outgoing solution of }\left(\mu^{2}-\Delta\right) u=0 \text { in } \Omega, u=0 \text { on } \Gamma\right\}=1 . \tag{1.6}
\end{equation*}
$$

By recalling the relationships between the poles of $\mathscr{S}(z)$ and those of $U(\mu)$ shown in Lax and Phillips [7], we can derive easily Theorem 1 from Theorems 2 and 3. But we postpone the derivation of Theorem 1. Now we would like to give a remark on the method to prove Theorems 2 and 3 . The procedure of the proofs is a slight modification of the one in $[3,4]$. As in the previous papers, first we construct an asymptotic solution of

$$
\begin{cases}\square u=0 & \text { in } \quad \Omega \times \boldsymbol{R}, \\ u=e^{i \boldsymbol{k}(\psi(x)-t)} f(x, t) & \text { on } \quad \Gamma \times \boldsymbol{R}, \\ \operatorname{supp} u \subset \bar{\Omega} \times\{t ; t \geqslant 0\} & \end{cases}
$$

for $f \in C_{0}^{\infty}(\Gamma \times(0,1))$. Here we require only a first order approximation of the boundary condition, that is,

$$
\left|u(x, t)-e^{i k(\psi(x)-t)} f(x, t)\right| \leqslant C e^{-c_{0} t} k^{-1} \quad \text { on } \quad \Gamma \times \boldsymbol{R} .
$$

This permits us to obtain an asymptotic solution $u(x, t)$ in a simpler form than in [3]. By using this simpler form of asymptotic solutions we can reduce the problem (1.3) to an integral equation on Γ_{1}, which is also of a simpler form. Consequently we can solve the integral equation by the Neumann series and obtain a representation (1.4) by a rearrangement of the Neumann series. This representation (1.4) is crucial for this paper.

The results of this paper and an outline of the proofs were announced in [6].

2. Remarks on the behavior of broken rays.

We generealize Lemma 3.3 and its corollary of [2] to a form containing a parameter k. Hereafter we use freely the notations and results on the broken rays of $\S 3$ of [2], and $\S 4$ of [3].

Lemma 2.1. Let ε be a positive constant. For large $k>0$ every broken ray $\mathscr{X}(x, \xi)$ such that $x \in \Gamma-S\left(k^{-\varepsilon}\right), \xi \in \Sigma_{x}^{+}$and $\mathscr{X}(x, \xi) \cap S\left(k^{-\varepsilon}\right)=\varnothing$ satisfies

$$
\begin{equation*}
{ }^{\mathscr{X}}(x, \xi) \leqslant 1+C \varepsilon \log k, \tag{2.1}
\end{equation*}
$$

where C is a constant independent of ε and k.
Proof. The strict convexity of $\mathcal{O}_{j}, j=1,2$, implies

$$
\begin{equation*}
n(x) \cdot x^{\prime} \geqslant c\left|x^{\prime}\right|^{2} \quad(c>0) . \tag{2.2}
\end{equation*}
$$

Let $x(s)$ be a representation of $\mathscr{X}(x, \xi)$ by a parameter s the length of the broken ray from x. For $x(s) \in L_{j}$

$$
\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}=2 X_{j}^{\prime} \cdot \Xi_{j}^{\prime}+\left(s-l_{j}\right)\left|\Xi_{j}^{\prime}\right|^{2},
$$

which shows that $\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}$ is increasing on $\left(\bar{l}_{j}, l_{j+1}\right)$, and that

$$
\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=i_{j}+0}=2 X_{j}^{\prime} \cdot \Xi_{j}^{\prime} .
$$

Similarly we have

$$
\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=i_{j}-0}=2 X_{j}^{\prime} \cdot \Xi_{j-1}^{\prime} .
$$

Thus

$$
\begin{align*}
& {\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=i_{j}+0}-\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=i_{j}-0}} \tag{2.3}\\
& \quad=2 X_{j}^{\prime} \cdot\left(\Xi_{j}-\Xi_{j-1}\right)=4\left(-n\left(X_{j}\right) \cdot \Xi_{j-1}\right) n\left(X_{j}\right) \cdot X_{j}^{\prime} \geqslant c\left|X_{j}^{\prime}\right|^{2} .
\end{align*}
$$

First step. Suppose that $x^{\prime} \cdot \xi^{\prime} \geqslant 0$. On L_{0}, since

$$
\frac{d}{d s}\left|x(s)^{\prime}\right|^{2} \geqslant\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=+0}=x^{\prime} \cdot \xi \geqslant 0,
$$

we have

$$
\begin{equation*}
\left|X_{1}^{\prime}\right| \geqslant\left|x^{\prime}\right| \geqslant k^{-\varepsilon} . \tag{2.4}
\end{equation*}
$$

By the monotonicity of $\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}$ and (2.3) we have on $L_{j}, j \geqslant 1$

$$
\frac{d}{d s}\left|x(s)^{\prime}\right|^{2} \geqslant 2 c\left|X_{j}^{\prime}\right|^{2}
$$

which implies that $\left|X_{j+1}^{\prime}\right|^{2}-\left|X_{j}^{\prime}\right|^{2} \geqslant 2 c l_{j}\left|X_{j}^{\prime}\right|^{2}$, namely

$$
\left|X_{j+1}^{\prime}\right|^{2} \geqslant(1+2 c d)\left|X_{j}^{\prime}\right|^{2} .
$$

Combining this estimate with (2.4) we have

$$
\left|X_{j+1}^{\prime}\right|^{2} \geqslant(1+2 c d)^{j} k^{-2 \varepsilon} .
$$

Therefore j such that $\left|X_{j+1}^{\prime}\right| \leqslant$ diameter of \mathcal{O} must satisfy

$$
j \leqslant 2 C \varepsilon \log k,
$$

which shows (2.1).
Second step. Consider the case of $x^{\prime} \cdot \xi^{\prime}<0$. Lemma 3.3 of [2] shows that, if $\mathscr{X}(x, \xi) \cap S\left(k^{-\varepsilon}\right)=\varnothing,|x(s)| \rightarrow \infty$ as $s \rightarrow \infty$. Then there exists j_{0} such that

$$
\left|X_{j_{0}}^{\prime}\right|^{2}=\min _{j>0}\left|X_{j}^{\prime}\right|^{2} \quad\left(\geqslant k^{-2 \varepsilon}\right) .
$$

Note that

$$
\begin{equation*}
X_{j_{0}-1}^{\prime} \cdot \Xi_{j_{0}-1}^{\prime} \leqslant 0 \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
X_{j_{0}+1}^{\prime} \cdot \Xi_{j_{0}+1}>0 . \tag{2.6}
\end{equation*}
$$

Indeed, if (2.6) does not hold we have from (2.3)

$$
\frac{d}{d s}\left|x(s)^{\prime}\right|^{2} \leqslant-c k^{-2 \varepsilon} \quad \text { on } \quad L_{j_{0}}
$$

which implies

$$
\left|X_{j_{0}+1}^{\prime}\right|^{2}<\left|X_{j_{0}}^{\prime}\right|^{2} .
$$

This contradicts with the choice of j_{0}. (2.5) may be shown by the same argument. Now by using the first step we have from (2.6)

$$
\begin{equation*}
\# \mathscr{X}(x, \xi) \leqslant j_{0}+2 C \varepsilon \log k . \tag{2.7}
\end{equation*}
$$

Consider a broken ray $\mathscr{X}\left(X_{j_{0}},-\Xi_{j_{0}-1}\right)$. This ray follows the reverse course of a part of $\mathscr{X}(x, \xi)$ from x to $X_{j_{0}}$. Note that $\Xi_{1}\left(X_{j_{0}},-\Xi_{j_{0}-1}\right)=-\Xi_{j_{0}-2}$, and $X_{j_{0}-1}^{\prime}$. $\Xi_{j_{0}-1}^{\prime}>X_{j_{0}-1}^{\prime} \cdot \Xi_{j_{0}-2}^{\prime}$. Then

$$
X_{1}\left(X_{j_{0}},-\Xi_{j_{0}-1}\right)^{\prime} \cdot \Xi_{1}\left(X_{j_{0}},-\Xi_{j_{0}-1}\right)=X_{j_{0}-1}^{\prime} \cdot\left(-\Xi_{j_{0}-2}\right)>X_{j_{0}-1}^{\prime} \cdot\left(-\Xi_{j_{0}-1}\right)>0 .
$$

This implies that

$$
{ }^{\mathscr{X}}\left(X_{j_{0}},-\Xi_{j_{0}-1}\right) \leqslant 1+4 C \varepsilon \log k .
$$

Therefore we have $j_{0} \leqslant 1+4 C \varepsilon \log k$. Combining this with (2.7) we have (2.1).
Corollary 2.2. If we choose $\delta>0$ sufficiently small, then for any $x \in S\left((1+\delta) k^{-\varepsilon}\right)$, $\xi \in \Sigma_{x}^{+}$such that $X_{1}(x, \xi) \in S\left((1+\delta) k^{-\varepsilon}\right)-S\left(k^{-\varepsilon}\right)$ we have

$$
{ }^{\#} \mathscr{X}(x, \xi) \leqslant 1+C \varepsilon \log k .
$$

Proof. Suppose that

$$
\begin{equation*}
\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{\prime}\right]_{s=l_{0}-0}=X_{1}^{\prime} \cdot \xi^{\prime} \geqslant 0 . \tag{2.8}
\end{equation*}
$$

Then we have from (2.3) $X_{1}^{\prime} \cdot \Xi_{1}^{\prime} \geqslant c k^{-2 \varepsilon}$. Taking account of $\left|X_{1}^{\prime}\right| \geqslant k^{-\varepsilon}$ we have from the first step of the proof of Lemma 2.1

$$
{ }^{\#} \mathscr{X}(x, \xi) \leqslant 1+C \varepsilon \log k .
$$

When $x \in S\left(k^{-\varepsilon}\right), \quad X_{1} \in S\left((1+\delta) k^{-\varepsilon}\right)-S\left(k^{-\varepsilon}\right), \quad\left|X_{1}^{\prime}\right|^{2} \geqslant\left|x^{\prime}\right|^{2}$ and the monotonicity of $\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}$ imply (2.8).

Thus the remaining case is that $\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=l_{0}-0}<0$ and $x \notin S\left(k^{-\varepsilon}\right)$. By using the monotonicity of $\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}$ we have

$$
\left[-\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=l_{0}-0} \leqslant \frac{1}{d}\left(\left|x^{\prime}\right|^{2}-\left|X_{1}^{\prime}\right|^{2}\right) \leqslant \frac{2 \delta}{d} k^{-2 \varepsilon} .
$$

From (2.3) and $\left|X_{1}^{\prime}\right| \geqslant k^{-\varepsilon}$ we have

$$
\left[\frac{d}{d s}\left|x(s)^{\prime}\right|^{2}\right]_{s=l_{0}+0}=X_{1}^{\prime} \cdot \Xi_{1}^{\prime} \geqslant\left(c-\frac{2 \delta}{d}\right) k^{-2 \varepsilon} .
$$

If we choose $\delta>0$ so small we have

$$
\begin{equation*}
X_{1}^{\prime} \cdot \Xi_{1}^{\prime} \geqslant \frac{c}{2} k^{-2 \varepsilon} . \tag{2.9}
\end{equation*}
$$

By applying the first step of the proof of Lemma 2.1 we have the assertion.
Remark. Under the assumption of Corollary, since (2.9) holds, we have $\left|X_{2}^{\prime}\right|^{2}-$ $\left|X_{1}^{\prime}\right|^{2} \geqslant 2 d \frac{c}{2} k^{-2 \varepsilon}$, from which it follows that

$$
\left|X_{2}^{\prime}\right| \geqslant(1+d c)^{1 / 2} k^{-\varepsilon} \geqslant(1+\delta) k^{-\varepsilon}
$$

when δ is sufficiently small.
Corollary 2.3. Let $x \in S\left((1+\delta) k^{-\varepsilon}\right)$. Then for any broken ray $\mathscr{X}(y, \xi)$ such that $X_{q}(y, \xi)=x, y \in S\left((1+\delta) k^{-\varepsilon}\right)$ we have

$$
X_{j}(y, \xi) \in S\left(k^{-\varepsilon}\right) \quad \text { for } \quad j=1,2, \ldots, q-1 .
$$

Proof. Suppose that $q \geqslant 2$. If $X_{1} \in S\left((1+\delta) k^{-\varepsilon}\right)-S\left(k^{-\varepsilon}\right)$, we have $X_{2} \notin S((1+$ $\delta) k^{-\varepsilon}$) from the above remark. Thus we have $X_{1} \in S\left(k^{-\varepsilon}\right)$. Repeating this argument we have the assertion.

3. Construction of asymptotic solutions (I).

Hereafter we fix ε as $0<\varepsilon<1 / 2$. Let $\chi_{j}, j=1,2,3,4$ be real valued smooth functions defined on \boldsymbol{R} such that

$$
\chi_{j}(l)= \begin{cases}1 & l \leqslant 1+(j-1) \delta, \\ 0 & l \geqslant 1+j \delta,\end{cases}
$$

and let $w_{k}, \eta_{k}, v_{k}, \theta_{k}$ be functions in $C^{\infty}\left(\Gamma_{1}\right)$ defined by

$$
\begin{aligned}
& w_{k}(x(\sigma))=\chi_{4}\left(|\sigma| k^{\varepsilon}\right), \\
& \eta_{k}(x(\sigma))=\chi_{3}\left(|\sigma| k^{\varepsilon}\right), \\
& v_{k}(x(\sigma))=\chi_{2}\left(|\sigma| k^{\varepsilon}\right), \\
& \theta_{k}(x(\sigma))=\chi_{1}\left(|\sigma| k^{\varepsilon}\right) .
\end{aligned}
$$

Let $h(t) \in C_{0}^{\infty}(0, d / 2)$ satisfying $h(t) \geqslant 0$ and

$$
\begin{equation*}
\int_{R} h(t) d t=1 \tag{3.1}
\end{equation*}
$$

Let m be an oscillatory boundary data defined by

$$
\begin{align*}
& m(x, t ; k)=e^{i k(\psi(x)-t)} f(x, t ; k), \tag{3.2}\\
& f(x, t ; k)=w_{k}(x) h\left(t-j_{\infty}(x)\right),
\end{align*}
$$

where $\psi(x) \in C^{\infty}\left(S_{1}\left(\delta_{0}\right)\right)$ satisfying Condition C of $\S 7$ of [2], and $j_{\infty}(x)$ is the one introduced in Lemma 5.4 of [3].

We construct an asymptotic solution for m of the problem

$$
\begin{cases}\square u=0 & \text { in } \quad \Omega \times \boldsymbol{R} \tag{3.3}\\ u=m & \text { on } \Gamma_{1} \times \boldsymbol{R} \\ u=0 & \text { on } \quad \Gamma_{2} \times R \\ \operatorname{supp} u \subset \Omega \times\{t ; t \geqslant 0\} .\end{cases}
$$

The procedure of construction is substantially same as in [3], but the treatment of the boundary condition is different.

From now on we denote $S_{j}\left(k^{-\varepsilon}\right), S_{j}\left((1+\delta) k^{-\varepsilon}\right), S\left(k^{-\varepsilon}\right)$ and $S\left((1+\delta) k^{-\varepsilon}\right)$ by $S_{j, k}, \tilde{S}_{j, k}, S_{k}$ and \widetilde{S}_{k} respectively, and by $\omega(\delta)$ a domain surrounded by $S_{j}(\delta), j=1,2$ and a cylinder $\{x ; \operatorname{dis}(x, L)=\delta\}$. First fix a large integer N and construct $u_{q}(x, t ; k)$, $q=0,1,2, \ldots$ in the form

$$
\begin{aligned}
& u_{q}(x, t ; k)=e^{i k\left(\varphi_{q}(x)-t\right)} v_{q}(x, t ; k), \\
& v_{q}(x, t ; k)=\sum_{j=0}^{N} v_{j, q}(x, t ; k)(i k)^{-j}
\end{aligned}
$$

Since ψ satisfies Condition C of [2] we can construct successively a sequence of phase functions $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$ following the process in pages 136 and 137 of [3]. Note that we have the following

Lemma 3.1. It holds that

$$
\begin{align*}
& \left|\varphi_{2 p}(\cdot)-\left(\varphi_{\infty}(\cdot)+2 p d+d_{0}\right)\right|_{m}\left(\omega\left(\delta_{0}\right)\right) \leqslant C_{m} \alpha^{2 p} \quad(0<\alpha<1), \tag{3.4}\\
& \left|\varphi_{2 p+1}(\cdot)-\left(\tilde{\varphi}_{\infty}(\cdot)+(2 p+1) d+d_{0}\right)\right|_{m}\left(\omega\left(\delta_{0}\right)\right) \leqslant C_{m} \alpha^{2 p}, \tag{3.5}
\end{align*}
$$

where φ_{∞} are $\tilde{\varphi}_{\infty}$ are functions independent of ψ and d_{0} is a constant depending smoothly on ψ.

Proof. Recall estimates (7.9) and (7.10) of [3], and remark that we have $\tilde{d}_{0}=d_{0}+d$ from their definition. Since $\left|\nabla \varphi_{2 p}\right|=1,\left|\nabla \varphi_{\infty}\right|=1$ in $\omega\left(\delta_{0}\right)$ and $\frac{\partial \varphi_{2 p}}{\partial n}>0$, $\frac{\partial \varphi_{\infty}}{\partial n}>0$ on $S_{1}\left(\delta_{0}\right)$, and estimate (7.9) on $S_{1}\left(\delta_{0}\right)$ implies (3.4). We have (3.5) from (7.10) of [3].
Q.E.D.

Following [3] we set

$$
T_{q}=2 \frac{\partial}{\partial t}+2 \nabla \varphi_{q} \cdot \nabla+\Delta \varphi_{q} .
$$

We define $v_{0, q}, q=0,1, \ldots$ as follows:

$$
\begin{equation*}
T_{q} v_{0, q}=0 \quad \text { in } \quad \omega \times \boldsymbol{R} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{0,0}(x, t ; k)=f(x, t ; k) \quad \text { on } \quad S_{1}\left(\delta_{0}\right) \times \boldsymbol{R} \tag{3.7}
\end{equation*}
$$

for $p \geqslant 1$

$$
\left\{\begin{array}{lll}
v_{0,2 p-1}(x, t ; k)=v_{0,2 p-2}(x, t ; k) & \text { on } & S_{2}\left(\delta_{0}\right) \times \boldsymbol{R}, \tag{3.8}\\
v_{0,2 p}(x, t ; k)=\theta_{k}(x) v_{0,2 p-1}(x, t ; k) & \text { on } & S_{1}\left(\delta_{0}\right) \times \boldsymbol{R} .
\end{array}\right.
$$

For $j \geqslant 1$ we define $\left\{v_{j, q}\right\}_{q=0}^{\infty}$ successively by

$$
\begin{array}{lll}
T_{q} v_{j, q}=\square v_{j-1, q} & \text { in } & \omega \times \boldsymbol{R} \text { for all } q, \\
v_{j, p}(x, t ; k)=0 & \text { on } & S_{1}\left(\delta_{0}\right) \times \boldsymbol{R}, \\
v_{j, 2 p+1}(x, t ; k)=v_{j, 2 p}(x, t ; k) & \text { on } & S_{2}\left(\delta_{0}\right) \times \boldsymbol{R} . \tag{3.11}
\end{array}
$$

In Section 3 of [3] a function $j_{\infty}(x)$ on $S_{1}\left(\delta_{0}\right) \cup S_{2}\left(\delta_{0}\right)$ was introduced. Now we extend it to $j(x)$ and $\tilde{j}(x)$ by the following two ways:

$$
\begin{array}{llll}
j(x)=j_{\infty}(y)+l & \text { for } & x=y+l \nabla \varphi_{\infty}(y), & y \in S_{1}\left(\delta_{0}\right), \\
\tilde{j}(x)=j_{\infty}(y)+l & \text { for } & x=z+l \nabla \tilde{\varphi}_{\infty}(z), & z \in S_{2}\left(\delta_{0}\right) . \tag{3.13}
\end{array}
$$

Recalling the proof of Lemma 5.3 of [3] we have

$$
\begin{array}{lll}
j(x)=\tilde{j}(x)+d & \text { on } & S_{2}\left(\delta_{0}\right), \\
\tilde{j}(x)=j(x)+d & \text { on } & S_{1}\left(\delta_{0}\right),
\end{array}
$$

and Remark 3 of [3] can be written as

$$
\begin{array}{lll}
\tilde{j}(x)=h_{\infty}(x)+j\left(X_{-1}^{\infty}(x)\right)-d & \text { for } & x \in S_{2}\left(\delta_{0}\right), \\
j(x)=h_{\infty}(x)+\tilde{j}\left(X_{-1}^{\infty}(x)\right)-d & \text { for } & x \in S_{1}\left(\delta_{0}\right) . \tag{3.15}
\end{array}
$$

We extend $a(x)$ and $\tilde{a}(x)$, which are defined in [3] as functions on $S_{1}\left(\delta_{0}\right)$ and $S_{2}\left(\delta_{0}\right)$ respectively, to functions in $\omega\left(\delta_{0}\right)$ by

$$
\begin{aligned}
& a(x)=\left[G_{\varphi_{\infty}}\left(y+\mid \nabla \varphi_{\infty}(y)\right) / G_{\varphi_{\infty}}(y)\right]^{1 / 2} a(y), \\
& \tilde{a}(x)=\left[G_{\tilde{\varphi}_{\infty}}\left(z+\mid \nabla \tilde{\varphi}_{\infty}(z)\right) / G_{\tilde{\varphi}_{\infty}}(z)\right]^{1 / 2} a(z),
\end{aligned}
$$

where y and z are linked to x by the relations in (3.12) and (3.13).
Lemma 3.2. Set

$$
\begin{aligned}
& v_{0, \infty}(x, t ; k)=v_{k}(y) a(x) h(t-j(x)), \\
& \tilde{v}_{0, \infty}(x, t ; k)=\lambda v_{k}(z) \tilde{a}(x) h(t-\tilde{\jmath}(x)),
\end{aligned}
$$

where y and z are linked to x by relations in (3.12) and (3.13) respectively. Putting

$$
\begin{aligned}
g_{2 p+1}(x, t ; k)= & v_{0,2 p+1}(x, t ; k) \\
& -b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} v_{0, \infty}\left(x, t-2 d p-j\left(A_{0}\right)-d_{\infty} ; k\right), \\
g_{2 p+2}(x, t ; k)= & v_{0,2 p+2}(x, t ; k) \\
& -b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \tilde{v}_{0, \infty}\left(x, t-(2 p+1) d-j\left(A_{0}\right)-d_{\infty} ; k\right),
\end{aligned}
$$

where $\lambda, \tilde{\lambda}, b, A_{0}$ are the ones in Proposition 5.6 of [3], and d_{∞} denotes $d_{\infty, 0}$, we have

$$
\begin{equation*}
\left.\left|g_{q}\right|_{m}\left(\omega\left(\delta_{2}\right)\right) \times R\right) \leqslant C_{m} q(\lambda \tilde{\lambda} \alpha)^{q / 2} M_{m} \tag{3.16}
\end{equation*}
$$

where α is the one in Proposition 5.6 of [3] and

$$
M_{m}=|f|_{m}\left(S_{1}\left(\delta_{0}\right) \times R\right)
$$

Proof. Let $x \in \widetilde{S}_{k}$. If $X_{-q-1}\left(x, \nabla \varphi_{q}\right) \notin \tilde{S}_{1, k}$, we have from the consideration in Lemma 5.3 of [3]

$$
v_{0, q}=0 .
$$

When $X_{-q-1}\left(x, \nabla \varphi_{q}\right) \in \tilde{S}_{1, k}$, by applying Corollary 2.3 we have $X_{-j}\left(x, \nabla \varphi_{q}\right) \in S_{k}$ for $1 \geqslant j \geqslant q$, which implies that $v_{k}\left(X_{-j}\left(x, \nabla \varphi_{q}\right)\right)=1$ for $1 \leqslant j \leqslant q$ when $X_{-j} \in \Gamma_{1}$. Therefore the representation (5.9) in [3] is also valid. Thus we have from the proof of Proposition 5.6 of [3]

$$
\begin{align*}
& \quad\left|v_{0,2 p}-(\lambda \tilde{\lambda})^{p} w\left(A_{0}\right) a(x) b h\left(t-j(x)-2 p d-j\left(A_{0}\right)-d_{\infty}\right)\right|_{m}\left(\tilde{S}_{2, k} \times \boldsymbol{R}\right) \tag{3.17}\\
& \quad \leqslant C_{m}(\lambda \tilde{\lambda} \alpha)^{p} M_{m}, \\
& \left|v_{0,2 p+1}-\lambda(\lambda \tilde{\lambda})^{p} w\left(A_{0}\right) \tilde{a}(x) b h\left(t-\tilde{\jmath}(x)-(2 p+1) d-j\left(A_{0}\right)-d_{\infty}\right)\right|_{m}\left(\tilde{S}_{1, k} \times \boldsymbol{R}\right) \tag{3.18}\\
& \leqslant C_{m}(\lambda \tilde{\lambda} \alpha)^{p} M_{m} .
\end{align*}
$$

Let $x \in \omega\left(\delta_{2}\right)$ and $q=2 p$. Denote by y the point in $S_{1}\left(\delta_{2}\right)$ such that

$$
x=y+l \nabla \varphi_{2 p}(y) .
$$

Then

$$
v_{0,2 p}(x, t ; k)=\left[G_{\varphi_{2 p}}(x) / G_{\varphi_{2 p}}(y)\right]^{1 / 2} v_{k}(y) v_{0,2 p}(y, t-|x-y| ; k) .
$$

By combining Lemma 3.1 and (3.17) we have the assertion for $q=2 p$. For $q=2 p+1$ a proof is done by the same way.
Q.E.D.

Remark 3.1. Since $a(x), \tilde{a}(x), j(x)$ are determined only by $\mathcal{O}, v_{0, \infty}, \tilde{v}_{0, \infty}$ are independent of ψ and w_{k}.

Remark 3.2. Set

$$
\begin{aligned}
& T_{\infty}=2 \frac{\partial}{\partial t}+2 \nabla \varphi_{\infty} \cdot \nabla+\Delta \varphi_{\infty} \\
& \widetilde{T}_{\infty}=2 \frac{\partial}{\partial t}+2 \nabla \tilde{\varphi}_{\infty} \cdot \nabla+\Delta \tilde{\varphi}_{\infty}
\end{aligned}
$$

Then we have

$$
\begin{array}{lll}
T_{\infty} v_{0, \infty}(x, t ; k)=0 & \text { in } & \omega\left(\delta_{0}\right) \times \boldsymbol{R}, \\
\widetilde{T}_{\infty} \tilde{v}_{0, \infty}(x, t ; k)=0 & \text { in } & \omega\left(\delta_{0}\right) \times \boldsymbol{R}, \tag{3.20}
\end{array}
$$

and

$$
\begin{array}{lll}
v_{0, \infty}(x, t ; k)=\tilde{v}_{0, \infty}(x, t-d ; k) & \text { on } & S_{2, k} \times \boldsymbol{R}, \\
\tilde{v}_{0, \infty}(x, t ; k)=\lambda \tilde{\lambda} v_{0, \infty}(x, t-d ; k) & \text { on } & S_{1, k} \times \boldsymbol{R} . \tag{3.22}
\end{array}
$$

Though these are obvious from the process of the definitions of a, \tilde{a} and $j, \tilde{\jmath}$, we give some explanation. It is evident from the formula (5.2) of [3] and the way of extention of $a(x)$ and $j(x)$ that $v_{0, \infty}$ satisfies

$$
\left\{\begin{array}{lll}
T_{\infty} v=0 & \text { in } & \omega\left(\delta_{0}\right) \times \boldsymbol{R}, \\
v=v_{k}(x) a(x) h(t-j(x)) & \text { on } & S_{1}\left(\delta_{0}\right) \times \boldsymbol{R} .
\end{array}\right.
$$

Then by formula (5.3) of [3] we have for $x \in S_{2}\left(\delta_{0}\right)$

$$
v_{0, \infty}(x, t ; k)=\Lambda_{\infty}(x) a\left(X_{-1}^{\infty}(x)\right) h\left(\left(t-h_{\infty}(x)\right)-j\left(X_{-1}(x)\right)\right.
$$

by Remark 2 of page 156 of [3] and (3.14)

$$
=\lambda \tilde{a}(x) h(t-\tilde{\jmath}(x)-d)=\tilde{v}_{0, \infty}(x, t-d ; k) .
$$

Let $v_{j, \infty}$ and $\tilde{v}_{j, \infty}$ be functions satisfying

$$
\begin{align*}
& \left\{\begin{array}{lll}
T_{\infty} v_{j, \infty}=\square v_{j-1, \infty} & \text { in } & \omega\left(\delta_{2}\right) \times \boldsymbol{R}, \\
v_{j, \infty}=0 & \text { on } & S_{1}\left(\delta_{2}\right) \times \boldsymbol{R},
\end{array}\right. \tag{3.23}\\
& \left\{\begin{array}{lll}
\tilde{T}_{\infty} \tilde{v}_{j, \infty}=\square \tilde{v}_{j-1}, & \text { in } & \omega\left(\delta_{2}\right) \times \boldsymbol{R}, \\
\tilde{v}_{j, \infty}=v_{j, \infty} & \text { on } & S_{2}\left(\delta_{2}\right) \times \boldsymbol{R} .
\end{array}\right. \tag{3.24}
\end{align*}
$$

Lemma 3.3. For $j \geqslant 1$, we have

$$
\begin{align*}
& v_{j, \infty}(x, t ; k)=\sum_{l=0}^{j} a_{j, l}(x ; k) h^{(l)}(t-j(x)), \tag{3.25}\\
& \tilde{v}_{j, \infty}(x, t ; k)=\sum_{l=0}^{j} \tilde{a}_{j, l}(x ; k) h^{(l)}(t-\tilde{\jmath}(x)), \tag{3.26}
\end{align*}
$$

where $a_{j, l}$ and $\tilde{a}_{j, l}$ are functions independent of ψ. Especially on $S_{1, k}$ we have

$$
\begin{equation*}
\tilde{v}_{j, \infty}(x, t ; k)=\sum_{l=0}^{j} a_{j, l}^{0}(x) h^{(l)}(t-j(x)) \tag{3.27}
\end{equation*}
$$

where $a_{j, l}^{0}(x)$ is a function independent of k.
Proof. First consider the case of $j=1$. Note that $|\nabla j(x)|=1$. Then

$$
\square v_{0, \infty}(x, t ; k)=-h^{\prime}(t-j(x))\left\{2 \nabla j \cdot \nabla\left(v_{k} a\right)+\Delta j \cdot\left(v_{k} a\right)\right\}-h(t-j(x)) \Delta\left(v_{k} a\right) .
$$

Putting

$$
v(s)=v_{1, \infty}\left(y+s \nabla \varphi_{\infty}(y), t+s ; k\right), \quad y \in S_{1}\left(\delta_{2}\right) .
$$

From the definition of $j(x)$ we have $j\left(y+s \nabla \varphi_{\infty}(y)\right)=j(y)+s$. Then it follows that

$$
\begin{equation*}
2 \frac{d}{d s} v(s)+\left(\Delta \varphi_{\infty}\right)\left(y+s \nabla \varphi_{\infty}(y)\right) v(s) \tag{3.28}
\end{equation*}
$$

$$
\begin{aligned}
& =\left(T_{\infty} v_{1, \infty}\right)\left(y+s \nabla \varphi_{\infty}(y), t+s\right) \\
& =-h^{\prime}(t-j(y)) b_{1}\left(y+s \nabla \varphi_{\infty}(y)\right)-h(t-j(y)) b_{0}\left(y+s \nabla \varphi_{\infty}(y)\right)
\end{aligned}
$$

where $b_{1}(x)=\left(2 \nabla j \cdot \nabla\left(v_{k} a\right)+\Delta j \cdot v_{k} a\right)(x), b_{0}(x)=\Delta\left(v_{k} a\right)(x)$. By the integration of (3.28) we have

$$
\begin{aligned}
v(s) & =-\sum_{m=0}^{1} h^{(m)}(t-j(y)) \int_{0}^{s} b_{m}\left(y+I \nabla \varphi_{\infty}(y)\right)\left[\frac{G_{\varphi_{\infty}}\left(y+s \nabla \varphi_{\infty}(y)\right)}{G_{\varphi_{\infty}}\left(y+l \nabla \varphi_{\infty}(y)\right)}\right]^{1 / 2} d l \\
& =\sum_{m=0}^{1} h^{(m)}\left(t+s-j\left(y+s \nabla \varphi_{\infty}(y)\right) a_{1, m}\left(y+s \nabla \varphi_{\infty}(y)\right) .\right.
\end{aligned}
$$

Indeed,

$$
v_{1, \infty}(x, t)=\sum_{m=0}^{1} h^{(m)}(t-j(x)) a_{1, m}(x ; k) .
$$

Thus (3.25) is proved for $j=1$. Repeating this argument we have (3.25) for $j \geqslant 2$. For (3.26) the proof is done by the same way.

Since $y=X_{-2}^{\infty}(x) \in S_{1, k}$ for $x \in S_{1, k}$, it follows that $v_{k}(x)=1$ near y. Then in (3.28) we may regard $v_{k}=1$ for all s namely

$$
\begin{aligned}
\frac{d}{d s} v(s)= & -h^{\prime}(t-j(y))\{2 \nabla j \cdot \nabla a+\Delta j \cdot a\}_{x=y+s \nabla \varphi_{\infty}(y)} \\
& -h(t-j(y))(\Delta a)\left(y+s \nabla \varphi_{\infty}(y)\right),
\end{aligned}
$$

from which we have (3.27).
Q. E. D.

By using a representation formula (6.6) of [3] for solutions of the transport equations and Lemmas 3.1 and 3.2 we have the following lemma by induction in j.

Lemma 3.4. For $j \geqslant 1$, it holds that

$$
\begin{align*}
\mid b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} v_{j, \infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right)-v_{j, 2 p}(& x, t ; k)\left.\right|_{m}\left(\omega\left(\delta_{2}\right) \times R\right) \tag{3.29}\\
& \leqslant C_{m, j} p(\lambda \tilde{\lambda} \alpha)^{p} M_{m+2 j}
\end{align*}
$$

$$
\begin{equation*}
\left|b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \tilde{v}_{j, \infty}\left(x, t-(2 p+1) d-j\left(A_{0}\right)-d_{\infty} ; k\right)-v_{j, 2 p+1}(x, t ; k)\right|_{m}\left(\omega\left(\delta_{2}\right) \times \boldsymbol{R}\right) \tag{3.30}
\end{equation*}
$$

$$
\leqslant C_{m, j} p(\lambda \tilde{\lambda} \alpha)^{p} M_{m+2 j}
$$

Since the transport equations (3.6) and (3.9) are satisfied we have for all q

$$
\begin{equation*}
u_{q}(x, t ; k)=e^{i k\left(\varphi_{q}(x)-t\right)}(i k)^{-N} \square v_{N, q} . \tag{3.31}
\end{equation*}
$$

Similarly, by setting

$$
\begin{aligned}
& u_{\infty}(x, t ; k)=e^{i k\left(\varphi_{\infty}(x)-t\right)} \sum_{j=0}^{N} v_{j, \infty}(x, t ; k)(i k)^{-j}, \\
& \tilde{u}_{\infty}(x, t ; k)=e^{i k\left(\tilde{\varphi}_{\infty}(x)-t\right)} \sum_{j=0}^{N} \tilde{v}_{j, \infty}(x, t ; k)(i k)^{-j},
\end{aligned}
$$

we have

$$
\square u_{\infty}(x, t ; k)=e^{i k\left(\varphi_{\infty}(x)-t\right)}(i k)^{-N} \square v_{N, \infty},
$$

$$
\begin{equation*}
\square \tilde{u}_{\infty}(x, t ; k)=e^{i k\left(\tilde{\varphi}_{\infty}(x)-t\right)}(i k)^{-N} \square \tilde{v}_{N, \infty} . \tag{3.33}
\end{equation*}
$$

Now combining Lemmas 3.1, 3.2 and .34 we have
Lemma 3.5. It holds that

$$
\begin{align*}
& \mid e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)} b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} u_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) \tag{3.34}\\
& \quad-\left.u_{2 p}(x, t ; k)\right|_{m}\left(\omega\left(\delta_{2}\right) \times \boldsymbol{R}\right) \leqslant C_{m} k^{m}(\lambda \tilde{\lambda} \alpha)^{p} \sum_{j=0}^{N} M_{m+2 j} k^{-j}, \\
& \mid e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)} b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \tilde{u}_{\infty}\left(x, t-(2 p+1) d-j\left(A_{0}\right)-d_{\infty} ; k\right) \tag{3.35}\\
& \quad-\left.u_{2 p+1}(x, t ; k)\right|_{m}\left(\omega\left(\delta_{2}\right) \times \boldsymbol{R}\right) \leqslant C_{m} k^{m}(\lambda \tilde{\lambda} \alpha)^{p} \sum_{j=0}^{N} M_{m+2 j^{2}} k^{-j}, \\
& \mid e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)} b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \square u_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) \tag{3.36}\\
& \quad-\left.\square u_{2 p}(x, t ; k)\right|_{m}\left(\omega\left(\delta_{2}\right) \times \boldsymbol{R}\right) \leqslant C_{m} k^{-N+m+1}(\lambda \tilde{\lambda} \alpha)^{p} M_{2 N+m}, \\
& \mid e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)} b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \square \tilde{u}_{\infty}\left(x, t-(2 p+1) d-j\left(A_{0}\right)-d_{\infty} ; k\right) \\
& \quad-\left.\square u_{2 p+1}(x, t ; k)\right|_{m}\left(\omega\left(\delta_{2}\right) \times \boldsymbol{R}\right) \leqslant C_{m} k^{-N+m+1}(\lambda \tilde{\lambda} \alpha)^{p} M_{2 N+m} .
\end{align*}
$$

Note that φ_{q} can be extended into a neighborhood in \boldsymbol{R}^{3} of $\omega\left(\delta_{0}\right)$ verifying $\left|\nabla \varphi_{q}\right|$ $=1$. Denote one of such neighborhoods by $\tilde{\omega}$. Then $v_{j, q}$ are also extended into $\tilde{\omega}$ verifying the transport equations. Similarly we extend $\varphi_{\infty}, \tilde{\varphi}_{\infty}, v_{j, \infty}, \tilde{v}_{j, \infty}$ by the same way. Thus we may suppose that the relations and estimates (3.29)~(3.37) hold in $\tilde{\omega}$.

Let $\chi(x) \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ such that its support is contained in $\tilde{\omega}$ and $\chi=1$ on $\omega\left(\delta_{0}\right)$. Evidently we have from (3.36) replaced $\omega\left(\delta_{2}\right)$ by $\tilde{\omega}$

$$
\begin{align*}
& \mid e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)} b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \chi(x) \square u_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) \tag{3.38}\\
& \quad-\left.\chi(x) \square u_{2 p}(x, t ; k)\right|_{m}\left(\boldsymbol{R}^{3} \times \boldsymbol{R}\right) \leqslant C_{m} k^{-N+m+1}(\lambda \tilde{\lambda} \alpha)^{p} M_{2 N+m} .
\end{align*}
$$

Denote by $u_{2 p}^{\prime}(x, t ; k)$ the solution of

$$
\left\{\begin{array}{l}
\square w=-\chi(x) \square u_{2 p} \quad \text { in } \quad \boldsymbol{R}^{3} \times \boldsymbol{R} \\
\operatorname{supp} w \subset \boldsymbol{R}^{3} \times\{t ; t \geqslant 0\},
\end{array}\right.
$$

and by $u_{\infty}^{\prime}(x, t ; k)$ the solution of

$$
\left\{\begin{array}{l}
\square w=-\chi(x) \square u_{\infty} \text { in } \boldsymbol{R}^{3} \times \boldsymbol{R} \\
\operatorname{supp} w \subset \boldsymbol{R}^{3} \times\{t ; t \geqslant 0\} .
\end{array}\right.
$$

Since supp $\chi \square u_{2 p} \subset \tilde{\omega} \times\left(2 p d-R_{0}, 2 p+R_{0}\right)$, we have from the Huygens principle

$$
\begin{equation*}
\text { supp } u_{2 p}^{\prime} \subset\left\{(x, t) ; t-2 p d-R_{0} \leqslant|x| \leqslant t+2 p d+R_{0}, t \geqslant 2 p d-R_{0}\right\} . \tag{3.39}
\end{equation*}
$$

From (3.31) it follows

$$
\begin{equation*}
\left|u_{2 p}^{\prime}\right|_{m}\left(\boldsymbol{R}^{3} \times \boldsymbol{R}\right) \leqslant C_{m} k^{-N+m+3}(\lambda \tilde{\lambda} \alpha)^{p} M_{2 N+m} . \tag{3.40}
\end{equation*}
$$

From (3.38) we have

$$
\begin{align*}
& \mid e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)} b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} u_{\infty}^{\prime}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) \tag{3.41}\\
& \quad-\left.u_{2 p}^{\prime}(x, t ; k)\right|_{m}\left(R^{3} \times R\right) \leqslant C_{m} k^{-N+m+3}(\lambda \tilde{\lambda} \alpha)^{p} M_{2 N+m} .
\end{align*}
$$

Evidently we have the same type estimate for $q=2 p+1$, namely

$$
\begin{align*}
& \mid e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)} b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \tilde{u}_{\infty}^{\prime}\left(x, t-(2 p+1) d-j\left(A_{0}\right)-d_{\infty} ; k\right) \tag{3.42}\\
& \quad-\left.u_{2 p+1}^{\prime}(x, t ; k)\right|_{m}\left(R^{3} \times R\right) \leqslant C_{m} k^{-N+m+3}(\lambda \tilde{\lambda} \alpha)^{p} M_{2 N+m} .
\end{align*}
$$

4. Construction of asymptotic solutions (II).

Let m be an oscillatory boundary data of the form

$$
\begin{equation*}
m(x, t ; k)=e^{i k(\psi(x)-t)} f(x, t ; k), \quad f \in C_{0}^{\infty}\left(\Gamma_{1} \times(T, T+d / 2)\right) \tag{4.1}
\end{equation*}
$$

where $\psi \in C^{\infty}\left(\Gamma_{1}\right)$ is a function satisfying Condition C of or $\theta(x, \eta, \beta)$ of Lemma 7.1 of [2].

Lemma 4.1. For a positive integer N we have a function $u(x, t ; k)=u^{\prime}(x, t ; k)$ $+u^{\prime \prime}(x, t ; k)$ satisfying

$$
\begin{align*}
& \square u=0 \text { in } \Omega \times \boldsymbol{R}, \tag{4.2}\\
& \operatorname{supp} u^{\prime} \subset \underset{(x, t) \in \text { supp } f}{\cup} \mathscr{L}(x, t ; \nabla \varphi) \tag{4.3}\\
& \left|u^{\prime}\right|_{m}\left(\Omega_{R}, t\right) \leqslant C_{m, R} e^{-c_{0} t}|\nabla \psi|_{m+N^{\prime}} k^{m+1} \tag{4.4}\\
& \times \sum_{j=0}^{N} k^{-j}(t-T)^{j}\left|e^{c_{0} T} f(\cdot, \cdot)\right|_{m+2 j}\left(\Gamma_{1} \times R\right), \\
& \left|u^{\prime \prime}\right|_{m}(\Omega, t) \leqslant C_{m} e^{-c_{0} t}|\nabla \psi|_{m+N^{\prime}} k^{-N+m+1} \tag{4.5}\\
& \times(t-T)^{N}\left|e^{c_{0} T} f(\cdot, \cdot)\right|_{N^{\prime}+m}\left(\Gamma_{1} \times \boldsymbol{R}\right), \\
& |u-m|_{m}(\Gamma, t) \leqslant C_{m} e^{-c_{0} t}|\nabla \psi|_{m+N^{\prime}} k^{-N+m} \tag{4.6}\\
& \times(t-T)^{N}\left|e^{c_{0} T} f(\cdot, \cdot)\right|_{N^{\prime}+m}\left(\Gamma_{1} \times \boldsymbol{R}\right) .
\end{align*}
$$

Proof. We follow the process of the proof of Proposition 8.1 of [2] except an argument on estimations of the amplitude function of $w^{(N)}$ in §8. Namely, instead of the estimate in $\S 8$ we use a precise asymptotic formula proved in sections 5 and 6 of [3].

Corollary 4.2. Suppose that m of (4.1) verifies

$$
\begin{equation*}
{ }^{\# g}(x, \nabla \varphi(x)) \leqslant \log k \quad \text { for all } \quad x \in \operatorname{Proj}_{x} \operatorname{supp} f \tag{4.7}
\end{equation*}
$$

where $\varphi(x)$ denotes the one in the definition of Condition C or $\theta+\frac{2}{3} \rho^{3 / 2}$. Then we
have a function $u(x, t ; k)$ satisfying (4.2), (4.3) and

$$
\begin{align*}
\left|u^{\prime}\right|_{m}\left(\Omega_{R}, t\right) \leqslant & C_{m, R} e^{-c_{0} t}|\nabla \varphi|_{m+N^{\prime}} k^{m+1} \tag{4.8}\\
& \times \sum_{j=0}^{N}\left(k^{-1}(\log k+R)\right)^{j}\left|e^{c_{0} T} f\right|_{m}\left(\Gamma_{1} \times \boldsymbol{R}\right), \\
\left|u^{\prime \prime}\right|_{m}(\Omega, t) \leqslant & C_{m} e^{-c_{0} t}|\nabla \varphi|_{m+N^{\prime}}\left(k^{-1}(\log k+R)\right)^{-N+m} \tag{4.9}\\
& \times\left|e^{c_{0} T} f\right|_{N^{\prime}+m}\left(\Gamma_{1} \times \boldsymbol{R}\right),
\end{align*}
$$

$$
\begin{equation*}
|u-m|_{m}(\Gamma, t) \leqslant C_{m} e^{-c_{0} t}|\nabla \varphi|_{m+N^{\prime}}\left(k^{-1}(\log k+R)\right)^{-N+m} \tag{4.10}
\end{equation*}
$$

$$
\times\left|e^{c_{0} T} f\right|_{N^{\prime}+m}\left(\Gamma_{1} \times R\right)
$$

Moreover

$$
\begin{equation*}
\left.\operatorname{supp} u\right|_{\Gamma \times \mathbf{R}} \subset \Gamma \times\left[T, T+d \log k+2 \rho_{0}\right], \quad\left(\rho_{0}=\text { diameter of } \mathcal{O}\right) . \tag{4.11}
\end{equation*}
$$

Proof. We have from (4.3) and (4.7)

$$
\text { supp } u^{\prime} \subset\left\{(x, t) ; t \leqslant T+d \log k+\rho_{0}+|x|\right\},
$$

which implies

$$
t-T \leqslant d \log k+R+\rho_{0} \quad \text { on } \quad \operatorname{supp} u^{\prime} \cap\left(\Omega_{R} \times \boldsymbol{R}\right)
$$

Thus (4.9) follows from (4.4). Recalling the process of the construction of $u^{\prime \prime}$, which corresponds to u^{\prime} in the previous section, we have (4.9) and (4.10).
Q.E.D.

Set

$$
\begin{align*}
& m_{p}(x, t ; k)=e^{i k\left(\varphi_{2 p}(x)-t\right)} f_{p}(x, t ; k), \tag{4.12}\\
& f_{p}(x, t ; k)=\left(1-\theta_{k}(x)\right) \sum_{j=0}^{N} v_{j, 2 p-1}(x, t ; k)(i k)^{-j}, \\
& m_{\infty}(x, t ; k)=e^{i k\left(\varphi_{\infty}(x)-t\right)} f_{\infty}(x, t ; k), \tag{4.13}\\
& f_{\infty}(x, t ; k)=\left(1-\theta_{k}(x)\right) \sum_{j=0}^{N} v_{j, \infty}(x, t ; k)(i k)^{-j} .
\end{align*}
$$

Then (3.17) and (3.29) imply that

$$
\begin{align*}
& \mid b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} f_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) e^{i k\left(d_{\infty}-j\left(A_{0}\right)-d_{0}\right)} \tag{4.14}\\
& \quad-\left.f_{p}(x, t ; k)\right|_{m}\left(\Gamma_{1} \times \boldsymbol{R}\right) \leqslant C_{m, N} p^{N}(\lambda \tilde{\lambda} \alpha)^{p} \sum_{j=0}^{N} k^{-j} M_{2 j+m} .
\end{align*}
$$

Note that we have from Corollary 2.2
(4.15) $\quad \# \mathscr{X}\left(x, \nabla \varphi_{2 p}(x)\right), \quad \# \mathscr{X}\left(x, \nabla \varphi_{\infty}(x)\right) \leqslant \log k \quad$ for all $\quad x \in \operatorname{supp}\left(1-\theta_{k}\right)$.

By applying Corollary 4.2 to m_{p} and m_{∞}, and we get z_{p} and z_{∞} verifying (4.2), (4.8) $\sim(4.11)$, where $T=0$ for z_{∞} and $T=2 p d$ for z_{p}. Remark that since $e^{-c_{0} 2 d}=\lambda \tilde{\lambda}$ it holds that

$$
\left|e^{2 p d c_{0}} f_{p}\right|_{m}\left(\Gamma_{1} \times R\right) \leqslant C_{m} M_{m} \quad \text { for all } p .
$$

Since the process of the proof of Lemma 4.1 indicates the continuity of a correspondance from $\{\psi, f\}$ to u, we have from (4.14) and Lemma 3.1 the following

Lemma 4.3. It holds that

$$
\begin{align*}
& \left|b w_{k}\left(A_{0}\right) e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)}(\lambda \tilde{\lambda})^{p} z_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right)-z_{p}(x, t ; k)\right|_{m}\left(\Omega_{R}, t\right) \tag{4.16}\\
& \leqslant C_{m, R}(\lambda \tilde{\lambda} \alpha)^{p} e^{-c o(t-2 p d)} k^{m+1} \sum_{j=0}^{N} k^{-j}(\log k)^{j} M_{2 j+m}, \\
& \square z_{p}=0 \quad \text { in } \quad \Omega \times R \\
& \left.\operatorname{supp} z_{p}\right|_{\Gamma \times R} \subset \Gamma \times\left[2 p d, 2 p d+d \log k+\rho_{0}\right] .
\end{align*}
$$

Set

$$
\begin{align*}
r_{p}(x, t ; k)= & u_{2 p}(x, t ; k)+u_{2 p}^{\prime}(x, t ; k)-u_{2 p+1}(x, t ; k) \tag{4.19}\\
& -u_{2 p+1}^{\prime}(x, t ; k)-z_{p}(x, t ; k), \tag{4.20}
\end{align*}
$$

and

$$
\begin{align*}
& r_{\infty}(x, t ; k)=e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)}\left\{u_{\infty}(x, t ; k)-u_{\infty}^{\prime}(x, t ; k)\right. \tag{4.21}\\
&\left.\quad-\left(\tilde{u}_{\infty}(x, t-d ; k)-\tilde{u}_{\infty}^{\prime}(x, t-d ; k)\right)-z_{\infty}(x, t ; k)\right\} .
\end{align*}
$$

We have from (3.34), (3.35), (3.41), (3.42) and (4.16)
Lemma 4.4. It holds that

$$
\begin{array}{r}
\left|b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} r_{\infty}\left(x, t-2 d p-j\left(A_{0}\right)-d_{\infty} ; k\right)-r_{p}(x, t ; k)\right|_{m}\left(\Omega_{R} \times \boldsymbol{R}\right) \tag{4.22}\\
\leqslant C_{m, R}(\lambda \tilde{\lambda} \alpha)^{p} k^{m+1} \sum_{j=0}^{N} k^{-j} M_{2 j+m} .
\end{array}
$$

Next we consider the behavior of $r(x, t ; k)$ on the boundary. Taking account of (3.8) we have on Γ_{1}

$$
\begin{align*}
& r(x, t ; k)-m(x, t ; k)=\sum_{p=0}^{\infty}\left\{e^{i k\left(\varphi_{2 p}-t\right)} \theta_{k}(x) \sum_{j=1}^{N} v_{j, 2 p+1}(i k)^{-j}\right. \tag{4.23}\\
& \left.\quad+\left(m_{p}(x, t ; k)-z_{p}(x, t ; k)\right)-u_{2 p}^{\prime}(x, t ; k)+u_{2 p+1}^{\prime}(x, t ; k)\right\} .
\end{align*}
$$

From (3.8), (3.11) we have on Γ_{2}

$$
\begin{equation*}
r(x, t ; k)=\sum_{p=0}^{\infty}\left\{-u_{2 p}^{\prime}(x, t ; k)+u_{2 p+1}^{\prime}(x, t ; k)-z_{p}(x, t ; k)\right\} . \tag{4.24}
\end{equation*}
$$

Summing up the argument up to now we have

Proposition 4.5. For an oscillatory boundary data (3.2) we have a function $r(x, t ; k)$ defined by (4.20) verifying

$$
\begin{equation*}
\square r(x, t ; k)=0 \quad \text { in } \quad \Omega \times \boldsymbol{R} \tag{4.25}
\end{equation*}
$$

and (4.22), (4.23) and (4.24).

5. Laplace transform of asymptotic solutions.

We consider the Laplace transform of $r(x, t ; k)$ with respect to t, that is,

$$
\begin{equation*}
\hat{r}(x, \mu ; k)=\int_{-\infty}^{\infty} e^{-\mu t} r(x, t ; k) d t \tag{5.1}
\end{equation*}
$$

First we restrict μ in $\{\mu ; \operatorname{Re} \mu>0\}$. Evidently the integral of the right hand side of (5.1) converges absolutely. Therefore $\hat{r}(x, \mu ; k)$ is an $H^{\infty}(\Omega)$-valued holomorphic function. It follows from (4.25) that

$$
\begin{equation*}
\left(\mu^{2}-\Delta\right) \hat{r}(x, \mu ; k)=0 \quad \text { in } \quad \Omega . \tag{5.2}
\end{equation*}
$$

Set

$$
s(x, t ; k)=r(x, t ; k)-b w_{k}\left(A_{0}\right) \sum_{p=0}^{\infty}(\lambda \tilde{\lambda})^{p} r_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right)
$$

and we have from (3.39) and (4.22)

$$
\begin{equation*}
|s|_{m}\left(\Omega_{R}, t\right) \leqslant C_{m, R}(\log k) e^{-\left(c_{0}+c_{1}\right)\left(t-R-C_{\varepsilon} \log k\right)} k^{m+1} \sum_{j=0}^{N} k^{-j} M_{2 j+m} . \tag{5.3}
\end{equation*}
$$

Thus it follows

$$
\begin{align*}
& |\hat{s}(x, \mu ; k)|_{m}\left(\Omega_{R}\right) \leqslant C_{m, R} e^{\left(c_{0}+c_{1}\right)\left(C_{\varepsilon} \log k+R\right)} k^{m+1} \sum_{j=0}^{N} k^{-j} M_{2 j+m} \tag{5.4}\\
& \qquad \text { for } \mu \in \mathscr{D}_{\varepsilon^{\prime}}=\left\{\mu ; \operatorname{Re} \mu \geqslant-c_{0}-c_{1}+\varepsilon^{\prime}\right\} .
\end{align*}
$$

On the other hand

$$
\begin{aligned}
& \int e^{-\mu t} \sum_{p=0}^{\infty}(\lambda \tilde{\lambda})^{p} r_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) d t \\
& \quad=\sum_{p=0}^{\infty}(\lambda \tilde{d})^{p} e^{-\mu\left(2 p d+j\left(A_{0}\right)+d_{\infty}\right)} \hat{r}_{\infty}(x, \mu ; k) \\
& \quad=\mathscr{P}(\mu)^{-1} e^{-\mu\left(j\left(A_{0}\right)+d_{\infty}\right)} \hat{r}_{\infty}(x, \mu ; k)
\end{aligned}
$$

where

$$
\mathscr{P}(\mu)=1-\lambda \tilde{\lambda} e^{-2 d \mu} .
$$

Lemma 5.1. The Laplace transform of $r(x, t ; k)$ is of the form

$$
\begin{equation*}
\hat{r}(x, \mu ; k)=b w_{k}\left(A_{0}\right) \mathscr{P}(\mu)^{-1} e^{-\mu\left(j\left(A_{0}\right)+d_{\infty}\right)} \hat{r}_{\infty}(x, \mu ; k)+\hat{s}(x, \mu ; k) \tag{5.5}
\end{equation*}
$$

where $\hat{r}_{\infty}(x, \mu ; k)$ is a $C^{\infty}(\bar{\Omega})$-valued entire function and $\hat{s}(x, \mu ; k)$ is $C^{\infty}(\bar{\Omega})$ -
valued holomorphic function in $\mathscr{D}=\left\{\mu ; \operatorname{Re} \mu>-c_{0}-c_{1}\right\}$ verifying an estimates (5.4) for any $R>0$ and $\varepsilon^{\prime}>0$.

Proof. Beside the fact that r is entire, Lemma is already proved. The estimations on the support of $r_{\infty}(x, t ; k)$, namely (3.39) for u_{∞}^{\prime} and $\tilde{u}_{\infty}^{\prime}$, (4.18) for z_{∞} imply that for any $x \in \Omega_{R}$ the support in t of r_{∞} is contained in a fixed bounded set, from which we have the entireness of r_{∞}.
Q.E.D.

Next we consider the form of \hat{r} on the boundary.
Lemma 5.2. On Γ_{1} we have

$$
\begin{equation*}
\hat{r}(x, \mu ; k)=\tilde{m}(x, \mu ; k)+b w_{k}\left(A_{0}\right) e^{-\mu\left(j\left(A_{0}\right)+d_{\infty}\right)} \frac{2}{\mathscr{P}(\mu)} \hat{r}_{\infty}(x, \mu ; k)+\hat{s}_{1}(x, \mu ; k), \tag{5.6}
\end{equation*}
$$

where $\hat{s}_{1}(x, \mu ; k)$ is $C^{\infty}\left(\Gamma_{1}\right)$-valued holomorphic in \mathscr{D} and satisfies estimates

$$
\begin{align*}
& \left|\hat{s}_{1}(x, \mu ; k)\right| \leqslant C_{\varepsilon^{\prime}}\left(\theta_{k}(x) \log k+k^{-N} k^{\varepsilon N^{\prime}}\right) M_{N^{\prime}} \quad \text { for } \quad \mu \in \mathscr{D}_{\varepsilon^{\prime}}, \tag{5.7}\\
& \left|\hat{s}_{1}(x, \mu ; k)\right| \leqslant C\left(\theta_{k}(x) k^{-1}+k^{-N} k^{\varepsilon N^{\prime}}\right) M_{N^{\prime}} \quad \text { for } \quad \operatorname{Re} \mu \geqslant-c_{0}-2 d(\log k)^{-1} .
\end{align*}
$$

Proof. On Γ_{1} we see from the definition

$$
\begin{aligned}
r_{\infty}(x, t ; k) & =e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)}\left\{e^{i k\left(\varphi_{\infty}(x)-t\right)} \theta_{k}(x)\right. \\
& \left.\cdot \sum_{j=0}^{N}(i k)^{-j} \tilde{v}_{j, \infty}(x, t-d ; k)-u_{\infty}^{\prime}(x, t ; k)+\tilde{u}_{\infty}^{\prime}(x, t ; k)\right\} .
\end{aligned}
$$

Set

$$
\begin{aligned}
& s_{1}(x, t ; k)=r(x, t ; k)-m(x, t ; k) \\
& \quad-b w_{k}\left(A_{0}\right) \sum_{p=0}^{\infty}(\lambda \tilde{\lambda})^{p} r_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) .
\end{aligned}
$$

Then it follows from (4.23) that

$$
\begin{aligned}
s_{1}(x, t ; k)= & \sum_{p=0}^{\infty}\left[\theta _ { k } (x) \left\{e ^ { i k t } \sum _ { j = 0 } ^ { N } (i k) ^ { - j } \left(e^{i k\left(\varphi_{2 q}(x)\right)} v_{j, 2 p+1}(x, t ; k)\right.\right.\right. \\
& \left.\left.-e^{i k\left(\varphi_{\infty}(x)+2 p d+d_{0}\right)}(\lambda \tilde{\lambda})^{p} \tilde{v}_{j, \infty}(x, t-(2 p+1) d ; k)\right)\right\} \\
& +\left\{\left(m_{p}-z_{p}\right)(x, t ; k)-b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p}\left(m_{\infty}-z_{\infty}\right)\left(x, t-2 p d-d_{\infty} ; k\right)\right\} \\
& +\left\{u_{2 p}^{\prime}(x, t ; k)-b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} u_{\infty}^{\prime}\left(x, t-2 p d-d_{\infty} ; k\right)\right\} \\
& +\left\{u_{2 p+1}^{\prime}(x, t ; k)-b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \tilde{u}_{\infty}^{\prime}\left(x, t-(2 p+1) d-d_{\infty} ; k\right)\right\} \\
= & I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

First consider I_{1}. Set

$$
\begin{aligned}
I_{1, j, p}= & \theta_{k}(x) e^{i k \varphi_{2 p}(x)} v_{j, 2 p+1}(x, t ; k) \\
& -e^{i k\left(\varphi_{\infty}(x)+2 p d+d_{0}\right)}(\lambda \tilde{\lambda})^{p} \tilde{v}_{j, \infty}\left(x, t-(2 p+1) d-d_{\infty} ; k\right) \\
= & \theta_{k}(x)\left(e^{i k \varphi_{2 p}}-e^{i k\left(\varphi_{\infty}+2 p d+d_{0}\right)}\right)(\lambda \tilde{\lambda})^{p} \tilde{v}_{j, \infty}\left(x, t-(2 p+1) d-d_{\infty} ; k\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\theta_{k}(x) e^{i k \varphi_{2 p}}\left\{v_{j, 2 p+1}(x, t ; k)-(\lambda \tilde{\lambda})^{p} \tilde{v}_{j, \infty}\left(x, t-(2 p+1) d-d_{\infty} ; k\right)\right\} \\
= & I I_{j, p}+I I I_{j, p} .
\end{aligned}
$$

By using (3.4) we have

$$
\left|I I_{j, p}\right|_{m}\left(\Gamma_{1} \times R\right) \leqslant C_{m} \max \left(k \alpha^{2 p}, 2\right)(\lambda \tilde{\lambda})^{p} M_{m+2 j} \theta_{k}(x)
$$

Then, by setting

$$
\sum_{p=0}^{\infty} I I_{j, p}=\sum_{p=0}^{\log k} I I_{j, p}+\sum_{p=\log k}^{\infty} I I_{j, p}=I I_{j}^{(1)}+I I_{j}^{(2)}
$$

we have

$$
\left|I I_{j}^{(1)}\right| \leqslant C \theta_{k}(x) e^{-c_{0} t} \log k \quad \text { and } \quad \operatorname{supp} I I_{j}^{(1)} \subset\left(0,2 d \log k+\rho_{0}\right) .
$$

Then it follows that

$$
\begin{aligned}
\mid \widehat{I}]_{j}^{(1)}(x, \mu ; k) \mid & \leqslant C \theta_{k}(x) \log k \int_{0}^{2 d \log k+\rho_{0}} e^{-c_{0} t} e^{-\mathrm{Re} \mu t} d t \\
& \leqslant C \theta_{k}(x) e^{-2 d \log k\left(-\operatorname{Re} \mu-c_{0}\right)} \log k .
\end{aligned}
$$

Therefore we have

$$
\left|\widehat{I I}_{j}^{(1)}(x, \mu ; k)\right| \leqslant C \theta_{k}(x) \log k \quad \text { if } \quad \operatorname{Re} \mu \geqslant-c_{0}-2 d(\log k)^{-1} .
$$

It is evident that

$$
\left|\widehat{I I}_{j}^{(2)}(x, \mu ; k)\right| \leqslant C \theta_{k}(x) \quad \text { for } \quad \operatorname{Re} \mu \leqslant-c_{0}-c_{1} / 2
$$

On $I_{l}, l=3,4$, estimates (3.41) and (3.42) imply

$$
\left|\hat{I}_{l}(x, \mu ; k)\right| \leqslant C k^{-N} k^{\varepsilon N^{\prime}} \quad \text { for all } \quad \mu \in \mathscr{D},
$$

and on I_{2} the process of the construction of z_{p} assures

$$
\left|\hat{I}_{2}(x, \mu ; k)\right| \leqslant C k^{-N} k^{\varepsilon N^{\prime}} \quad \text { for all } \quad \mu \in \mathscr{D} .
$$

Combining these estimates we have (5.8).
If we use an estimate $\left|I I_{j, p}\right| \leqslant \theta_{k}(x) k(\alpha \lambda \tilde{\lambda})^{p}$ for all p (5.7) follows immediately.
Q. E. D.

Next consider \hat{r} on Γ_{2}.
Lemma 5.3. On Γ_{2} we have

$$
\begin{equation*}
\hat{r}(x, \mu ; k)=b w_{k}\left(A_{0}\right) e^{-\mu\left(j\left(A_{0}\right)+d_{\infty}\right)} \frac{1}{\mathscr{P}(\mu)} \hat{r}_{\infty}(x, \mu ; k)+\hat{s}_{2}(x, \mu ; k), \tag{5.9}
\end{equation*}
$$

where \hat{s}_{2} is a $C^{\infty}\left(\Gamma_{2}\right)$-valued holomorphic function in $\mathscr{D}_{\varepsilon^{\prime}}$ and satisfies an estimate for $\mu \in \mathscr{D}_{\varepsilon^{\prime}}\left(\varepsilon^{\prime}>0\right)$

$$
\begin{equation*}
\left|\hat{r}_{\infty}(x, \mu ; k)\right|_{m}+\left|\hat{s}_{2}(x, \mu ; k)\right|_{m} \leqslant C_{\varepsilon^{\prime}} k^{-N+m+\varepsilon N^{\prime}} M_{N^{\prime}+m} \quad \text { on } \quad \Gamma_{2} . \tag{5.10}
\end{equation*}
$$

Proof. Set

$$
s_{2}(x, t ; k)=r(x, t ; k)-b w_{k}\left(A_{0}\right) \sum_{p=0}^{\infty}(\lambda \tilde{\lambda})^{p} r_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) .
$$

Then we have

$$
\begin{aligned}
s_{1}(x, t ; k)= & \sum_{p=0}^{\infty}\left\{-z_{p}(x, t ; k)+b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} z_{\infty}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right)\right. \\
& +u_{2 p}^{\prime}(x, t ; k)-b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} u_{\infty}^{\prime}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right) \\
& \left.+u_{2 p+1}^{\prime}(x, t ; k)-b w_{k}\left(A_{0}\right)(\lambda \tilde{\lambda})^{p} \tilde{u}_{\infty}^{\prime}\left(x, t-2 p d-j\left(A_{0}\right)-d_{\infty} ; k\right)\right\} .
\end{aligned}
$$

Thus estimate (5.10) on \hat{s}_{2} is done by the same way as for $I_{l}, l=2,3,4$ in the previous lemma. For \hat{r}_{∞}, recall that $r_{\infty}=z_{\infty}$ on Γ_{2}, and we have the desired estimate.

Set

$$
\Omega^{(2)}=R^{3}-\mathcal{O}_{2} .
$$

Denote by $U^{(2)}(\mu) g$ for $\operatorname{Re} \mu>0$ and $g \in C^{\infty}\left(\Gamma_{2}\right)$ the solution of

$$
\begin{cases}\left(\mu^{2}-\Delta\right) u=0 & \text { in } \quad \Omega^{(2)}, \\ u=g & \text { on } \quad \Gamma_{2}, \\ u \in L^{2}\left(\Omega^{(2)}\right) . & \end{cases}
$$

Then $U^{(2)}(\mu)$ can be prolonged analytically into

$$
\left\{\mu ; \operatorname{Re} \geqslant-\beta,|\mu| \geqslant C_{\beta}\right\} \quad\left(=\mathscr{D}_{\beta}^{(2)}\right)
$$

for any $\beta>0$, where C_{β} is a constant depending on β. Moreover,

$$
|u|_{m}\left(\Omega_{R}^{(2)}\right) \leqslant C_{m, R, \beta}\|g\|_{H^{m}\left(\Gamma_{2}\right)} \quad \text { for } \quad \mu \in \mathscr{D}_{\beta}^{(2)} .{ }^{1)}
$$

Set

$$
e(x, \mu ; k)=\left(e^{-(\mu+i k) j(x)} h(\mu+i k)\right)^{-1}\left(\hat{r}(x, \mu ; k)-\left.U^{(2)}(\mu) r(\cdot, \mu ; k)\right|_{\Gamma_{2}}\right) .
$$

Now we shall show the following
Proposition 5.4. Let ψ be a function verifying Condition C. Then there exists $e(x, \mu ; k)$ of the form

$$
\begin{equation*}
e(x, \mu ; k)=\frac{1}{\mathscr{P}(\mu)} b w_{k}\left(A_{0}\right) e^{i k d_{0}} e^{-(\mu+i k)\left(j\left(A_{0}\right)+d_{\infty}\right)} e_{1}(x, \mu ; k)+e_{2}(x, \mu ; k) \tag{5.11}
\end{equation*}
$$

verifying the following:
(i) e_{1} and e_{2} are $C^{\infty}(\bar{\Omega})$-valued holomorphic functions defined in \mathscr{D} and e_{1} is independent of ψ, and they satisfy estimates

1) See for example, Ikawa M., Mixed problems for the wave equation, III, Exponential decay of solutions, Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 71-110.

$$
\begin{equation*}
\left|e_{l}(x, \mu ; k)\right|_{m}\left(\Omega_{R}\right) \leqslant C_{m, R} k^{m+1} \sum_{j=0}^{N} k^{-j} M_{2 j+m} \tag{5.12}
\end{equation*}
$$

for $\mu \in \mathscr{D}_{(k)}=\left\{\mu ;|\operatorname{Im} \mu+i k| \leqslant|k|^{-1 / 2},-c_{0}-\log k \leqslant \operatorname{Re} \mu \leqslant 1\right\}$, and $e_{l}(\cdot, \mu ; k) \in L^{2}(\Omega)$ for $\operatorname{Re} \mu>0$,
(ii) $\left(\mu^{2}-\Delta\right) e(x, \mu ; k)=0$ in Ω,
(iii) $e(x, \mu ; k)=0$ on Γ_{2},
(iv) on $\Gamma_{1} e$ is of the form

$$
\begin{aligned}
& e(x, \mu ; k)=e^{i k \psi(x)} w_{k}(x)+\left[\frac{1}{\mathscr{P}(\mu)} b w_{k}\left(A_{0}\right) e^{i k d_{0}} e^{-(\mu+i k)\left(j\left(A_{0}\right)+d_{\infty}\right)}\right. \\
& \left.\quad \times\left\{\theta_{k}(x) e^{i k \varphi_{\infty}(x)} \sum_{j=1}^{N} \sum_{l=0}^{2 j} a_{j, l}^{0}(x)(i k)^{-j}(\mu+i k)^{t}+b_{1}(x, \mu ; k)\right\}\right]+b_{2}(x, \mu ; k),
\end{aligned}
$$

where b_{1} and b_{2} are $C^{\infty}\left(\Gamma_{1}\right)$-valued holomorphic function in \mathscr{D} and b_{1} is independent of ψ. Moreover they satisfy estiamtes

$$
\begin{align*}
& \left|b_{1}(\cdot, \mu ; k)\right|_{m}\left(\Gamma_{1}\right) \leqslant C_{m} k^{-N+m} M_{2 N^{\prime}+m} \tag{5.13}\\
& \left|b_{2}(x, \mu ; k)\right| \leqslant k^{-1} \theta_{k}(x) \log k+C k^{-(1-\varepsilon) N} . \tag{5.14}
\end{align*}
$$

Proof. Form the definition of $e(x, \mu ; k)$ (ii) and (III) follow immediately. Note that we have

$$
|\hat{h}(\mu+i k)| \geqslant c>0 \quad \text { for all } \quad \mu \in \mathscr{D}_{(k)}
$$

where c is a constant independent of k. Set

$$
\begin{aligned}
& \tilde{e}_{1}(x, \mu ; k)=\left(\hat{r}_{\infty}(x, \mu ; k)-U^{(2)}(\mu)\left(\left.\hat{r}_{\infty}(\cdot, \mu ; k)\right|_{r_{2}}\right)(x)\right)\left(e^{-(\mu+i k) j(x)} \hat{h}(\mu+i k)\right)^{-1}, \\
& e_{2}(x, \mu ; k)=\left(\hat{s}(x, \mu ; k)-U^{(2)}(\mu)\left(\hat{s}_{2}(\cdot, \mu ; k)(x)\right)\left(e^{-(\mu+i k) j(x)} \hat{h}(\mu+i k)\right)^{-1},\right.
\end{aligned}
$$

From the definition (4.21) of r_{∞} and (5.5) we have

$$
\tilde{e}_{2}=e^{i k d_{0}} e^{-(\mu+i k)\left(j\left(A_{0}\right)+d_{\infty}\right)} e_{2}, \quad e_{2} \text { is independent of } \psi .
$$

Lemmas 5.2 and 5.3 imply (5.12). Now we show (iv). From the definition we have

$$
\begin{aligned}
\hat{r}_{\infty}(x, \mu ; k)= & e^{i k\left(d_{0}-j\left(A_{0}\right)-d_{\infty}\right)}\left\{\hat{u}_{\infty}(x, \mu ; k)-\hat{u}_{\infty}^{\prime}(x, \mu ; k)\right. \\
& \left.-e^{-\mu d}\left(\hat{\tilde{u}}_{\infty}(x, \mu ; k)-\hat{\tilde{u}}_{\infty}^{\prime}(x, \mu ; k)\right)-\hat{z}_{\infty}(x, \mu ; k)\right\},
\end{aligned}
$$

and by using (3.21), (3.22), (3.23), (3.24) and Lemma 3.3

$$
\begin{aligned}
& \hat{u}_{\infty}(x, \mu ; k)-e^{-\mu d} \hat{\tilde{u}}_{\infty}(x, \mu ; k) \\
& \quad=\theta_{k}(x) e^{i k \varphi_{\infty}(x)} \sum_{j=1}^{N}(i k)^{-j} \sum_{l=0}^{2 j} a_{j, l}(x ; k)(\mu+i k)^{l} e^{-(\mu+i k) j(x)} \hat{h}(\mu+i k) .
\end{aligned}
$$

Thus by putting

$$
\begin{aligned}
b_{1}(x, \mu ; k)= & \left(-\hat{u}_{\infty}^{\prime}(x, \mu ; k)+\hat{\tilde{u}}_{\infty}^{\prime}(x, \mu ; k)-U^{(2)}(\mu)\left(\left.\hat{r}_{\infty}(\cdot, \mu ; k)\right|_{r_{2}}\right)(x)\right) \\
& \cdot\left(e^{-(\mu+i k) j(x)} \hat{h}(\mu+i k)\right)^{-1},
\end{aligned}
$$

$$
b_{2}(x, \mu ; k)=\left(\hat{s}_{1}(x, \mu ; k)-U^{(2)}(\mu)\left(\hat{s}_{2}(\cdot, \mu ; k)\right)(x)\right) \cdot\left(e^{-(\mu+i k) j(x)} \hat{h}(\mu+i k)\right)^{-1},
$$

we have (5.13) and (5.13) from (3.32), (3.33) and the definition $u_{\infty}^{\prime}(x, t ; k)$ and $\tilde{u}_{\infty}^{\prime}(x$, $t ; k$), and (5.10). The representation is immediately derived from the definition of e.
6. Definition of $\boldsymbol{U}_{\mathbf{0}}(\boldsymbol{\mu})$.

Let $g(x) \in C_{0}^{\infty}\left(S_{1}\left((1+3 \delta) k^{-\varepsilon}\right)\right)$. Then we have by the Fourier's inversion formula

$$
\begin{aligned}
g(x(\sigma)) & =(2 \pi)^{-2} \iint e^{i\left(\sigma-\sigma^{\prime}\right) \cdot \xi} g\left(x\left(\sigma^{\prime}\right)\right) d \sigma^{\prime} d \xi \\
& =\int w_{k}(x(\sigma)) e^{i k \sigma \cdot \xi} \hat{g}(k \xi) k^{2} d \xi,
\end{aligned}
$$

where

$$
\hat{g}(\xi)=(2 \pi)^{-2} \int_{R} e^{i \sigma \cdot \xi} g(x(\sigma)) d \sigma
$$

Define $\psi(x, \xi) \in C^{\infty}\left(S_{1}\left(\delta_{0}\right)\right)$ by

$$
\psi(x(\sigma), \xi)=\sigma \cdot \xi .
$$

When $|\xi|<1-\delta(\delta>0), \psi(x, \xi)$ satisfies Condition C and if $|\xi|>\delta_{0}$

$$
\# \mathscr{X}(x, \nabla \varphi(x, \xi)) \leqslant K
$$

holds for some fixed K. By using $\$ 7$ of [2] and $U^{(2)}(\mu)$ we have immediately the following lemma

Lemma 6.1. For $|\xi| \geqslant \delta_{0}$ there exists $e(x, \mu ; k, \xi)$ verifying

$$
\begin{cases}\left(\mu^{2}-\Delta\right) e(x, \mu ; k, \xi)=0 & \text { in } \Omega \tag{6.1}\\ e(x, \mu ; k, \xi)=0 & \text { on } \Gamma_{2}, \\ e(x, \mu ; k, \xi)=e^{i k \cdot \xi_{w_{k}}(\sigma)+b_{2}(x, \mu ; k, \xi)} & \text { on } \Gamma_{1}\end{cases}
$$

where e_{3} is homomorphic in $\operatorname{Re} \mu>-c_{0}-c_{1}$ and $e \in L^{2}(\Omega)$ for $\operatorname{Re} \mu>0$, and

$$
\begin{align*}
& |e(\cdot, \mu ; k, \xi)|_{m}\left(\Omega_{R}\right) \leqslant C_{m, R} k^{m+1} \tag{6.2}\\
& \left|b_{2}(\cdot, \mu ; k, \xi)\right|_{m}\left(\Gamma_{1}\right) \leqslant C_{m} k^{-N+m} . \tag{6.3}
\end{align*}
$$

Apply Proposition 5.4 for $\psi(x)=\psi(x, \xi),|\xi| \leqslant \delta_{0}$. Denote $e(x, \mu ; k), d_{0}, d_{\infty}$, b, A_{0} in Proposition in 5.4 for $\psi(x, \xi)$ by $e(x, \mu ; k, \xi), d_{0}(\xi), d_{\infty}(\xi), b(\xi), A_{0}(\xi)$ respectively. Set

$$
\left(U_{1}(\mu ; k) g\right)(x)=\int_{R^{2}} e(x, \mu ; k, \xi) \hat{g}(k \xi) k^{2} d \xi
$$

Taking account of the independency of e_{1} on ψ we have from (5.11) that

$$
U_{1}(\mu ; k) g=\frac{e_{1}(x, \mu ; k)}{\mathscr{P}(\mu)} F_{0}(\mu ; k) g+U_{1}(\mu ; k) g,
$$

where

$$
\begin{aligned}
& F_{0}(\mu ; k) g=\int_{|\xi|<\delta_{0}} w_{k}\left(A_{0}(\xi)\right) b(\xi) e^{i k d_{0}(\xi)} e^{-(\mu+i k)\left(j\left(A_{0}(\xi)\right)+d_{\infty}(\xi)\right.} \hat{g}(k \xi) k^{2} d \xi, \\
& U_{1}(\mu ; k) g=\int_{R^{2}} b_{2}(x, \mu ; k, \xi) \hat{g}(k \xi) k^{2} d \xi .
\end{aligned}
$$

From Proposition 5.4 and Lemma 6.1 we have
Lemma 6.2. $\quad U_{1}(\mu ; k)$ is $\mathscr{L}\left(C_{0}^{\infty}\left(S_{1}\left((1+3 \delta) k^{-\varepsilon}\right)\right), C^{\infty}(\bar{\Omega})\right)$-valued holomorphic function defined in $\mathscr{D}-\{\mu ; \mathscr{P}(\mu)=0\}$, and satisfies

$$
\begin{cases}\left(\mu^{2}-\Delta\right) U_{1}(\mu ; k) g=0 & \text { in } \quad \Omega \\ U_{1}(\mu ; k) g=0 & \text { on } \Gamma_{2}\end{cases}
$$

Moreover we have

$$
U_{1}(\mu ; k) g \in L^{2}(\Omega) \quad \text { for } \quad \operatorname{Re} \mu>0 .
$$

Now consider the boundary valued of $U_{1} g$ on Γ_{1}. From (iv) of Proposition 5.4 and (6.1) it follows that for $x \in \Gamma_{1}$

$$
\begin{aligned}
U_{1}(\mu ; k) g= & \int_{\mathbf{R}^{2}} e^{i k \psi(x, \xi)} w_{k}(x) \hat{g}(k \xi) k^{2} d \xi \\
& +\frac{1}{\mathscr{P}(\mu)}\left\{\theta_{k}(x) a(x, \mu ; k)+b_{1}(x, \mu ; k)\right\} F_{0}(\mu ; k) g \\
& +\int_{\mathbf{R}^{2}} b_{2}(x, \mu ; k, \xi) \hat{g}(k \xi) k^{2} d \xi \\
= & g(x)+\frac{1}{\mathscr{P}(\mu)} \widetilde{E}_{1}(\mu ; k) g+\widetilde{E}_{2}(\mu ; k) g .
\end{aligned}
$$

Lemma 6.3. For $\mu \in \mathscr{D}_{(k)}$ we have

$$
\begin{equation*}
\left\|\tilde{E}_{2}(\mu ; k) g\right\|_{L^{2}\left(\Gamma_{1}\right)} \leqslant C k^{-\varepsilon / 2}\|g\|_{L^{2}\left(\Gamma_{1}\right)} \tag{6.4}
\end{equation*}
$$

Proof. From (5.14) and (6.3) we have

$$
\begin{aligned}
\int_{\Gamma_{1}}\left|\widetilde{E}_{2} g(x)\right|^{2} d x \leqslant & 2 \int_{\Gamma_{1}}\left(\int_{|\xi|<\delta_{0}} \theta_{k}(x) \frac{\log k}{k}|\hat{g}(k \xi)| k^{2} d \xi\right)^{2} d x \\
& +2 \int_{\Gamma_{1}}\left(\int_{R^{2}} k^{-N} k^{\varepsilon N}|\hat{g}(k \xi)| k^{2} d \xi\right)^{2} d x \\
\leqslant & 2 \int_{\Gamma_{1}}(\log k)^{2} \theta_{k}(x)^{2} d x \int_{R^{2}}|\hat{g}(k \xi)|^{2} k^{2} d \xi \cdot \int_{|\xi|<\delta_{0}} d \xi \\
& +C\left(k^{-N+1+\varepsilon N)^{2}} \int_{|\xi|<\delta_{0}} k^{2}|\hat{g}(k \xi)|^{2} d \xi\right. \\
\leqslant & 2(\log k)^{2} k^{-\varepsilon}\|g\|_{L^{2}}^{2}+C k^{-N / 2}\|g\|_{L^{2}}^{2} .
\end{aligned}
$$

Q.E.D.

With the aid of Lemma 2.4 we introduce $U_{2}(\mu ; k)$ as a slight modification of $U_{2}(\mu)$ in $\S 9$ of [2], namely

Lemma 6.4. There exists an operator $U_{2}(\mu ; k)$ which is $\mathscr{L}\left(C^{\infty}\left(\Gamma_{1}\right), C^{\infty}(\bar{\Omega})\right)$ valued entire function verifying

$$
\begin{align*}
& U_{2}(\mu ; k) g \in L^{2}(\Omega) \quad \text { for } \\
& \left(\mu^{2}-\Delta\right) U_{2}(\mu ; k) g=0 \quad \text { in } \quad \Omega \quad \text { for all } \mu, \tag{6.5}\\
& U_{2}(\mu ; k) g=0 \quad \text { on } \quad \Gamma_{2} \quad \text { for all } \mu, \tag{6.6}\\
& \left\|\left.U_{2}(\mu ; k) g\right|_{\Gamma_{1}}\right\|_{L^{2}\left(\Gamma_{1}\right)} \leqslant C k\|g\|_{L^{2}\left(\Gamma_{1}\right)}, \tag{6.7}\\
& \left|\left(1-v_{k}\right)\left(U_{2}(\mu ; k) g-g\right)\right|_{m}\left(\Gamma_{1}\right) \leqslant C_{m} k^{-N+m} e^{\left(-c_{0}-\operatorname{Re} \mu\right) \log k}\|g\|_{L^{2}\left(\Gamma_{1}\right)} . \tag{6.8}
\end{align*}
$$

Now define an operator $U_{0}(\mu ; k) \in \mathscr{L}\left(C^{\infty}\left(\Gamma_{1}\right), C^{\infty}(\bar{\Omega})\right)$ by

$$
\begin{equation*}
U_{0}(\mu ; k) g=U_{1}(\mu ; k)\left(\eta_{k} g-\left.v_{k} U_{2}(\mu ; k)\left(1-\eta_{k}\right) g\right|_{r_{1}}\right)+U_{2}(\mu ; k)\left(1-\eta_{k}\right) g . \tag{6.9}
\end{equation*}
$$

Let us set

$$
\begin{aligned}
& M(\mu ; k) g=\left.U_{0}(\mu ; k) g\right|_{\Gamma_{1}}, \\
& B_{1}(\mu ; k) g=\eta_{k}(x) g, \\
& B_{2}(\mu ; k) g=-\left.v_{k}(x) U_{2}(\mu ; k)\left(1-\eta_{k}\right) g\right|_{\Gamma_{1}} .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
M g=g+\mathscr{P}(\mu)^{-1} \tilde{E}_{1}\left(B_{1}+B_{2}\right) g+\tilde{E}_{2}\left(B_{1}+B_{2}\right) g+E_{3} g, \tag{6.10}
\end{equation*}
$$

where

$$
E_{3}(\mu ; k) g=\left.\left(1-v_{k}\right) U_{2}(\mu ; k)\left(1-\eta_{k}\right) g\right|_{\Gamma_{1}} .
$$

It follows immediately from (6.8)

$$
\begin{equation*}
\left\|E_{3} g\right\|_{H^{m}\left(\Gamma_{1}\right)} \leqslant C_{m} k^{-N+m}\|g\|_{L^{2}\left(\Gamma_{1}\right)} . \tag{6.11}
\end{equation*}
$$

We set

$$
\begin{aligned}
& E_{2}(\mu ; k)=\widetilde{E}_{2}(\mu ; k)\left(B_{1}(\mu ; k)+B_{2}(\mu ; k)\right), \\
& F_{j}(\mu ; k)=F_{0}(\mu ; k) B_{j}(\mu ; k), j=1,2, \\
& F(\mu ; k)=F_{1}(\mu ; k)+F_{2}(\mu ; k), \\
& H_{1}(\mu ; k)=\mathscr{P}(\mu)^{-1} \theta_{k}(x) a(x, \mu ; k) F(\mu ; k), \\
& H_{2}(\mu ; k)=\mathscr{P}(\mu)^{-1} b_{1}(x, \mu ; k), \\
& H(\mu ; k)=H_{1}(\mu ; k)^{\prime}+H_{2}(\mu ; k) .
\end{aligned}
$$

Remark that from the definitions it follows that

$$
\begin{equation*}
\left(B_{1}+B_{2}\right) H_{1}=H_{1}, \tag{6.12}
\end{equation*}
$$

$$
\begin{equation*}
\left(B_{1}+B_{2}\right) \tilde{E}_{2}=\tilde{E}_{2} . \tag{6.13}
\end{equation*}
$$

If we use the above notations (6.10) may be written as

$$
\begin{equation*}
M=I+H_{1}+H_{2}+E_{2}+E_{3} . \tag{6.14}
\end{equation*}
$$

7. Explicit representation of $\boldsymbol{U}(\boldsymbol{\mu})$.

Lemma 7.1. Suppose that A and B are bounded operators in a Hilbert space X such that

$$
\mathscr{A}=A+A^{2}+A^{3}+\cdots, \quad \mathscr{B}=B+B^{1}+B^{2}+\cdots
$$

converge in the opreator norm and $\left\|(\mathscr{B} \mathscr{A})^{j}\right\| \leqslant C \eta^{j}(0<\eta<1)$ holds. Set

$$
\begin{aligned}
\mathscr{C}_{1} & =\mathscr{A}+\mathscr{A} \mathscr{B}+\mathscr{A} \mathscr{B} \mathscr{A}+\mathscr{A} \mathscr{B} \mathscr{A} \mathscr{B}+\cdots, \\
\mathscr{C}_{2} & =\mathscr{B}+\mathscr{B} \mathscr{A}+\mathscr{B} \mathscr{A} \mathscr{B}+\mathscr{B} \mathscr{A} \mathscr{B} \mathscr{A}+\cdots, \\
\mathscr{C} & =\mathscr{C}_{1}+\mathscr{C}_{2} .
\end{aligned}
$$

Then we have

$$
(A+B) \mathscr{C}=\mathscr{C}-(A+B) .
$$

Proof. By using

$$
A \mathscr{A}=\mathscr{A}-A, \quad B \mathscr{B}=\mathscr{B}-B
$$

we have

$$
\begin{aligned}
A \mathscr{C}_{1} & =(\mathscr{A}-A)+(\mathscr{A}-A) \mathscr{B}+(\mathscr{A}-A) \mathscr{B} \mathscr{A}+\cdots \\
& =\mathscr{C}_{1}-A-A \mathscr{C}_{2} .
\end{aligned}
$$

Similarly we have

$$
B \mathscr{C}_{2}=\mathscr{C}_{2}-B-B \mathscr{C}_{1} .
$$

Thus

$$
\begin{aligned}
(A+B)\left(\mathscr{C}_{1}+\mathscr{C}_{2}\right) & =A \mathscr{C}_{1}+B \mathscr{C}_{2}+B \mathscr{C}_{1}+A \mathscr{C}_{2} \\
& =\mathscr{C}_{1}+\mathscr{C}_{2}-(A+B) .
\end{aligned}
$$

Q.E.D.

Now apply the above lemma to the operators in the previous section.
Lemma 7.2. There exists a bounded operator $\mathscr{E}(\mu ; k)$ in $L^{2}\left(\Gamma_{1}\right)$ such that

$$
\begin{equation*}
\left(E_{2}+E_{3}\right) \mathscr{E}=\mathscr{E}-\left(E_{2}+E_{3}\right) . \tag{7.1}
\end{equation*}
$$

$\mathscr{E}(\mu, k)$ is holomorphic in $\operatorname{Re} \mu>-c_{0}-\log k$ and satisfies

$$
\begin{equation*}
\left\|\mathscr{E}-\tilde{\mathscr{E}}_{2}\left(B_{1}+B_{2}\right)\right\| \leqslant C k^{-N} \tag{7.2}
\end{equation*}
$$

where

$$
\tilde{\mathscr{E}_{2}}=\tilde{E}_{2}+\tilde{E}_{2}^{2}+\tilde{E}_{2}^{3}+\cdots .
$$

Proof. From (6.13) we have

$$
E_{2}^{j}=\tilde{E}_{2}^{j}\left(B_{1}+B_{2}\right),
$$

then (6.4) assures the convergence of \mathscr{E}_{2} and

$$
\mathscr{E}_{2}=\tilde{\mathscr{E}}_{2}\left(B_{1}+B_{2}\right) .
$$

It is evident from (6.11) that

$$
\mathscr{E}_{3}=E_{3}+E_{3}^{2}+E_{3}^{3}+\cdots
$$

converges and

$$
\left\|\mathscr{E}_{3}\right\|_{\mathscr{L}\left(L^{2}\left(\Gamma_{1}\right)\right)} \leqslant C k^{-N}
$$

Thus by applying Lemma 7.1 we have immediately (7.1) and (7.2).
Q.E.D.

Set

$$
\begin{aligned}
\gamma_{1}(\mu ; k) & =F_{0}\left(B_{1}+B_{2}\right)\left(\theta_{k}(x) a(x, \mu ; k)+b_{1}(x, \mu ; k)\right) \\
& =F_{0} \theta_{k}(x) a(x, \mu ; k)+F_{0}\left(B_{1}+B_{2}\right) b_{1}(x, \mu ; k) \\
& =\gamma_{11}(\mu ; k)+\gamma_{12}(\mu ; k) .
\end{aligned}
$$

Then we have

$$
\begin{align*}
\mathscr{H} & =H+H^{2}+H^{3}+\cdots \tag{7.3}\\
& =\frac{\alpha}{\mathscr{P}(\mu)}\left(\sum_{j=1}^{\infty}\left(\frac{\gamma_{1}}{\mathscr{P}(\mu)}\right)^{j-1}\right) F=\frac{\alpha}{\mathscr{P}(\mu)-\gamma_{1}} F .
\end{align*}
$$

Lemma 7.3. There exists an $\mathscr{L}\left(L^{2}\left(\Gamma_{1}\right)\right)$-valued holomorphic function $\mathscr{M}(\mu ; k)$ in $\operatorname{Re} \mu>-c_{0}-\log k$ satisfying

$$
\begin{equation*}
\left(H+E_{2}+E_{3}\right) \mathscr{M}=\mathscr{M}-\left(H+E_{2}+E_{3}\right) . \tag{7.4}
\end{equation*}
$$

Here, \mathscr{M} is of the form

$$
\begin{equation*}
(I+\mathscr{M})=I+\mathscr{E}+\frac{\alpha+\mathscr{E} \alpha}{\mathscr{P}(\mu)-\gamma} F(I+\mathscr{E}), \tag{7.5}
\end{equation*}
$$

where

$$
\alpha(x, \mu ; k)=\theta_{k}(x) a(x, \mu ; k)+b_{1}(x, \mu ; k),
$$

γ is a complex valued holomorphic function.
Proof. Set

$$
\begin{aligned}
\gamma_{2} & =F_{0}\left(B_{1}+B_{2}\right) \mathscr{E} \alpha(x, \mu ; k) \\
& =F_{0}\left(B_{1}+B_{2}\right)\left(\tilde{\mathscr{E}_{2}}\left(B_{1}+B_{2}\right) \theta_{k}(x) a+\left(\mathscr{E}-\tilde{\mathscr{E}_{2}}\left(B_{1}+B_{2}\right)\right) \theta_{k} a+\mathscr{E} b_{1}\right) \\
& =F_{0} \tilde{\mathscr{E}}_{2} \theta_{k} a(x, \mu ; k)+\left\{F\left(\mathscr{E}-\tilde{\mathscr{E}_{2}}\left(B_{1}+B_{2}\right)\right) \theta_{k} a+F \mathscr{E} b_{1}\right\} \\
& =\gamma_{20}+\gamma_{21} .
\end{aligned}
$$

Since we have $\left\|\tilde{\tilde{E}_{2}}\right\| \leqslant C k^{-\varepsilon / 2}$ from (6.4) we have

$$
\begin{equation*}
\left|\gamma_{20}\right| \leqslant C k^{-\varepsilon / 2} \tag{7.6}
\end{equation*}
$$

From (7.2) and (5.13) we have

$$
\begin{equation*}
\left|\gamma_{21}\right| \leqslant C k^{-N+2} . \tag{7.7}
\end{equation*}
$$

Now from (7.3) and the definition of γ_{2} it follows that

$$
(\mathscr{E} \mathscr{H})^{j}=\left(\mathscr{P}(\mu)-\gamma_{1}\right)^{j} \gamma_{2}^{j-2} \mathscr{E} \alpha F_{0}\left(B_{1}+B_{2}\right)
$$

Then

$$
\mathscr{N}=\sum_{j=1}^{\infty}(\mathscr{E} \mathscr{H})^{j}
$$

converges in the operator norm and it has the form

$$
\mathscr{N}=\frac{1}{\mathscr{P}(\mu)-\gamma_{1}-\gamma_{2}} \mathscr{E} \alpha F_{0}\left(B_{1}+B_{2}\right) .
$$

Put $\gamma=\gamma_{1}+\gamma_{2}$, and we have

$$
\begin{equation*}
\gamma=F \alpha+F \mathscr{E} \alpha=F(I+\mathscr{E}) \alpha . \tag{7.8}
\end{equation*}
$$

Then we can apply Lemma 7.1 and

$$
\mathscr{M}=\mathscr{H}+\mathscr{H} \mathscr{E}+\mathscr{H} \mathscr{E} \mathscr{H}+\cdots+\mathscr{E}+\mathscr{E} \mathscr{H}+\mathscr{E} \mathscr{H} \mathscr{E}+\cdots
$$

converges and it satisfies (7.4). Since we can rewrite it as

$$
\mathscr{M}=\mathscr{H}(I+\mathscr{E})+\mathscr{H}\left(\mathscr{E} \mathscr{H}+(\mathscr{E} \mathscr{H})^{2}+\cdots\right)(I+\mathscr{E})+\mathscr{E}+\left(\mathscr{E} \mathscr{H}+(\mathscr{E} \mathscr{L})^{2}+\cdots\right)(I+\mathscr{E}),
$$

we have

$$
\begin{align*}
I+\mathscr{M}= & I+\mathscr{E}+\frac{\alpha}{\mathscr{P}(\mu)-\gamma_{1}} F(I+\mathscr{E}) \tag{7.9}\\
& +\frac{\alpha}{\mathscr{P}(\mu)-\gamma_{1} \frac{\gamma_{2}}{\mathscr{P}(\mu)-\gamma} F(I+\mathscr{E})+\frac{\mathscr{E} \alpha}{\mathscr{P}(\mu)-\gamma} F(I+\mathscr{E})} \\
= & (I+\mathscr{E})+\frac{\alpha+\mathscr{E} \alpha}{\mathscr{P}(\mu)-\gamma} F(I+\mathscr{E}) .
\end{align*}
$$

Proposition 7.4. In $\mathscr{D}_{(k)} \cap\{\mu ; \operatorname{Re} \mu>0\} U(\mu)$ is represented as

$$
\begin{equation*}
U(\mu)=\frac{\beta(x, \mu ; k)}{\mathscr{P}(\mu)-\gamma(\mu ; k)} F(\mu ; k)(I+\mathscr{E}(\mu ; k))+\tilde{U}(\mu ; k), \tag{7.10}
\end{equation*}
$$

where $\beta(\cdot, \mu ; k)$ is $C^{\infty}(\bar{\Omega})$-valued holomorphic function in $\mathscr{D}_{(k)}$ and $\tilde{U}(\mu ; k)$ is $\mathscr{L}\left(C^{\infty}\left(\Gamma_{1}\right), C^{\infty}(\bar{\Omega})\right)$-valued holomorphic function in $\mathscr{D}_{(k)}$.

Proof. Set

$$
\begin{equation*}
U(\mu ; k)=U_{0}(\mu ; k)(I+\mathscr{M}(\mu ; k)) . \tag{7.11}
\end{equation*}
$$

From the definition (6.9) of U_{0} and Lemmas 6.2 and 6.4 we have

$$
\begin{array}{lll}
U(\mu ; k) g \in L^{2}(\Omega) & \text { for } & \operatorname{Re} \mu>0, \\
\left(\mu^{2}-\Delta\right) U(\mu ; k) g=0 & \text { in } & \Omega, \\
U(\mu ; k) g=0 \quad \text { on } \quad \Gamma_{2} .
\end{array}
$$

On the other hand on Γ_{1} we have

$$
U(\mu ; k) g=\left(I+H+E_{2}+E_{3}\right)(I+\mathscr{M}) g=g .
$$

Thus from the uniqueness of the solution it follows that

$$
\begin{equation*}
U(\mu ; k)=U(\mu) \quad \text { in } \quad \mathscr{D}_{(k)} \cap\{\mu ; \operatorname{Re} \mu>0\} . \tag{7.12}
\end{equation*}
$$

Now substitute (6.9) and (7.5) into (7.11) and use (6.4), and we have

$$
\begin{aligned}
U(\mu ; k)= & \frac{e_{1}}{\mathscr{P}(\mu)} F_{0}\left(B_{1}+B_{2}\right)\left(I+\mathscr{E}+-\frac{(I+\mathscr{E}) \alpha}{\mathscr{P}(\mu)-\gamma} F(I+\mathscr{E})\right) \\
& +\tilde{U}_{1}(\mu ; k)\left(B_{1}+B_{2}\right)\left(I+\mathscr{E}+\frac{(I+\mathscr{E}) \alpha}{\mathscr{P}(\mu)-\gamma} F(I+\mathscr{E})\right) \\
& +U_{2}(\mu ; k)\left(1-\eta_{k}\right)\left(I+\mathscr{E}+\frac{(I+\mathscr{E}) \alpha}{\mathscr{P}(\mu)-\gamma} F(I+\mathscr{E})\right) \\
= & \frac{1}{\mathscr{P}(\mu)-\gamma} \beta(x, \mu ; k) F(I+\mathscr{E})+\tilde{U}(\mu ; k),
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta=e_{1}+U_{1}\left(B_{1}+B_{2}\right)(I+\mathscr{E}) \alpha+U_{2}\left(1-\eta_{k}\right)(I+\mathscr{E}) \alpha, \\
& \tilde{U}=U_{1}\left(B_{1}+B_{2}\right)(I+\mathscr{E})+U_{2}\left(1-\eta_{k}\right)(I+\mathscr{E}) .
\end{aligned}
$$

From these formulas we have the required assertion.

8. Proof of Theorems 2 and 3.

First we consider an asymptotic form of γ for $k \rightarrow \infty$. From the definition of F_{0} and $\alpha(x, \mu ; k)$ we have

$$
\begin{equation*}
\gamma_{11}(\mu, k)=\iint e^{i k d_{0}(\xi)} e^{-i k \xi \cdot \sigma} e^{i k \varphi_{\omega}(x(\sigma))} p(\sigma, \xi, k, \mu) k^{2} d \xi d \sigma, \tag{8.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p(\sigma, \xi, k, \mu)=b(\xi) w_{k}\left(A_{0}(\xi)\right) e^{-(\mu+i k)\left(j\left(A_{0}(\xi)\right)+d(\xi)\right)} \theta_{k}(x(\sigma)) \sum_{j=1}^{N} \tilde{v}_{j, \infty}(x(\sigma))(i k)^{-j} . \tag{8.2}
\end{equation*}
$$

Then if we restrict μ in

$$
\mathscr{C}_{k}=\{\mu ;|\mu+i k| \leqslant C\}, \quad C=c_{0}+c_{1}+2 \pi / d,
$$

it holds that

$$
\begin{equation*}
\left|\partial_{\sigma}^{\beta} \partial_{\xi}^{\alpha} p(\sigma, \xi, k, \mu)\right| \leqslant C k^{(|\alpha|+|\beta|) \varepsilon} \quad \text { for all } \quad \alpha, \beta \in N^{2} . \tag{8.3}
\end{equation*}
$$

Set

$$
\Phi(\sigma, \xi)=d_{0}(\xi)-\sigma \cdot \xi+\left(\varphi_{\infty}(x(\sigma)) .\right.
$$

Lemma 8.1. It holds that

$$
\begin{equation*}
d_{0}(\xi) \leqslant 0 . \tag{8.4}
\end{equation*}
$$

Proof. By the definition of $d_{0}(\xi)$ we have

$$
d_{0}(\xi)=\lim _{p \rightarrow \infty}\left(\inf \left\{\left(\left|a_{1}-x^{(2 p-1)}\right|+\left|x^{(2 p-1)}+x^{(2 p-2)}\right|+\cdots+\left|x^{(1)}-x^{(0)}\right|-2 p d\right\}\right)\right.
$$

where inferium is taken over $x^{(2 p-1)}, x^{(2 p-3)}, \ldots, x^{(1)} \in \Gamma_{2}, x^{(2 p-2)}, x^{(2 p-4)}, \ldots, x^{(2)} \in \Gamma_{1}$ and $x^{(0)} \in \mathscr{C}_{\varphi_{0}(\cdot, \xi)}\left(a_{1}\right)$. Since $\operatorname{dis}\left(a_{2}, \mathscr{C}_{\varphi_{0}(\cdot, \xi)}\left(a_{1}\right)\right)<d$ for $\xi \neq 0$, by choosing $x^{(2 p-1)}=x^{(2 p-3)}=\cdots=x^{(1)}=a_{2}, x^{(2 p-2)}=x^{(2 p-4)}=\cdots=x^{(2)}=a_{1}$ we see inf $\left\{\mid a_{1}-\right.$ $\left.x^{(2 p-1)}|+\cdots+| x^{(1)}-x^{(0)}-2 p d\right\}<0$ for $\xi \neq 0$. This implies (8.4).
Q.E.D.

Evidently $d_{0}(\xi)=0$ for $\xi=0$. Therefore we have from (8.4)

$$
\begin{equation*}
\left[\left.\partial_{\xi, \xi, j}^{2} d_{0}(\xi)\right|_{\xi=0}\right]_{i, j=1,2} \leqslant 0 . \tag{8.5}
\end{equation*}
$$

From Remark 2 of $\S 3$ and Remark 1 of $\S 5$ we have

$$
\begin{equation*}
\left[\left.\partial_{\sigma_{j} \sigma_{j}}^{2} \varphi_{\infty}(x(\sigma))\right|_{\sigma=0}\right]_{i, j=1,2} \geqslant K>0 . \tag{8.6}
\end{equation*}
$$

It is easy to check that $\sigma=\xi=0$ is a stationary point of Φ. Since

$$
\operatorname{det}\left[\begin{array}{ll}
\Phi_{\sigma \sigma} & \Phi_{\sigma \xi} \\
\Phi_{\xi \sigma} & \Phi_{\xi \xi}
\end{array}\right]_{\sigma=\xi=0}=\operatorname{det}\left[\begin{array}{cc}
\partial_{\sigma}^{2} d_{0} & -I \\
-I & \partial_{\xi}^{2} \varphi_{\infty}
\end{array}\right]_{\sigma=\xi=0} \leqslant-1,
$$

$\sigma=\xi=0$ is a unique stationary point and it is non-degenerate. Thus we can apply the stationary phase method to an oscillatory integral (8.1). Because of $\Phi(0,0)=0$ we have

$$
\begin{aligned}
\mid \gamma_{11} & -\eta \sum_{|v|<2 l} c_{v}\left(D_{\sigma, \xi}^{v} p(\sigma, \xi, k, \mu)\right)_{\sigma=\xi=0} k^{-|v| / 2 \mid} \\
& \leqslant C_{l} k^{-l} \sum_{|v|<2 l+5} \int\left|D_{\sigma, \xi}^{v} p(\sigma, \xi, k, \mu)\right| k^{2} d \sigma d \xi \\
& \leqslant C k^{-l+\varepsilon(2 l+5)},
\end{aligned}
$$

where η is a constant determined by Φ. Since $\partial_{\sigma}^{\beta} \theta_{k}(x(\sigma))_{\sigma=0}=0$ for $\beta \neq 0$ we see that

$$
D_{\sigma, \xi}^{v} p(\sigma, \xi, k, \mu)_{\sigma=\xi=0}=\sum_{j=0}^{N}\left(\sum_{h=0}^{v} c_{j, h}^{v}(\mu+i k) h\right)(i k)^{-j}
$$

and we know $c_{j, h}^{\nu}=0$ for $|v|$ odd. Thus we have
Lemma 8.2. It holds that

$$
\begin{equation*}
\gamma_{11}(\mu, k) \sim \sum_{j=1}^{\infty}\left(\sum_{h=0}^{2 j} c_{j, h}^{(1)}(\mu+i k)^{h}\right) k^{-j} \quad \text { for } \quad k \longrightarrow \infty, \tag{8.7}
\end{equation*}
$$

where $c_{j, h}^{(1)}$ are constants.
In order to obtain an asymptotic expansion of γ_{20} we have to go back to the definition of $\check{\mathscr{E}_{2}}$. Denoting by $u_{q}(x, t ; k, \xi)$ the one constructed following the process of $\S 3$ for

$$
m(x, t ; k)=e^{i k(\sigma \cdot \xi-t)} w_{k}(x) h(t-j(x)) .
$$

Set

$$
\begin{align*}
I_{p}(x) & =\iint e^{i k\left(\varphi_{2 p+1}(x, \xi)-t\right)} e^{-i k \sigma \cdot \xi+i k \varphi_{\infty}(x(\sigma))} h_{p} k^{2} d \sigma d \xi \tag{8.8}\\
h_{p} & =\sum_{j=1}^{N} v_{j, 2 p+1}(x, t ; k, \xi)(i k)^{-j} \theta_{k}(x(\sigma)) a(x(\sigma), \mu, k)
\end{align*}
$$

Set

$$
\Phi_{p}(x, \xi, \sigma)=\varphi_{2 p+1}(x, \xi)-\sigma \cdot \xi+\varphi_{\infty}(x(\sigma)) .
$$

Lemma 8.3. Let $\left(\xi_{p}, \sigma_{p}\right)$ be a stationary point of Φ_{p}. Then

$$
\begin{equation*}
\Phi_{p}\left(x, \xi_{p}, \sigma_{p}\right)=\tilde{\varphi}_{\infty}(x)-(2 p+1) d \tag{8.9}
\end{equation*}
$$

Proof. Note that from the definition of $\varphi_{0}(x, \xi)$ we have

$$
\sigma \cdot \xi=\varphi_{0}(x(\sigma), \zeta) .
$$

As in Lemma 8.1 we have

$$
\varphi_{2 p+1}(x, \xi)-\sigma \cdot \xi=\inf \left\{\left|x-x^{(2 p+1)}\right|+\cdots+\left|x^{(1)}-x^{(0)}\right|\right\}
$$

where infimum is taken over $x^{(2 p+1)}, x^{(2 p-1)}, \ldots, x^{(1)} \in \Gamma_{2}, x^{(2 p)}, x^{(2 p-2)}, \ldots, x^{(2)} \in \Gamma_{1}$ and $x \in \mathscr{C}_{\varphi_{0}(\cdot, \xi)}(x(\sigma))$. Denote by $x_{0}^{(0)}, x_{0}^{(1)}, \ldots, x_{0}^{(2 p+1)}$ the ponts which give the value of the infimum. By the argument in Lemma 4.1 of [5]

$$
\partial_{\xi_{j}}\left(\varphi_{2 p+1}(x, \xi)-\sigma \cdot \xi\right)=\lim \left|x_{0}^{(0)}-x_{\varepsilon}^{(0)}\right| / \Delta \xi_{j}
$$

where $x_{\varepsilon}^{(0)}=\mathscr{C}_{\varphi_{0}\left(\cdot, \xi+\Delta \xi_{j}\right)}(x(\sigma)) \cap$ line passing $x_{0}^{(0)}$ and $x_{0}^{(1)}$. Then if $x(\sigma) \neq x_{0}^{(0)}$ it follows that $\partial_{\xi}\left(\varphi_{2 p+1}(x, \xi)-\sigma \cdot \xi\right) \neq 0$. Since we have from $\left(\nabla \varphi_{0}\right)(x(\sigma), \xi)-$ $\left(\nabla \varphi_{\infty}\right)(x(\sigma)) \neq 0$ that $\partial_{\sigma}\left(\varphi_{0}(x(\sigma), \xi)-\varphi_{\infty}(x(\sigma))\right) \neq 0$, if $\left(\xi_{p}, \sigma_{p}\right)$ is a critical point of Φ_{p} it holds that

$$
\begin{equation*}
\nabla \varphi_{0}\left(x\left(\sigma_{p}\right), \xi_{p}\right)=\nabla \varphi_{\infty}\left(x\left(\sigma_{p}\right)\right) \tag{8.10}
\end{equation*}
$$

and $x\left(\sigma_{p}\right)=x_{0}^{(0)}$ gives

$$
\begin{align*}
& \varphi_{2 p+1}\left(x, \xi_{p}\right)-\varphi_{0}\left(x\left(\sigma_{p}\right), \xi_{p}\right) \tag{8.11}\\
& \quad=\inf \left\{\left|x-x^{(2 p+1)}\right|+\left|x^{(2 p+1)}-x^{(2 p)}\right|+\cdots+\left|x^{(1)}-x\left(\sigma_{p}\right)\right|\right\}
\end{align*}
$$

By taking account of (2.3) of [4] we have from (8.10) and (8.11)

$$
\varphi_{2 p+1}\left(x, \xi_{p}\right)-\varphi_{0}\left(x\left(\sigma_{p}\right), \xi_{p}\right)=\left(\varphi_{\infty}(x)+(2 p+1) d\right)-\varphi_{\infty}\left(x\left(\sigma_{p}\right)\right) .
$$

Thus we have (8.9).
Q.E. D.

Lemma 8.4. It holds that

$$
\begin{equation*}
\gamma_{20}(\mu, k) \sim \sum_{j=1}^{\infty}\left(\sum_{h=0}^{2 j} c_{j, h}^{(2)}(\mu+i k)^{h}\right) k^{-j} . \tag{8.12}
\end{equation*}
$$

Proof. By the same argument as in Lemma 8.1 we have

$$
\varphi_{2 p+1}\left(a_{1}, \xi\right)-\varphi_{0}\left(a_{1}, \xi\right) \leqslant(2 p+2) d
$$

and

$$
\varphi_{2 p+1}\left(a_{1}, 0\right)-\varphi_{0}\left(a_{1}, 0\right)=(2 p+2) d .
$$

Therefore we have

$$
\left[\partial_{\xi_{i} \xi_{j}}^{2}\left(\varphi_{2 p+1}\left(a_{1}, \xi\right)-\varphi_{0}\left(a_{1}, \xi\right)\right)\right] \leqslant 0 .
$$

Then we have from (8.4) and the above inequality

$$
\operatorname{det}\left[\begin{array}{ll}
\left(\Phi_{p}\right)_{\sigma \sigma} & \left(\Phi_{p}\right)_{\sigma \xi} \\
\left(\Phi_{p}\right)_{\sigma \xi} & \left(\Phi_{p}\right)_{\xi \xi}
\end{array}\right] \leqslant-1 .
$$

Note that $\left\{\nabla \varphi_{2 p+1}\right\}_{p=1}^{\infty}$ is a bounded set in $C^{\infty}(\overline{\omega(\delta)})$ and $\nabla \varphi_{2 p+1} \rightarrow \nabla \tilde{\varphi}_{\infty}$ as $p \rightarrow \infty$ in $C^{\infty}(\overline{\omega(\delta)})$. Therefore Φ_{p} can be transformed into a quadratic form uniformly in p. Thus by applying a stationary phase method to (8.8) we have

$$
\begin{aligned}
& \mid I_{p}(x)-e^{i k(2 p+1) d} e^{i k \tilde{\varphi}_{\infty}(x)} \eta_{p} \sum_{|v|<2 l} c_{p, v} \\
&\left.\cdot\left(D_{\sigma, \xi}^{v} h_{p}(x, t, \sigma, \xi, \mu ; k)\right)_{\substack{\tilde{\xi}=q_{q} \\
\xi=\xi_{p}}}\right) k^{-|v| 1 / 2} \mid \leqslant C k^{-l} .
\end{aligned}
$$

For $x \in S_{1}\left((1+\delta) k^{-\varepsilon}\right)$ we have $X_{-2 j}^{\infty}(X) \in S_{1}\left(k^{-\varepsilon}\right),\left|\Xi_{2 j}^{\infty}(x)^{\prime}\right| \leqslant C \alpha^{2 j}$ for $j \geqslant 1$. Thus $\theta_{k}=1$ near $x\left(\sigma_{p}\right)$. By using $\tilde{\varphi}_{\infty}(x)=\varphi_{\infty}(x)+d$ on Γ_{1}, we have for $x \in \Gamma_{1}$

$$
\left|I_{p}(x)-e^{i k(2 p+2) d} e^{i k \varphi_{\infty}(x)} \eta_{p} \sum_{|v|<2 l} c_{p, v} D_{\sigma, \xi}^{v}\left(\sum_{j=1}^{N} v_{j, 2 p+1}(i k)^{-j} a\right) k^{-|v| / 2 \mid}\right| \leqslant C k^{-l} .
$$

Since $\left|\nabla \varphi_{2 p+1}-\nabla \tilde{\varphi}_{\infty}\right|_{m} \leqslant C_{m} \alpha^{2 p},\left|\eta_{p}-\eta_{\infty}\right|+\left|c_{p, v}-c_{\infty, v}\right| \leqslant C \alpha^{2 p},\left|\xi_{p}\right|+\left|\sigma_{p}\right| \leqslant C \alpha^{2 p}$ we have

$$
\left(E_{2} \theta_{k} a\right)(x) \sim e^{i k \varphi_{\infty}(x)} \sum_{j=1}^{\infty}\left(\sum_{h=0}^{2 j} c_{j, h}(x)(\mu+i k)^{h}\right) k^{-j} .
$$

Recalling the definition of $\tilde{\mathscr{E}}_{2}$ we have from the above expansion the required expansion (8.12).
Q. E: D.

By combining (7.8), (8.7) and (8.12) we have

$$
\begin{equation*}
\left|\gamma(\mu, k)-\sum_{j=1}^{N-1}\left(\sum_{h=0}^{2 j} c_{j, h}(\mu+i k)^{h}\right) k^{-j}\right| \leqslant C_{N} k^{-N} . \tag{8.13}
\end{equation*}
$$

Proposition 8.5. For an integer l we set $k=\pi l / d$. When $|l|$ is large, an equation in μ

$$
\mathscr{P}(\mu)-\gamma(\mu, k)=0
$$

has exactly one zero $\mu_{(-l)}$ in $D_{l}=\left\{\mu ;\left|\mu-\mu_{-l}\right| \leqslant C(1+|l|)^{-1 / 2}\right\}, \mu_{-l}=-c_{0}+i \frac{\pi}{d}(-l)$. Moreover we have an asymptotic expansion of $\mu_{(-1)}$

$$
\begin{equation*}
\left|\mu_{(-l)}-\left(\mu_{-l}+\zeta_{1} l^{-1}+\zeta_{2} l^{-2}+\cdots+\zeta_{N} l^{-N}\right)\right| \leqslant C_{N}| |^{-N}, \tag{8.14}
\end{equation*}
$$

where $\zeta_{j}, j=1,2, \ldots, N$, are complex constants.
Proof. Note that $\mathscr{P}\left(\mu_{-1}\right)=0$ and $\left|\frac{\partial}{\partial \mu}(\mathscr{P}-\gamma(\cdot, k))\right| \geqslant 2 d-C|l|^{-1}, \frac{\partial}{\partial \mu}(\mathscr{P}(\mu)-$ $\gamma(\mu, k)$) is bounded in $\operatorname{Re} \mu \geqslant-c_{0}-c_{1}$. By applying the implicit function theorem we see the unique existence of zero in D_{l}. From (8.13) we have (8.14).
Q.E.D.

Let $u(x) \neq 0$ be an outgoing solution of

$$
\begin{cases}\left(\mu_{(-l)}^{2}-\Delta\right) u=0 & \text { in } \quad \Omega \tag{8.15}\\ u=0 & \text { on } \quad \Gamma .\end{cases}
$$

Since we have $u(x) \in C^{\infty}(\bar{\Omega})$ from the regularity theorem for $\Delta, u(x)$ can be extended into \mathcal{O} so that it is also in $C^{\infty}\left(\boldsymbol{R}^{3}\right)$. Denote by $\tilde{u}(x)$ the extended one. Set

$$
\begin{equation*}
\left(\mu_{(-l)}^{2}-\Delta\right) \tilde{u}=f(x) \text { in } \quad \boldsymbol{R}^{3} . \tag{8.16}
\end{equation*}
$$

Then from (8.15) $f(x) \in C^{\infty}\left(R^{3}\right)$ and

$$
\begin{equation*}
\operatorname{supp} f \subset \overline{\mathcal{O}} \tag{8.17}
\end{equation*}
$$

Let $g(x, \mu)$ be an outgoing solution of

$$
\begin{equation*}
\left(\mu^{2}-\Delta\right) u=f \text { in } \boldsymbol{R}^{3} . \tag{8.18}
\end{equation*}
$$

Note that (8.18) can be solved for all $\mu \in \boldsymbol{C}$. From the uniqueness of the outgoing solutions of (8.18) we have

$$
\begin{equation*}
g\left(x, \mu_{(-l)}\right)=\tilde{u}(x) \quad \text { in } \quad \boldsymbol{R}^{3} . \tag{8.19}
\end{equation*}
$$

Set

$$
\begin{aligned}
& v_{2}(x, \mu)=U_{2}(\mu)[g(\cdot, \mu)]_{\Gamma_{2}} \\
& h(x, \mu)=\left.g(x, \mu)\right|_{\Gamma_{1}}-\left.v_{2}(x, \mu)\right|_{\Gamma_{1}} .
\end{aligned}
$$

We have from (8.19)

$$
\begin{array}{lll}
v_{2}\left(x, \mu_{(-l)}\right)=0 & \text { in } & R^{3}-\overline{\mathcal{O}}_{2}, \\
h\left(x, \mu_{(-l)}\right)=0 & \text { on } & \Gamma_{1} . \tag{8.21}
\end{array}
$$

Set

$$
\begin{aligned}
& v(x, \mu)=v_{1}(x, \mu)+v_{2}(x, \mu), \\
& v_{1}(x, \mu)=U(\mu ; k) h(\cdot, \mu)=\left(\beta(\mathscr{P}-\gamma)^{-1} F(I+\mathscr{E})+\tilde{U}\right) h(\cdot, \mu) .
\end{aligned}
$$

Evidently v is outgoing and satisfies

$$
\begin{cases}\left(\mu^{2}-\Delta\right) v=0 & \text { in } \quad \Omega \\ v=g & \text { on } \quad \Gamma,\end{cases}
$$

for $0<\left|\mu-\mu_{(-l)}\right|<C(\log k)^{-1}$. Applying once more the uniqueness of the outgoing solutions we have

$$
v(x, \mu)=g(x, \mu) \quad \text { in } \quad \Omega \quad \text { for } \quad 0<\left|\mu-\mu_{(-1)}\right|<C(\log k)^{-1} .
$$

Since h is $C^{\infty}\left(\Gamma_{1}\right)$-valued holomorphic function in $\operatorname{Re} \mu>-c_{0}-c_{1}$ (8.21) implies the existence of

$$
\begin{equation*}
\lim _{\mu \rightarrow \mu_{(-1)}}(\mathscr{P}(\mu)-\gamma(\mu, k))^{-1} h(x, \mu)=h_{0}(x) \in C^{\infty}\left(\Gamma_{1}\right) . \tag{8.22}
\end{equation*}
$$

Thus $(\mathscr{P}(\mu)-\gamma(\mu, k))^{-1} h(x, \mu)$ is holomorphic at $\mu=\mu_{(-l)}$. Then $v_{1}(x, \mu)$ is holomorphic at $\mu=\mu_{(-l)}$. Therefore $\lim _{\mu \rightarrow \mu_{(-1)}} v(x, \mu)$ exists and it satisfies

$$
v\left(x, \mu_{(-l)}\right)=\left[\beta(x, \mu ; k) F(\mu, k)(I+\mathscr{E}(\mu ; k)) h_{0}(x)\right]_{\mu=\mu_{(-I)}} .
$$

Since

$$
v\left(x, \mu_{(-l)}\right)=g\left(x, \mu_{(-l)}\right)=u(x) \quad \text { in } \quad \Omega,
$$

recalling the fact $F(I+\mathscr{E}) h_{0} \in \boldsymbol{C}$, we have

$$
u(x)=c \beta\left(x, \mu_{(-l)}, \pi l / d\right), \quad c \in \boldsymbol{C} .
$$

This shows that

$$
\operatorname{dim}\{u: \text { outgoing solution of }(8.15)\}=1 .
$$

9. Derivation of Theorem 1.

By using Theorem 5.1 of Chapter V of [7] we have the assertions (a) and (b) of Theorem 1 from Theorems 2 and 3. Then it suffices to show (c). By Theorem 5.4 of Chapter V of [7] we have for $\sigma \in \boldsymbol{R}$

$$
\mathscr{S}(\sigma)=I+\mathscr{K}(\sigma), \quad(\mathscr{K}(\sigma) f)(\omega)=\left(\frac{i \sigma}{\pi}\right) \int_{|\theta|=1} K(\omega, \theta ; \sigma) f(\theta) d \theta,
$$

where $K(\omega, \theta ; \sigma)=s(-\theta, \omega ; \sigma)$,

$$
v_{-}(r \theta, \omega ; \sigma) \sim \frac{e^{i \sigma r}}{r} s(\theta, \omega ; \sigma) \quad \text { as } \quad r \longrightarrow \infty,
$$

v_{-}is the incoming solution of

$$
\left\{\begin{array}{lll}
\left(\sigma^{2}+\Delta\right) v=0 & \text { in } \quad \Omega, \tag{9.1}\\
v=e^{-i \sigma x \cdot \omega} & \text { on } \quad \Gamma .
\end{array}\right.
$$

Note that

$$
v_{-}(x, \omega, \sigma)=\overline{v_{+}(x,-\omega, \sigma)},
$$

where v_{+}is the outgoing solution of (9.1). Thus we have

$$
v_{+}(r,-\omega, \sigma) \sim \frac{e^{-i \sigma r}}{r} K(-\theta, \omega, \sigma) .
$$

Setting $z=\sigma+i v$ we see that v_{+}is analytic in z for $\operatorname{Im} z \leqslant 0$ and

$$
v_{+}(x, \omega, z)=U(i z)\left(\left.e^{-i z x \cdot \omega}\right|_{r}\right)(x) .
$$

Taking account of (4.20) and (4.21)' of page 127 of [7] we see from (1.4) that $K(\theta, \omega$, σ) is prolonged analytically into $\{z ; U(\mu)$ is holomorphic at $\mu=i z\}$, and has a pole of order 1 at $z=i \mu_{(l)}$. Since we have

$$
\mathscr{S}(z)=\left(\mathscr{S}(\bar{z})^{*}\right)^{-1}=\left(I+\mathscr{K}(\bar{z})^{*}\right)^{-1},
$$

we have from the argument of $\S 4$ of Chapter 9 of [11],

$$
\mathscr{S}(z) f=\sum_{m=1}^{M} z-\frac{n_{m}}{i^{-1} \mu_{(l)}}\left(f, \psi_{m}\right)+\mathscr{H}(z) f \text { near } \quad z=i^{-1} \mu_{(l)} .
$$

On the other hand Corollary 3.2 of Chapter III of [7] says that

$$
\begin{aligned}
& \operatorname{dim} {[\text { null space of }(\mu I-B)]=\operatorname{dim}\left[\text { null space of } \mathscr{S}^{*}(i \bar{\mu})\right] } \\
& \quad=\operatorname{dim}\left\{\text { eigenvector of } \mathscr{K}(i \bar{\mu})^{*} \text { for eigenvalue }-1\right\} \\
& \quad=\operatorname{dim}\left\{\mu \text {-outgoing solution of }\left(\mu^{2}-\Delta\right) u=0 \text { in } \Omega, u=0 \text { on } \Gamma\right\} .
\end{aligned}
$$

Therefore we have $M=1$ from Theorem 3. This proves (c).

Department of Mathematics Osaka University

References

[1] C. Bardos, J. C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ., 7 (1982), 905-958.
[2] M. Ikawa, Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math., 19 (1982), 459-509.
[3] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 23 (1983), 127-194.
[4] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, Addendum, J. Math. Kyoto Univ., 23 (1983), 795-802.
[5] M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math., 22 (1985), 657-689.
[6] M. Ikawa, On the poles of the scattering matrix for two convex obstacles, Journées "Equations aux dérivées partielles" de Saint-Jean-de-Monts, 1985.
[7] P. D. Lax and R. S. Phillips, Scattering theory, Academic Press, New York, (1967).
[8] P. D. Lax and R.S. Phillips, A logarithmic bound on the location of the poles of the scattering matrix, Arch. Rat. Mech. and Anal., 40 (1971), 268-280.
[9] R. Melrose, Singularities and energy decay in acoustical scattering, Duke Math J., 46
(1979), 268-280.
[10] R. Melrose, Polynomial bound on the distriution of poles in scattering by an obstacle, Journées "Equations aux dérivées partielles" de Saint-Jean-de-Monts, 1984.
[11] S. Mizohata, Theory of Partial differential equations, Cambridge Univ. Press, London and New York, 1973.
[12] V. M. Petkov, La distribution des poles de la matrice de diffusion, Séminaire Goulaouic-Meyer-Schwartz, 1982-1983, Exposé No. VII.

