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Instrumental Variables:
An Econometrician’s Perspective1

Guido W. Imbens

Abstract. I review recent work in the statistics literature on instrumental
variables methods from an econometrics perspective. I discuss some of the
older, economic, applications including supply and demand models and re-
late them to the recent applications in settings of randomized experiments
with noncompliance. I discuss the assumptions underlying instrumental vari-
ables methods and in what settings these may be plausible. By providing
context to the current applications, a better understanding of the applicability
of these methods may arise.
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1. INTRODUCTION

Instrumental Variables (IV) refers to a set of meth-
ods developed in econometrics starting in the 1920s
to draw causal inferences in settings where the treat-
ment of interest cannot be credibly viewed as randomly
assigned, even after conditioning on additional covari-
ates, that is, settings where the assumption of no un-
measured confounders does not hold.2 In the last two
decades, these methods have attracted considerable at-
tention in the statistics literature. Although this recent
statistics literature builds on the earlier econometric lit-
erature, there are nevertheless important differences.
First, the recent statistics literature primarily focuses
on the binary treatment case. Second, the recent liter-
ature explicitly allows for treatment effect heterogene-
ity. Third, the recent instrumental variables literature
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2There is another literature in econometrics using instrumental
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pendent of the true values). My remarks in the current paper do
not directly reflect on the use of instrumental variables to deal with
measurement error. See Sargan (1958) for a classical paper, and
Hillier (1990) and Arellano (2002) for more recent discussions.

(starting with Imbens and Angrist, 1994; Angrist, Im-
bens and Rubin, 1996; Heckman, 1990; Manski, 1990;
and Robins, 1986) explicitly uses the potential out-
come framework used by Neyman for randomized ex-
periments and generalized to observational studies by
Rubin (1974, 1978, 1990). Fourth, in the applications
this literature has concentrated on, including random-
ized experiments with noncompliance, the intention-
to-treat or reduced-form estimates are often of greater
interest than they are in the traditional econometric si-
multaneous equations applications.

Partly the recent statistics literature has been moti-
vated by the earlier econometric literature on instru-
mental variables, starting with Wright (1928) (see the
discussion on the origins of instrumental variables in
Stock and Trebbi, 2003). However, there are also other
antecedents, outside of the traditional econometric in-
strumental variables literature, notably the work by Ze-
len on encouragement designs (Zelen, 1979, 1990).
Early papers in the recent statistics literature include
Angrist, Imbens and Rubin (1996), Robins (1989) and
McClellan and Newhouse (1994). Recent reviews in-
clude Rosenbaum (2010), Vansteelandt et al. (2011)
and Hernán and Robins (2006). Although these reviews
include many references to the earlier economics litera-
ture, it might still be useful to discuss the econometric
literature in more detail to provide some background
and perspective on the applicability of instrumental
variables methods in other fields. In this discussion,
I will do so.
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Instrumental variables methods have been a central
part of the econometrics canon since the first half of the
twentieth century, and continue to be an integral part
of most graduate and undergraduate textbooks (e.g.,
Angrist and Pischke, 2009; Bowden and Turkington,
1984; Greene, 2011; Hayashi, 2000; Manski, 1995;
Stock and Watson, 2010; Wooldridge, 2010, 2008).
Like the statisticians Fisher and Neyman (Fisher, 1925;
Splawa-Neyman, 1990), early econometricians such as
Wright (1928), Working (1927), Tinbergen (1930) and
Haavelmo (1943) were interested in drawing causal in-
ferences, in their case about the effect of economic
policies on economic behavior. However, in sharp con-
trast to the statistical literature on causal inference,
the starting point for these econometricians was not
the randomized experiment. From the outset, there
was a recognition that in the settings they studied,
the causes, or treatments, were not assigned to pas-
sive units (economic agents in their setting, such as in-
dividuals, households, firms or countries). Instead the
economic agents actively influence, or even explicitly
choose, the level of the treatment they receive. Choice,
rather than chance, was the starting point for thinking
about the assignment mechanism in the econometrics
literature. In this perspective, units receiving the active
treatment are different from those receiving the control
treatment not just because of the receipt of the treat-
ment: they (choose to) receive the active treatment be-
cause they are different to begin with. This makes the
treatment potentially endogenous, and creates what is
sometimes in the econometrics literature referred to as
the selection problem (Heckman, 1979).

The early econometrics literature on instrumental
variables did not have much impact on thinking in the
statistics community. Although some of the technical
work on large sample properties of various estimators
did get published in statistics journals (e.g., the still
influential Anderson and Rubin, 1949 paper), applica-
tions by noneconomists were rare. It is not clear ex-
actly what the reasons for this are. One possibility is
the fact that the early literature on instrumental vari-
ables was closely tied to substantive economic ques-
tions (e.g., interventions in markets), using theoretical
economic concepts that may have appeared irrelevant
or difficult to translate to other fields (e.g., supply and
demand). This may have suggested to noneconomists
that the instrumental variables methods in general had
limited applicability outside of economics. The use of
economic concepts was not entirely unavoidable, as the
critical assumptions underlying instrumental variables

methods are substantive and require subtle subject mat-
ter knowledge. A second reason may be that although
the early work by Tinbergen and Haavelmo used a no-
tation that is very similar to what Rubin (1974) later
called the potential outcome notation, quickly the lit-
erature settled on a notation only involving realized
or observed outcomes; see for a historial perspective
Hendry and Morgan (1992) and Imbens (1997). This
realized-outcome notation that remains common in the
econometric textbooks obscures the connections be-
tween the Fisher and Neyman work on randomized ex-
periments and the instrumental variables literature. It is
only in the 1990s that econometricians returned to the
potential outcome notation for causal questions (e.g.,
Heckman, 1990; Manski, 1990; Imbens and Angrist,
1994), facilitating and initiating a dialogue with statis-
ticians on instrumental variable methods.

The main theme of the current paper is that the early
work in econometrics is helpful in understanding the
modern instrumental variables literature, and further-
more, is potentially useful in improving applications
of these methods and identifying potential instruments.
These methods may in fact be useful in many set-
tings statisticians study. Exposure to treatment is rarely
solely a matter of chance or solely a matter of choice.
Both aspects are important and help to understand
when causal inferences are credible and when they are
not. In order to make these points, I will discuss some
of the early work and put it in a modern framework
and notation. In doing so, I will address some of the
concerns that have been raised about the applicability
of instrumental variables methods in statistics. I will
also discuss some areas where the recent statistics lit-
erature has extended and improved our understanding
of instrumental variables methods. Finally, I will re-
view some of the econometric terminology and relate
it to the statistical literature to remove some of the se-
mantic barriers that continue to separate the literatures.
I should emphasize that many of the topics discussed in
this review continue to be active research areas, about
which there is considerable controversy both inside and
outside of econometrics.

The remainder of the paper is organized as follows.
In Section 2, I will discuss the distinction between the
statistics literature on causality with its primary focus
on chance, arising from its origins in the experimental
literature, and the econometrics or economics literature
with its emphasis on choice. The next two sections dis-
cuss in detail two classes of examples. In Section 3,
I discuss the canonical example of instrumental vari-
ables in economics, the estimation of supply and de-
mand functions. In Section 4, I discuss a modern class
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of examples, randomized experiments with noncompli-
ance. In Section 5, I discuss the substantive content of
the critical assumptions, and in Section 6, I link the
current literature to the older textbook discussions. In
Section 7, I discuss some of the recent extensions of
traditional instrumental variables methods. Section 8
concludes.

2. CHOICE VERSUS CHANCE IN
TREATMENT ASSIGNMENT

Although the objectives of causal analyses in statis-
tics and econometrics are very similar, traditionally
statisticians and economists have approached these
questions very differently. A key difference in the ap-
proaches taken in the statistical and econometric litera-
tures is the focus on different assignment mechanisms,
those with an emphasis on chance versus those with
an emphasis on choice. Although in practice in many
observational studies assignment mechanisms have el-
ements of both chance and choice, the traditional start-
ing points in the two literatures are very different, and
it is only recently that these literatures have discovered
how much they have in common.3

2.1 The Statistics Literature: The Focus on Chance

The starting point in the statistics literature, going
back to Fisher (1925) and Splawa-Neyman (1990), is
the randomized experiment, with both Fisher and Ney-
man motivated by agricultural applications where the
units of analysis are plots of land. To be specific, sup-
pose we are interested in the average causal effect of
a binary treatment or intervention, say fertilizer A or
fertilizer B , on plot yields. In the modern notation and
language originating with Rubin (1974), the unit (plot)
level causal effect is a comparison between the two
potential outcomes, Yi(A) and Yi(B) [e.g., the differ-
ence τi = Yi(B)−Yi(A)], where Yi(A) is the potential
outcome given fertilizer A and Yi(B) is the potential

3In both literatures, it is typically assumed that there is no inter-
ference between units. In the statistics literature, this is often re-
ferred to as the Stable Unit Treatment Value Assumption (SUTVA,
Rubin, 1978). In economics, there are many cases where this is not
a reasonable assumption because there are general equilibrium ef-
fects. In an interesting recent experiment, Crépon et al. (2012) var-
ied the scale of experimental interventions (job training programs
in their case) in different labor markets and found that the scale sub-
stantially affected the average effects of the interventions. There is
also a growing literature on settings directly modeling interactions.
In this discussion, I will largely ignore the complications arising
from interference between units. See, for example, Manski (2000a).

outcome given fertilizer B , both for plot i. In a com-
pletely randomized experiment with N plots, we select
M (with M ∈ {1, . . . ,N − 1}) plots at random to re-
ceive fertilizer B , with the remaining N − M plots as-
signed to fertilizer A. Thus, the treatment assignment,
denoted by Xi ∈ {A,B} for plot i, is by design inde-
pendent of the potential outcomes.4 In this specific set-
ting, the work by Fisher and Neyman shows how one
can draw exact causal inferences. Fisher focused on
calculating exact p-values for sharp null hypotheses,
typically the null hypothesis of no effect whatsoever,
Yi(A) = Yi(B) for all plots. Neyman focused on de-
veloping unbiased estimators for the average treatment
effect

∑
i (Yi(A)−Yi(B))/N and the variance of those

estimators.
The subsequent literature in statistics, much of it

associated with the work by Rubin and coauthors
(Cochran, 1968; Cochran and Rubin, 1973; Rubin,
1974, 1990, 2006; Rosenbaum and Rubin, 1983; Rubin
and Thomas, 1992; Rosenbaum, 2002, 2010; Holland,
1986) has focused on extending and generalizing the
Fisher and Neyman results that were derived explicitly
for randomized experiments to the more general setting
of observational studies. A large part of this literature
focuses on the case where the researcher has additional
background information available about the units in
the study. The additional information is in the form of
pretreatment variables or covariates not affected by the
treatment. Let Vi denote these covariates. A key as-
sumption in this literature is that conditional on these
pretreatment variables the assignment to treatment is
independent of the treatment assignment. Formally,

Xi ⊥ (
Yi(A),Yi(B)

)|Vi (unconfoundedness).

Following Rubin (1990), I refer to this assumption
as unconfoundedness given Vi , also known as no un-
measured confounders. This assumption, in combina-
tion with the auxiliary assumption that for all values
of the covariates the probability of being assigned to
each level of the treatment is strictly positive is re-
ferred to as strong ignorability (Rosenbaum and Ru-
bin, 1983). If we assume only that Xi ⊥ Yi(A)|Vi and
Xi ⊥ Yi(B)|Vi rather than jointly, the assumption is re-
ferred to as weak unconfoundedness (Imbens, 2000),

4To facilitate comparisons with the econometrics literature, I will
follow the notation that is common in econometrics, denoting the
endogenous regressors, here the treatment of interest, by Xi , and
later the instruments by Zi . Additional (exogenous) regressors will
be denoted by Vi . In the statistics literature, the treatments of in-
terested are often denoted by Wi , the instruments by Zi , with Xi

denoting additional regressors or attributes.
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and the combination as weak ignorability. Substan-
tively, it is not clear that there are cases in the setting
with binary treatments where the weak version is plau-
sible but not the strong version, although the differ-
ence between the two assumptions has some content in
the multivalued treatment case (Imbens, 2000). In the
econometric literature, closely related assumptions are
referred to as selection-on-observables (Barnow, Cain
and Goldberger, 1980) or exogeneity.

Under weak ignorability (and thus also under strong
ignorability), it is possible to estimate precisely the
average effect of the treatment in large samples. In
other words, the average effect of the treatment is iden-
tified. Various specific methods have been proposed,
including matching, subclassification and regression.
See Rosenbaum (2010), Rubin (2006), Imbens (2004,
2014), Gelman and Hill (2006), Imbens and Rubin
(2014) and Angrist and Pischke (2009) for general dis-
cussions and surveys. Robins and coauthors (Robins,
1986; Gill and Robins, 2001; Richardson and Robins,
2013; Van der Laan and Robins, 2003) have extended
this approach to settings with sequential treatments.

2.2 The Econometrics Literature:
The Focus on Choice

In contrast to the statistics literature whose point of
departure was the randomized experiment, the starting
point in the economics and econometrics literatures for
studying causal effects emphasizes the choices that led
to the treatment received. Unlike the original applica-
tions in statistics where the units are passive, for exam-
ple, plots of land, with no influence over their treatment
exposure, units in economic analyses are typically eco-
nomic agents, for example, individuals, families, firms
or administrations. These are agents with objectives
and the ability to pursue these objectives within con-
straints. The objectives are typically closely related to
the outcomes under the various treatments. The con-
straints may be legal, financial or information-based.

The starting point of economic science is to model
these agents as behaving optimally. More specifically,
this implies that economists think of everyone of these
agents as choosing the level of the treatment to most
efficiently pursue their objectives given the constraints
they face.5 In practice, of course, there is often evi-
dence that not all agents behave optimally. Neverthe-
less, the starting point is the presumption that optimal

5In principle, these objectives may include the effort it takes to
find the optimal strategy, although it is rare that these costs are taken
into account.

behavior is a reasonable approximation to actual be-
havior, and the models economists take to the data of-
ten reflect this.

2.3 Some Examples

Let us contrast the statistical and econometric ap-
proaches in a highly stylized example. Roy (1951)
studies the problem of occupational choice and the im-
plications for the observed distribution of earnings. He
focuses on an example where individuals can choose
between two occupations, hunting and fishing. Each
individual has a level of productivity associated with
each occupation, say, the total value of the catch per
day. For individual i, the two productivity levels are
Yi(h) and Yi(f ), for the productivity level if hunting
and fishing, respectively.6 Suppose the researcher is
interested in the average difference in productivity in
these two occupations, τ = E[Yi(f ) − Yi(h)], where
the averaging is over the population of individuals.7

The researcher observes for all units in the sample the
occupation they chose (Xi , equal to h for hunters and
f for fishermen) and the productivity in their chosen
occupation,

Y obs
i = Yi(Xi) =

{
Yi(h) if Xi = h,
Yi(f ) if Xi = f .

In the Fisher–Neyman–Rubin statistics tradition, one
might start by estimating τ by comparing productivity
levels by occupation:

τ̂ = Y
obs
f − Y

obs
h ,

where

Y
obs
f = 1

Nf

∑
i:Xi=f

Y obs
i , Y

obs
h = 1

Nh

∑
i:Xi=h

Y obs
i ,

Nf =
N∑

i=1

1Xi=f and Nh = N − Nf .

If there is concern that these unadjusted differences are
not credible as estimates of the average causal effect,
the next step in this approach would be to adjust for
observed individual characteristics such as education

6In this example, the no-interference (SUTVA) assumption that
there are no effects of other individual’s choices and, therefore,
that the individual level potential outcomes are well defined is
tenuous—if one hunter is successful that will reduce the number
of animals available to other hunters—but I will ignore these issues
here.

7That is not actually the goal of Roy’s original study, but that is
beside the point here.
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levels or family background. This would be justified
if individuals can be thought of as choosing, at least
within homogenous groups defined by covariates, ran-
domly which occupation to engage in.

Roy, in the economics tradition, starts from a very
different place. Instead of assuming that individuals
choose their occupation (possibly after conditioning on
covariates) randomly, he assumes that each individual
chooses her occupation optimally, that is, the occupa-
tion that maximizes her productivity:

Xi =
{

f if Yi(f ) ≥ Yi(h),
h otherwise.

There need not be a solution in all cases, especially if
there is interference, and thus there are general equi-
librium effects, but I will assume here that such a
solution exists. If this assumption about the occupa-
tion choice were strictly true, it would be difficult to
learn much about τ from data on occupations and earn-
ings. In the spirit of research by Manski (1990, 2000b,
2001), Manski and Pepper (2000), and Manski et al.
(1992), one can derive bounds on τ , exploiting the fact
that if Xi = f , then the unobserved Yi(h) must sat-
isfy Yi(h) ≤ Yi(f ), with Yi(f ) observed. For the Roy
model, the specific calculations have been reported in
Manski (1995), Section 2.6. Without additional infor-
mation or restrictions, these bounds might be fairly
wide, and often one would not learn much about τ .
However, the original version of the Roy model, where
individuals know ex ante the exact value of the po-
tential outcomes and choose the level of the treat-
ment corresponding to the maximum of those, is ul-
timately not plausible in practice. It is likely that in-
dividuals face uncertainty regarding their future pro-
ductivity, and thus may not be able to choose the ex
post optimal occupation; see for bounds under that sce-
nario Manski and Nagin (1998). Alternatively, and this
is emphasized in Athey and Stern (1998), individu-
als may have more complex objective functions taking
into account heterogenous costs or nonmonetary ben-
efits associated with each occupation. This creates a
wedge between the outcomes that the researcher fo-
cuses on and the outcomes that the agent optimizes
over. What is key here in relation to the statistics lit-
erature is that under the Roy model and its generaliza-
tions the very fact that two individuals have different
occupations is seen as indicative that they have dif-
ferent potential outcomes, thus fundamentally calling
into question the unconfoundedness assumption that
individuals with similar pretreatment variables but dif-
ferent treatment levels are comparable. This concern

about differences between individuals with the same
values for pretreatment variables but different treat-
ment levels underlies many econometric analyses of
causal effects, specifically in the literature on selection
models. See Heckman and Robb (1985) for a general
discussion.

Let me discuss two additional examples. There is a
large literature in economics concerned with estimat-
ing the causal effect of educational achievement (mea-
sured as years of education) on earnings; see for gen-
eral discussions Griliches (1977) and Card (2001). One
starting point, and in fact the basis of a large empirical
literature, is to compare earnings for individuals who
look similar in terms of background characteristics, but
who differ in terms of educational achievement. The
concern in an equally large literature is that those in-
dividuals who choose to acquire higher levels of ed-
ucation did so precisely because they expected their
returns to additional years of education to be higher
than individuals who choose not to acquire higher lev-
els of education expected their returns to be. In the ter-
minology of the returns-to-education literature, the in-
dividuals choosing higher levels of education may have
higher levels of ability, which lead to higher earnings
for given levels of education.

Another canonical example is that of voluntary job
training programs. One approach to estimate the causal
effect of training programs on subsequent earnings
would be to compare earnings for those participating
in the program with earnings for those who did not.
Again the concern would be that those who choose to
participate did so because they expected bigger benefits
(financial or otherwise) from doing so than individuals
who chose not to participate.

These issues also arise in the missing data literature.
The statistics literature (Rubin, 1976, 1987, 1996; Lit-
tle and Rubin, 1987) has primarily focused on models
that assume that units with item nonresponse are com-
parable to units with complete response, conditional on
covariates that are always observed. The econometrics
literature (Heckman, 1976, 1979) has focused more
heavily on models that interpret the nonresponse as the
result of systematic differences between units. Philip-
son (1997a, 1997b), Philipson and DeSimone (1997),
and Philipson and Hedges (1998) take this even further,
viewing survey response as a market transaction, where
individuals not responding the survey do so deliber-
ately because the costs of responding outweighs the
benefits to these nonrespondents. The Heckman-style
selection models often assume strong parametric alter-
natives to the Little and Rubin missing-at-random or
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ignorability condition. This has often in turn led to es-
timators that are sensitive to small changes in the data
generating process. See Little (1985).

These issues of nonrandom selection are of course
not special to economics. Outside of randomized ex-
periments, the exposure to treatment is typically also
chosen to achieve some objectives, rather than ran-
domly within homogenous populations. For example,
physicians presumably choose treatments for their pa-
tients optimally, given their knowledge and given other
constraints (e.g., financial). Similarly, in economics
and other social sciences one may view individuals
as making optimal decisions, but these are typically
made given incomplete information, leading to errors
that may make the ultimate decisions appear as good
as random within homogenous subpopulations. What
is important is that the starting point is different in the
two disciplines, and this has led to the development of
substantially different methods for causal inference.

2.4 Instrumental Variables

How do instrumental variables methods address the
type of selection issues the Roy model raises? At the
core, instrumental variables change the incentives for
agents to choose a particular level of the treatment,
without affecting the potential outcomes associated
with these treatment levels. Consider a job training
program example where the researcher is interested in
the average effect of the training program on earnings.
Each individual is characterized by two potential earn-
ings outcomes, earnings given the training and earnings
in the absence of the training. Each individual chooses
to participate or not based on their perceived net ben-
efits from doing so. As pointed out in Athey and Stern
(1998), it is important that these net benefits that en-
ter into the individual’s decision differ from the earn-
ings that are the primary outcome of interest to the re-
searcher. They do so by the costs associated with par-
ticipating in that regime. Suppose that there is variation
in the costs individuals incur with participation in the
training program. The costs are broadly defined, and
may include travel time to the program facilities, or the
effort required to become informed about the program.
Furthermore, suppose that these costs are independent
of the potential outcomes. This is a strong assumption,
often made more plausible by conditioning on covari-
ates. Measures of the participation cost may then serve
as instrument variables and aid in the identification of
the causal effects of the program. Ultimately, we com-
pare earnings for individuals with low costs of partic-
ipation in the program with those for individuals with

high costs of participation and attribute the difference
in average earnings to the increased rate of participa-
tion in the program among the two groups.

In almost all cases, the assumption that there is no
direct effect of the change in incentives on the poten-
tial outcomes is controversial, and it needs to be as-
sessed at a case-by-case level. The second part of the
assumption, that the costs are independent of the po-
tential outcomes, possibly after conditioning on covari-
ates, is qualitatively very different. In some cases, it is
satisfied by design, for example, if the incentives are
randomized. In observational studies, it is a substan-
tive, unconfoundedness-type, assumption, that may be
more plausible or at least approximately hold after con-
ditioning on covariates. For example, in a number of
studies researchers have used physical distance to fa-
cilities as instruments for exposure to treatments avail-
able at such facilities. Such studies include McClellan
and Newhouse (1994) and Baiocchi et al. (2010) who
use distance to hospitals with particular capabilities as
an instrument for treatments associated with those ca-
pabilities, after conditioning on distance to the nearest
medical facility, and Card (1995), who uses distance to
colleges as an instrument for attending college.

3. THE CLASSIC EXAMPLE:
SUPPLY AND DEMAND

In this section, I will discuss the classic example
of instrumental variables methods in econometrics,
that is, simultaneous equations. Simultaneous equa-
tions models are both at the core of the econometrics
canon and at the core of the confusion concerning in-
strumental variables methods in the statistics literature.
More precisely, in this section I will look at supply and
demand models that motivated the original research
into instrumental variables. Here, the endogeneity, that
is, the violation of unconfoundedness, arises from an
equilibrium condition. I will discuss the model in a
very specific example to make the issues clear, as I
think that perhaps the level of abstraction used in the
older econometric text books has hampered communi-
cation with researchers in other fields.

3.1 Discussions in the Statistics Literature

To show the level of frustration and confusion in the
statistics literature with these models, let me present
some quotes. In a comment on Pratt and Schlaifer
(1984), Dawid (1984) writes “I despair of ever un-
derstanding the logic of simultaneous equations well
enough to tackle them,” (page 24). Cox (1992) writes
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in a discussion on causality “it seems reasonable that
models should be specified in a way that would allow
direct computer simulation of the data. . . . This, for ex-
ample, precludes the use of y2 as an explanatory vari-
able for y1 if at the same time y1 is an explanatory vari-
able for y2” (page 294). This restriction appears to rule
out the first model Haavelmo considers, that is, equa-
tions (1.1) and (1.2) (Haavelmo, 1943, page 2):

Y = aX + ε1, X = bY + ε2

(see also Haavelmo, 1944). In fact, the comment by
Cox appears to rule out all simultaneous equations
models of the type studied by economists. Holland
(1988), in comment on structural equation methods in
econometrics, writes “why should [this disturbance]
be independent of [the instrument]. . . when the very
definition of [this disturbance] involves [the instru-
ment],” (page 460). Freedman writes “Additionally,
some variables are taken to be exogenous (independent
of the disturbance terms) and some endogenous (de-
pendent on the disturbance terms). The rationale is sel-
dom clear, because—among other things—there is sel-
dom any very clear description of what the disturbance
terms mean, or where they come from” (Freedman,
2006, page 699).

3.2 The Market for Fish

The specific example I will use in this section is the
market for whiting (a particular white fish, often used
in fish sticks) traded at the Fulton fish market in New
York City. Whiting was sold at the Fulton fish market at
the time by a small number of dealers to a large number

of buyers. Kathryn Graddy collected data on quantities
and prices of whiting sold by a particular trader at the
Fulton fish market on 111 days between December 2,
1991, and May 8, 1992 (Graddy, 1995, 1996; Angrist,
Graddy and Imbens, 2000). I will take as the unit of
analysis a day, and interchangeably refer to this as a
market. Each day, or market, during the period covered
in this data set, indexed by t = 1, . . . ,111, a number of
pounds of whiting are sold by this particular trader, de-
noted by Qobs

t . Not every transaction on the same day
involves the same price, but to focus on the essentials I
will aggregate the total amount of whiting sold and the
total amount of money it was sold for, and calculate
a price per pound (in cents) for each of the 111 days,
denoted by P obs

t . Figure 1 presents a scatterplot of the
observed log price and log quantity data. The average
quantity sold over the 111 days was 6335 pounds, with
a standard deviation of 4040 pounds, for an average of
the average within-day prices of 88 cts per pound and
a standard deviation of 34 cts. For example, on the first
day of this period 8058 pounds were sold for an aver-
age of 65 cents, and the next day 2224 pounds were
sold for an average of 100 cents. Table 1 presents aver-
ages of log prices and log quantities for the fish data.

Now suppose we are interested in predicting the ef-
fect of a tax in this market. To be specific, suppose the
government is considering imposing a 100 × r% tax
(e.g., a 10% tax) on all whiting sold, but before doing
so it wishes to predict the average percentage change
in the quantity sold as a result of the tax. We may
formalize that by looking at the average effect on the
logarithm of the quantity, τ = E[lnQt(r) − lnQt(0)],

FIG. 1. Scatterplot of log prices and log quantities.
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TABLE 1
Fulton fish market data (N = 111)

Logarithm of price Logarithm of quantity
Number of
observations Average Standard deviation Average Standard deviation

All 111 −0.19 (0.38) 8.52 (0.74)

Stormy 32 0.04 (0.35) 8.27 (0.71)
Not-stormy 79 −0.29 (0.35) 8.63 (0.73)

Stormy 32 0.04 (0.35) 8.27 (0.71)
Mixed 34 −0.16 (0.35) 8.51 (0.77)
Fair 45 −0.39 (0.37) 8.71 (0.69)

where Qt(r) is the quantity traded in market/day t

if the tax rate were set at r . The problem, substan-
tially worse than in the standard causal inference set-
ting where for some units we observe one of the two
potential outcomes and for other units we observe the
other potential outcome, is that in all 111 markets
we observe the quantity traded at tax rate 0, Qobs

t =
Qt(0), and we never see the quantity traded at the tax
rate contemplated by the government, Qt(r). Because
only E[lnQt(0)] is directly estimable from data on the
quantities we observe, the question is how to draw in-
ferences about E[lnQt(r)].

A naive approach would be to assume that a tax in-
crease by 10% would simply raise prices by 10%. If
one additionally is willing to make the unconfounded-
ness assumption that prices can be viewed as set inde-
pendently of market conditions on a particular day, it
follows that those markets after the introduction of the
tax where the price net of taxes is $1.00 would on av-
erage be like those markets prior to the introduction of
the 10% tax where the price was $1.10. Formally, this
approach assumes that

E
[
lnQt(r)|P obs

t = p
]

(3.1)
= E

[
lnQt(0)|P obs

t = (1 + r) × p
]
,

implying that

E
[
lnQt(r) − lnQt(0)|P obs

t = p
]

= E
[
lnQobs

t |P obs
t = (1 + r) × p

]
−E

[
lnQobs

t |P obs
t = p

]
≈ E

[
lnQobs

t | lnP obs
t = r + lnp

]
−E

[
lnQobs

t | lnP obs
t = lnp

]
.

The last quantity is often estimated using linear regres-
sion methods. Typically, the regression function is as-

sumed to be linear in logarithms with constant coeffi-
cients,

lnQobs
t = αls + β ls × lnP obs

t + εt .(3.2)

Ordinary least squares estimation with the Fulton fish
market data collected by Graddy leads to

̂lnQobs
t = 8.42 − 0.54 × lnP obs

t .

(0.08) (0.18)

The estimated regression line is also plotted in Fig-
ure 1. Interestingly, this is what Working (1927) calls
the “statistical ‘demand curve’,” as opposed to the con-
cept of a demand curve in economic theory. This sim-
ple regression, in combination with the assumption em-
bodied in (3.1), suggests that the quantity traded would
go down, on average, by 5.4% in response to a 10%
tax.

τ̂ = −0.054 (s.e. 0.018).

Why does this answer, or at least the method in which
it was derived, not make any sense to an economist?
The answer assumes that prices can be viewed as inde-
pendent of the potential quantities traded, or, in other
words, unconfounded. This assignment mechanism is
unrealistic. In reality, it is likely the markets/days, prior
to the introduction of the tax, when the price was
$1.10 were systematically different from those where
the price was $1.00. From an economists’ perspective,
the fact that the price was $1.10 rather than $1.00 im-
plies that market conditions must have been different,
and it is likely that these differences are directly re-
lated to the potential quantities traded. For example,
on days where the price was high there may have been
more buyers, or buyers may have been interested in
buying larger quantities, or there may have been less
fish brought ashore. In order to predict the effect of
the tax, we need to think about the responses of both
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buyers and sellers to changes in prices, and about the
determination of prices. This is where economic theory
comes in.

3.3 The Supply of and Demand for Fish

So, how do economists go about analyzing ques-
tions such as this one if not by regressing quantities
on prices? The starting point for economists is to think
of an economic model for the determination of prices
(the treatment assignment mechanism in Rubin’s po-
tential outcome terminology). The first part of the sim-
plest model an economist would consider for this type
of setting is a pair of functions, the demand and sup-
ply functions. Think of the buyers coming to the Ful-
ton fishmarket on a given market/day (say, day t) with a
demand function Qd

t (p). This function tells us, for that
particular morning, how much fish all buyers combined
would be willing to buy if the price on that day were
p, for any value of p. This function is conceptually ex-
actly like the potential outcomes set up commonly used
in causal inference in the modern literature. It is more
complicated than the binary treatment case with two
potential outcomes, because there is a potential out-
come for each value of the price, with more or less a
continuum of possible price values, but it is in line with
continuous treatment extensions such as those in Gill
and Robins (2001). Common sense, and economic the-
ory, suggests that this demand function is a downward
sloping function: buyers would likely be willing to buy
more pounds of whiting if it were cheaper. Tradition-
ally, the demand function is specified parametrically,
for example, linear in logarithms:

lnQd
t (p) = αd + βd × lnp + εd

t ,(3.3)

where βd is the price elasticity of demand. This equa-
tion is not a regression function like (3.2). It is inter-
preted as a structural equation or behavioral equation,
and in the treatment effect literature terminology, it is a
model for the potential outcomes. Part of the confusion
between the model for the potential outcomes in (3.3)
and the regression function in (3.2) may stem from
the traditional notation in the econometrics literature
where the same symbol (e.g., Qt ) would be used for the
observed outcomes (Qobs

t in our notation) and the po-
tential outcome function [Qd

t (p) in our notation], and
the same symbol (e.g., Pt ) would be used for the ob-
served value of the treatment (P obs

t in our notation)
and the argument in the potential outcome function

(p in our notation). Interestingly, the pioneers in this
literature, Tinbergen (1930) and Haavelmo (1943), did
distinguish between these concepts in their notation,
but the subsequent literature on simultaneous equations
dropped that distinction and adopted a notation that did
not distinguish between observed and potential out-
comes. For a historical perspective see Christ (1994)
and Stock and Trebbi (2003). My view is that drop-
ping this distinction was merely incidental, and that im-
plicitly the interpretation of the simultaneous equations
models remained that in terms of potential outcomes.8

Implicit (by the lack of a subscript on the coeffi-
cients) in the specification of the demand function in
(3.3) is the strong assumption that the effect of a unit
change in the logarithm of the price (equal to βd ) is
the same for all values of the price, and that the effect
is the same in all markets. This is clearly a very strong
assumption, and the modern literature on simultaneous
equations (see Matzkin, 2007 for an overview) has de-
veloped less restrictive specifications allowing for non-
linear and nonadditive effects while maintaining iden-
tification. The unobserved component in the demand
function, denoted by εd

t , represents unobserved deter-
minants of the demand on any given day/market: a par-
ticular buyer may be sick on a particular day and not
go to the market, or may be expecting a client wanting
to purchase a large quantity of whiting. We can nor-
malize this unobserved component to have expectation
zero, where the expectation is taken over all markets or
days:

E
[
lnQd

t (p)
] = αd + βd × lnp.

The interpretation of this expectation is subtle, and
again it is part of the confusion that sometimes arises.
Consider the expected demand at p = 1, E[lnQd

t (1)],
under the linear specification in (3.3) equal to αd +
βd · ln(1) = αd . This αd is the average of all de-
mand functions, evaluated at price equal to $1.00, ir-
respective of what the actual price in the market is,
where the expectation is taken over all markets. It
is not, and this is key, the conditional expectation

8As a reviewer pointed out, once one views simultaneous equa-
tions in terms of potential outcomes, there is a natural normal-
ization of the equations. This suggests that perhaps the discus-
sions of issues concerning normalizations of equations in simul-
taneous equations models (e.g., Basmann, 1963a, 1963b, 1965;
Hillier, 1990) implicitly rely on a different interpretation, for ex-
ample, thinking of the endogeneity arising from measurement error.
Throughout this discussion, I will interpret simultaneous equations
in terms of potential outcomes, viewing the realized outcome nota-
tion simply as obscuring that.
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of the observed quantity in markets where the ob-
served price is equal to $1.00 (or which is the same
the demand function at 1 in those markets), which
is E[lnQobs

t |P obs
t = 1] = E[lnQd

t (1)|P obs
t = 1]. The

original Tinbergen and Haavelmo notation and the
modern potential outcome version is helpful in making
this distinction, compared to the sixties econometrics
textbook notation.9

Similar to the demand function, the supply function
Qs

t (p) represents the quantity of whiting the sellers
collectively are willing to sell at any given price p,
on day t . Here, common sense would suggest that this
function is sloping upward: the higher the price, the
more the sellers are willing to sell. As with the de-
mand function, the supply function is typically spec-
ified parametrically with constant coefficients:

lnQs
t (p) = αs + βs × lnp + εs

t ,(3.4)

where βs is the price elasticity of supply. Again we
can normalize the expectation of εs

t to zero (where the
expectation is taken over markets), and write

E
[
lnQs

t (p)
] = αs + βs × lnp.

Note that the εd
t and εs

t are not assumed to be inde-
pendent in general, although in some applications that
may be a reasonable assumption. In this specific ex-
ample, εd

t may represent random variation in the set
or number of buyers coming to the market on a par-
ticular day, and εs

t may represent random variation in
suppliers showing up at the market and in their abil-
ity to catch whiting during the preceding days. These
components may well be uncorrelated, but there may
be common components, for example, in traffic condi-
tions around the market that make it difficult for both
suppliers and buyers to come to the market.

3.4 Market Equilibrium

Now comes the second part of the simple economic
model, the determination of the price, or, in the termi-
nology of the treatment effect literature, the assignment
mechanism. The conventional assumption in this type

9Other notations have been recently proposed to stress the dif-
ference between the conditional expectation of the observed out-
come and the expectation of the potential outcome. Pearl (2000)
writes the expected demand when the price is set to $1.00 as
E[lnQd

t |do(Pt = 1)], rather than conditional on the price being
observed to be $1.00. Hernán and Robins (2006) write this aver-
age potential outcome as E[lnQd

t (Pt = 1)], whereas Lauritzen and
Richardson (2002) write it as E[lnQobs

t ‖ P obs
t = 1] where the dou-

ble ‖ implies conditioning by intervention.

of market is that the price that is observed, that is, the
price at which the fish is traded in market/day t , is the
(unique) market clearing price at which demand and
supply are equal. In other words, this is the price at
which the market is in equilibrium, denoted by P obs

t .
This equilibrium price solves

Qd
t

(
P obs

t

) = Qs
t

(
P obs

t

)
.(3.5)

The observed quantity on that day, that is the quantity
actually traded, denoted by Qobs

t , is then equal to the
demand function at the equilibrium price (or, equiva-
lently, because of the equilibrium assumption, the sup-
ply function at that price):

Qobs
t = Qd

t

(
P obs

t

) = Qs
t

(
P obs

t

)
.(3.6)

Assuming that the demand function does slope down-
ward and the supply function does slope upward, and
both are linear in logarithms, the equilibrium price ex-
ists and is unique, and we can solve for the observed
price and quantities in terms of the parameters of the
model and the unobserved components:

lnP obs
t = αd − αs

βs − βd
+ εd

t − εs
t

βs − βd
and

lnQobs
t = βs · αd − βd · αs

βs − βd
+ βs · εd

t − βd · εs
t

βs − βd
.

For economists, this is a more plausible model for the
determination of realized prices and quantities than the
model that assumes prices are independent of market
conditions. It is not without its problems though. Chief
among these from our perspective is the complication
that, just as in the Roy model, we cannot necessarily in-
fer the values of the unknown parameters in this model
even if we have data on equilibrium prices and quanti-
ties P obs

t and Qobs
t for many markets.

Another issue is how buyers and sellers arrive at the
equilibrium price. There is a theoretical economic lit-
erature addressing this question. Often the idea is that
there is a sequential process of buyers making bids, and
suppliers responding with offers of quantities at those
prices, with this process repeating itself until it arrives
at a price at which supply and demand are equal. In
practice, economists often refrain from specifying the
details of this process and simply assume that the mar-
ket is in equilibrium. If the process is fast enough,
it may be reasonable to ignore the fact the specifics
of the process and analyze the data as if equilibrium
was instantaneous.10 A related issue is whether this

10See Shapley and Shubik (1977) and Giraud (2003), and for
some experimental evidence, Plott and Smith (1987) and Smith
(1982).
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model with an equilibrium prices that equates supply
and demand is a reasonable approximation to the actual
process that determines prices and quantities. In fact,
Graddy’s data contains information showing that the
seller would trade at different prices on the same day,
so strictly speaking this model does not hold. There is
a long tradition in economics, however, of using such
models as approximations to price determination and
we will do so here.

Finally, let me connect this to the textbook discus-
sion of supply and demand models. In many textbooks,
the demand and supply equations would be written di-
rectly in terms of the observed (equilibrium) quantities
and prices as

Qobs
t = αs + βs × lnP obs

t + εs
t ,(3.7)

Qobs
t = αd + βd × lnP obs

t + εd
t .(3.8)

This representation leaves out much of the structure
that gives the demand and supply function their mean-
ing, that is, the demand equation (3.3), the supply equa-
tion (3.4) and the equilibrium condition (3.5). As Strotz
and Wold (1960) write, “Those who write such systems
[(3.8) and (3.8)] do not, however, really mean what
they write, but introduce an ellipsis which is familiar
to economists” (page 425), with the ellipsis referring
to the market equilibrium condition that is left out. See
also Strotz (1960), Strotz and Wold (1965), and Wold
(1960)

3.5 The Statistical Demand Curve

Given this set up, let me discuss two issues. First, let
us explore, under this model, the interpretation of what
Working (1927) called the “statistical demand curve.”
The covariance between observed (equilibrium) log
quantities and log prices is cov(lnQobs

t , lnP obs
t ) =

(βs ·σ 2
d +βd ·σ 2

s −ρ ·σd ·σs · (βd +βs))/((βs −βd)2),
where σd and σs are the standard deviations of εd

t and
εs
t , respectively, and ρ is their correlation. Because the

variance of lnP obs
t is (σ 2

s + σ 2
d − 2 · ρ · σd · σs)/(β

s −
βd)2, it follows that the regression coefficient in the
regression of log quantities on log prices is

cov(lnQobs
t , lnP obs

t )

var(lnP obs
t )

= βs · σ 2
d + βd · σ 2

s − ρ · σd · σs · (βd + βs)

σ 2
s + σ 2

d − 2 · ρ · σd · σs

.

Working focuses on the interpretation of this relation
between equilibrium quantities and prices. Suppose
that the correlation between εd

t and εs
t , denoted by ρ, is

zero. Then the regression coefficient is a weighted av-
erage of the two slope coefficients of the supply and de-
mand function, weighted by the variances of the resid-
uals:

cov(lnQobs
t , lnP obs

t )

var(lnP obs
t )

= βs · σ 2
d

σ 2
s + σ 2

d

+ βd · σ 2
s

σ 2
s + σ 2

d

.

If σ 2
d is small relative to σ 2

s , then we estimate some-
thing close to the slope of the demand function, and if
σ 2

s is small relative to σ 2
d , then we estimate something

close to the slope of the supply function. In general,
however, as Working stresses, the “statistical demand
curve” is not informative about the demand function
(or about the supply function); see also Leamer (1981).

3.6 The Effect of a Tax Increase

The second question is how this model with sup-
ply and demand functions and a market clearing price
helps us answer the substantive question of interest.
The specific question considered is the effect of the
tax increase on the average quantity traded. In a given
market, let p be the price sellers receive per pound of
whiting, and let p̃ = p × (1 + r) the price buyers pay
after the tax has been imposed. The key assumption
is that the only way buyers and sellers respond to the
tax is through the effect of the tax on prices: they do
not change how much they would be willing to buy or
sell at any given price, and the process that determines
the equilibrium price does not change. The technical
econometric term for this is that the demand and supply
functions are structural or invariant in the sense that
they are not affected by changes in the treatment, taxes
in this case. This may not be a perfect assumption, but
certainly in many cases it is reasonable: if I have to
pay $1.10 per pound of whiting, I probably do not care
whether 10 cts of that goes to the government and $1
to the seller, or all of it goes to the seller. If we are will-
ing to make that assumption, we can solve for the new
equilibrium price and quantity. Let Pt(r) be the new
equilibrium price [net of taxes, that is, the price sell-
ers receive, with (1 + r) · Pt(r) the price buyers pay],
given a tax rate r , with in our example r = 0.1. This
price solves

Qd
t

(
Pt(r) × (1 + r)

) = Qs
t

(
Pt(r)

)
.

Given the log linear specification for the demand and
supply functions, this leads to

lnPt(r) = αd − αs

βs − βd
+ βd × ln(1 + r)

βs − βd
+ εd

t − εs
t

βs − βd
.



334 G. W. IMBENS

The result of the tax is that the average of the logarithm
of the price that sellers receive with a positive tax rate
r is less than what they would have received in the ab-
sence of the tax rate:

E
[
lnPt(r)

] = αd − αs

βs − βd
+ βd × ln(1 + r)

βs − βd

≤ αd − αs

βs − βd
= E

[
lnPt(0)

]
.

(Note that βd < 0.) On the other hand, the buyers will
pay more on average:

E
[
ln

(
(1 + r) · Pt(r)

)] = αd − αs

βs − βd
+ βs × ln(1 + r)

βs − βd

≥ E
[
lnPt(0)

]
.

The quantity traded after the tax increase is

lnQt(r) = βs · αd − βd · αs

βs − βd
+ βs · βd · ln(1 + r)

βs − βd

+ βs · εd
t − βd · εs

t

βs − βd
,

which is less than the quantity that would be traded in
the absence of the tax increase. The causal effect is

lnQt(r) − lnQt(0) = βs · βd · ln(1 + r)

βs − βd
,

the same in all markets, and proportional to the sup-
ply and demand elasticities and, for small r , propor-
tional to the tax. What should we take away from this
discussion? There are three points. First, the regres-
sion coefficient in the regression of log quantity on log
prices does not tell us much about the effect of new
tax. The sign of this regression coefficient is ambigu-
ous, depending on the variances and covariance of the
unobserved determinants of supply and demand. Sec-
ond, in order to predict the magnitude of the effect of a
new tax we need to learn about the demand and supply
functions separately, or in the econometrics terminol-
ogy, identify the supply and demand functions. Third,
observations on equilibrium prices and quantities by
themselves do not identify these functions.

3.7 Identification with Instrumental Variables

Given this identification problem, how do we iden-
tify the demand and supply functions? This is where
instrumental variables enter the discussion. To iden-
tify the demand function, we look for determinants of
the supply of whiting that do not affect the demand

for whiting, and, similarly, to identify the supply func-
tion we look for determinants of the demand for whit-
ing that do not affect the supply. In this specific case,
Graddy (1995, 1996) assumes that weather conditions
at sea on the days prior to market t , denoted by Zt ,
affect supply but do not affect demand. Certainly, it
appears reasonable to think that weather is a direct
determinant of supply: having high waves and strong
winds makes it harder to catch fish. On the other hand,
there does not seem to be any reason why demand on
day t , at a given price p, would be correlated with
wave height or wind speed on previous days. This as-
sumption may be made more plausible by conditioning
on covariates. For example, if one is concerned that
weather conditions on land affect demand, one may
wish to condition on those, and only look at variation
in weather conditions at sea given similar weather con-
ditions on land as an instrument. Formally, the key as-
sumptions are that

Qd
t (p) ⊥ Zt and Qs

t (p) �⊥ Zt,

possibly conditional on covariates. If both of these con-
ditions hold, we can use weather conditions as an in-
strument.

How do we exploit these assumptions? The tradi-
tional approach is to generalize the functional form of
the supply function to explicitly incorporate the effect
of the instrument on the supply of whiting. In our no-
tation,

lnQs
t (p, z) = αs + βs × lnp + γ s × z + εs

t .

The demand function remains unchanged, capturing
the fact that demand is not affected by the instrument:

lnQd
t (p, z) = αd + βd × lnp + εd

t .

We assume that the unobserved components of supply
and demand are independent of (or at least uncorrelated
with) the weather conditions:(

εd
t , εs

t

) ⊥ Zt .

The equilibrium price P obs
t is the solution for p in the

equation

Qd(p,Zt) = Qs
t (p,Zt),

which, in combination with the log linear specification
for the demand and supply functions, leads to

lnP obs
t = αd − αs

βs − βd
+ εd

t − εs
t

βs − βd
− γ s · Zt

βs − βd
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and

lnQobs
t = βs · αd − βd · αs

βs − βd
+ βs · εd

t − βd · εs
t

βs − βd

− γ s · βd · Zt

βs − βd
.

Now consider the expected value of the equilibrium
price and quantity given the weather conditions:

E
[
lnQobs

t |Zt = z
]

(3.9)

= βs · αd − βd · αs

βs − βd
− γ s · βd

βs − βd
· z

and

E
[
lnP obs

t |Zt = z
] = αd − αs

βs − βd
− γ s

βs − βd
· z.(3.10)

Equations (3.9) and (3.10) are what is called in econo-
metrics the reduced form of the simultaneous equa-
tions model. It expresses the endogenous variables
(those variables whose values are determined inside the
model, price and quantity in this example) in terms of
the exogenous variables (those variables whose values
are not determined within the model, weather condi-
tions in this example). The slope coefficients on the
instrument in these reduced form equations are what
in randomized experiments with noncompliance would
be called the intention-to-treat effects. One can es-
timate the coefficients in the reduced form by least
squares methods. The key insight is that the ratio of
the coefficients on the weather conditions in the two
regression functions, γ s · βd/(βs − βd) in the quantity
regression and γ s/(βs − βd) in the price regression, is
equal to the slope coefficient in the demand function.

For some purposes, the reduced-form or intention-
to-treat effects may be of substantive interest. In the
Fulton fish market example, people attempting to pre-
dict prices and quantities under the current regime may
find these estimates of interest. They are of less inter-
est to policy makers contemplating the introduction of
a new tax. In simultaneous equations settings, the de-
mand and supply functions are viewed as structural in
the sense that they are not affected by interventions in
the market such as new taxes. As such they, and not the
reduced-form regression functions, are the key com-
ponents of predictions of market outcomes under new
regimes. This is somewhat different in many of the re-
cent applications of instrumental variables methods in
the statistics literature in the context of randomized ex-
periments with noncompliance where the intention-to-
treat effects are traditionally of primary interest.

Let me illustrate this with the Fulton Fish Market
data collected by Graddy. For ease of illustration, let
me simplify the instrument to a binary one: the weather
conditions are good for catching fish (Zt = 0, fair
weather, corresponding to low wind speed and low
wave height) or stormy (Zt = 1, corresponding to rel-
atively strong winds and high waves).11 The price is
the average daily price in cents for one dealer, and the
quantity is the daily quantity in pounds. The two esti-
mated reduced forms arêlnQ

obs
t = 8.63 − 0.36 ×Zt

(0.08) (0.15)

and

l̂nP
obs
t = −0.29 + 0.34 ×Zt .

(0.04) (0.07)

Hence, the instrumental variables estimate of the slope
of the demand function is

β̂d = −0.36

0.34
= −1.08 (s.e. 0.46).

Another, perhaps more intuitive way of looking at these
estimates is to consider the location of the average log
quantity and average log price separately by weather
conditions. Figure 2 presents the scatter plot of log
quantity and log prices, with the stars indicating stormy
days and the plus signs indicating calm days. On fair
weather days the average log price is −0.29, and the
average log quantity is 8.6. On stormy days, the aver-
age log price is 0.04, and the average log quantity is
8.3. These two loci are marked by circles in Figure 2.
On stormy days, the price is higher and the quantity
traded is lower than on fair weather days. This is used
to estimate the slope of the demand function. The fig-
ure also includes the estimated demand function based
on using the indicator for stormy days as an instru-
ment for the price: the estimated demand function goes
through the two points defined by the average of the
log price and log quantity for stormy and fair weather
days.

With the data collected by Graddy, it is more difficult
to point identify the supply curve. The traditional route
toward identifying the supply curve would rely on find-
ing an instrument that shifts demand without directly
affecting supply. Without such an instrument, we can-
not point identify the effect of the introduction of the

11The formal definition I use, following Angrist, Graddy and Im-
bens (2000) is that stormy is defined as wind speed greater than 18
knots in combination with wave height more than 4.5 ft, and fair
weather is anything else.
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FIG. 2. Scatterplot of log prices and log quantities by weather conditions.

tax on quantity and prices. It is possible under weaker
assumptions to find bounds on these estimands (e.g.,
Leamer, 1981; Manski, 2003), but we do not pursue
this here.

3.8 Recent Research on Simultaneous
Equations Models

The traditional econometric literature on simultane-
ous equations models is surveyed in Hausman (1983).
Compared to the discussion in the preceding sections,
this literature focuses on a more general case, allowing
for multiple endogenous variables and multiple instru-
ments. The modern econometric literature, starting in
the 1980s, has relaxed the linearity and additivity as-
sumptions in specification (3.3) substantially. Key ref-
erences to this literature are Brown (1983), Roehrig
(1988), Newey and Powell (2003), Chesher (2003,
2010), Benkard and Berry (2006), Matzkin (2003,
2007), Altonji and Matzkin (2005), Imbens and Newey
(2009), Hoderlein and Mammen (2007), Horowitz
(2011) and Horowitz and Lee (2007). Matzkin (2007)
provides a recent survey of this technically demand-
ing literature. This literature has continued to use the
observed outcome notation, making it more difficult
to connect to the statistical literature. Here, I briefly
review some of this literature. The starting point is a
structural equation, in the potential outcome notation,

Yi(x) = α + β · x + εi

and an instrument Zi that satisfies

Zi ⊥ εi and Zi �⊥ Xi.

The traditional econometric literature would formulate
this in the observed outcome notation as

Yi = α + β · Xi + εi, Zi ⊥ εi and Zi �⊥ Xi.

There are a number of generalizations considered in
the modern literature. First, instead of assuming in-
dependence of the unobserved component and the in-
strument, part of the current literature assumes only
that the conditional mean of the unobserved compo-
nent given the instrument is free of dependence on the
instrument, allowing the variance and other distribu-
tional aspects to depend on the value of the instrument;
see Horowitz (2011). Another generalization of the lin-
ear model allows for general nonlinear function forms
of the type

Yi = g(Xi) + εi, Zi ⊥ εi and Zi �⊥ Xi,

where the focus is on nonparametric identification and
estimation of g(x); see Brown (1983), Roehrig (1988),
Benkard and Berry (2006). Allowing for even more
generality, researchers have studied nonadditive ver-
sions of these models with

Yi = g(Xi, εi), Zi ⊥ εi and Zi �⊥ Xi,

with g(x, ε) strictly monotone in a scalar unobserved
component ε. In these settings, point identification
often requires strong assumptions on the support of
the instrument and its relation to the endogenous re-
gressor and, therefore, researchers have also explored
bounds. See Matzkin (2003, 2007, 2008) and Imbens
and Newey (2009).
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4. A MODERN EXAMPLE: RANDOMIZED
EXPERIMENTS WITH NONCOMPLIANCE AND

HETEROGENOUS TREATMENT EFFECTS

In this section, I will discuss part of the modern
literature on instrumental variables methods that has
evolved simultaneously in the statistics and economet-
rics literature. I will do so in the context of a second
example. On the one hand, concern arose in the econo-
metric literature about the restrictiveness of the func-
tional form assumptions in the traditional instrumental
variables methods and in particular with the constant
treatment effect assumption that were commonly used
in the so-called selection models (Heckman, 1979;
Heckman and Robb, 1985). The initial results in this
literature demonstrated the difficulties in establishing
point identification (Heckman, 1990; Manski, 1990),
leading to the bounds approach developed by Manski
(1995, 2003). At the same time, statisticians analyzed
the complications arising from noncompliance in ran-
domized experiments (Robins, 1989) and the merits of
encouragement designs (Zelen, 1979, 1990). By adopt-
ing a common framework and notation in Imbens and
Angrist (1994) and Angrist, Imbens and Rubin (1996),
these literatures have become closely connected and in-
fluenced each other substantially.

4.1 The McDonald, Hiu and Tierney (1992) Data

The canonical example in this literature is that of a
randomized experiment with noncompliance. To illus-
trate the issues, I will use here data previously analyzed
in Hirano et al. (2000) and McDonald, Hiu and Tier-
ney (1992). McDonald, Hiu and Tierney (1992) car-
ried out a randomized experiment to evaluate the ef-
fect of an influenza vaccination on flu-related hospi-
tal visits. Instead of randomly assigning individuals to
receive the vaccination, the researchers randomly as-
signed physicians to receive letters reminding them of
the upcoming flu season and encouraging them to vac-
cinate their patients. This is what Zelen (1979, 1990)
refers to as an encouragement design. I discuss this us-
ing the potential outcome notation used for this partic-
ular set up in Angrist, Imbens and Rubin (1996), and
in general sometimes referred to as the Rubin Causal
Model (Holland, 1986), although there are important
antecedents in Splawa-Neyman (1990). I consider two
distinct treatments: the first the receipt of the letter,
and second the receipt of the influenza vaccination. Let
Zi ∈ {0,1} be the indicator for the receipt of the let-
ter, and let Xi ∈ {0,1} be the indicator for the receipt
of the vaccination. We start by postulating the exis-
tence of four potential outcomes. Let Yi(z, x) be the

TABLE 2
Influenza data (N = 2861)

Hospitalized for Influenza
flu-related reasons vaccine Letter Number of
Y obs

i Xobs
i Zi individuals

No No No 1027
No No Yes 935
No Yes No 233
No Yes Yes 422
Yes No No 99
Yes No Yes 84
Yes Yes No 30
Yes Yes Yes 31

potential outcome corresponding to the receipt of letter
equal to Zi = z, and the receipt of vaccination equal to
Xi = x, for z = 0,1 and x = 0,1. In addition, we pos-
tulate the existence of two potential outcomes corre-
sponding to the receipt of the vaccination as a function
of the receipt of the letter, Xi(z), for z = 0,1. We ob-
serve for each unit in a population of size N = 2861
the value of the assignment, Zi , the treatment actu-
ally received, Xobs

i = Xi(Zi) and the potential out-
come corresponding to the assignment and treatment
received, Y obs

i = Yi(Zi,Xi(Zi)). Table 2 presents the
number of individuals for each of the eight values of
the triple (Zi,X

obs
i , Y obs

i ) in the McDonald, Hiu and
Tierney data set. It should be noted that the random-
ization in this experiment is at the physician level. I do
not have physician indicators and, therefore, ignore the
clustering. This will tend to lead to underestimation of
the standard errors.

4.2 Instrumental Variables Assumptions

There are four key of assumptions underlying instru-
mental variables methods beyond the no-interference
assumption or SUTVA, with different versions for
some of them. I will introduce these assumptions in this
section, and in Section 5 discuss their substantive con-
tent in the context of some examples. The first assump-
tion concerns the assignment to the instrument Zi , in
the flu example the receipt of the letter by the physi-
cian. The assumption requires that the instrument is as
good as randomly assigned:

Zi ⊥ (
Yi(0,0), Yi(0,1), Yi(1,0),

Yi(1,1),Xi(0),Xi(1)
)

(4.1)

(random assignment).

This assumption is often satisfied by design: if the as-
signment is physically randomized, as the letter in the
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flu example and as in many of the applications in the
statistics literature (e.g., see the discussion in Robins,
1989), it is automatically satisfied. In other applica-
tions with observational data, common in the econo-
metrics literature, this assumption is more controver-
sial. It can in those cases be relaxed by requiring it to
hold only within subpopulations defined by covariates
Vi , assuming the assignment of the instrument is un-
confounded:

Zi ⊥ (
Yi(0,0), Yi(0,1), Yi(1,0),

Yi(1,1),Xi(0),Xi(1)
)|Vi

(unconfounded assignment given Vi).

This is identical to the generalization from random as-
signment to unconfounded assignment in observational
studies. Either version of this assumption justifies the
causal interpretation of Intention-To-Treat (ITT) ef-
fects, the comparison of outcomes by assignment to the
treatment. In many cases, these ITT effects are only of
limited interest, however, and this motivates the con-
sideration of additional assumptions that do allow the
researcher to make statements about the causal effects
of the treatment of interest. It should be stressed, how-
ever, that in order to draw inferences beyond ITT ef-
fects, additional assumptions will be used; whether the
resulting inferences are credible will depend on the
credibility of these assumptions.

The second class of assumptions limits or rules out
completely direct effects of the assignment (the receipt
of the letter in the flu example) on the outcome, other
than through the effect of the assignment on the re-
ceipt of the treatment of interest (the receipt of the
vaccine). This is the most critical, and typically most
controversial assumption underlying instrumental vari-
ables methods, sometimes viewed as the defining char-
acteristic of instruments. One way of formulating this
assumption is as

Yi(0, x) = Yi(1, x) for x = 0,1, for all i

(exclusion restriction).

Robins (1989) formulates a similar assumption as re-
quiring that the instrument is “not an independent
causal risk factor” (Robins, 1989, page 119). Under
this assumption, we can drop the z argument of the
potential outcomes and write the potential outcomes
without ambiguity as Yi(x). This assumption is typi-
cally a substantive one. In the flu example, one might
be concerned that the physician, in response to the re-
ceipt of the letter, takes actions that affect the likeli-
hood of the patient getting infected with the flu other

than simply administering the flu vaccine. In random-
ized experiments with noncompliance, the exclusion
restriction is sometimes made implicitly by indexing
the potential outcomes only by the treatment x and not
the instrument z (e.g., Zelen, 1990).

There are other, weaker versions of this assumption.
Hirano et al. (2000) use a stochastic version of the
exclusion restriction that only requires that the distri-
bution of Yi(0, x) is the same as the distribution of
Yi(1, x). Manski (1990) uses a weaker restriction that
he calls a level set restriction, which requires that the
average value of Yi(0, x) is equal to the average value
of Yi(1, x). In another approach, Manski and Pepper
(2000) consider monotonicity assumptions that restrict
the sign of Yi(1, x) − Yi(0, x) across individuals with-
out requiring that the effects are completely absent.

Imbens and Angrist (1994) combine the random as-
signment assumption and the exclusion restriction by
postulating the existence of a pair of potential out-
comes Yi(x), for x = 0,1, and directly assuming that

Zi ⊥ (
Yi(0), Yi(1)

)
.

A disadvantage of this formulation is that it becomes
less clear exactly what role randomization of the in-
strument plays. Another version of this combination
of the exclusion restriction and random assignment as-
sumption does not require full independence, but as-
sumes that the conditional mean of Yi(0) and Yi(1)

given the instrument is free of dependence on the in-
strument. A concern with such assumptions is that they
are functional form dependent: if they hold in levels,
they do not hold in logarithms unless full independence
holds.

A third assumption that is often used, labeled mono-
tonicity by Imbens and Angrist (1994), requires that

Xi(1) ≥ Xi(0) for all i (monotonicity),

for all units. This assumption rules out the presence of
units who always do the opposite of their assignment
[units with Xi(0) = 1 and Xi(1) = 0], and is therefore
also referred to as the no-defiance assumption (Balke
and Pearl, 1995). It is implicit in the latent index mod-
els often used in econometric evaluation models (e.g.,
Heckman and Robb, 1985). In the randomized experi-
ments such as the flu example, this assumption is often
plausible. There it requires that in response to the re-
ceipt of the letter by their physician, no patient is less
likely to get the vaccine. Robins (1989) makes this as-
sumption in the context of a randomized trial for the
effect of AZT on AIDS, and describes the assumption
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as “often, but not always, reasonable” (Robins, 1989,
page 122).

Finally, we need the instrument to be correlated with
the treatment, or the instrument to be relevant in the
terminology of Phillips (1989) and Staiger and Stock
(1997):

Xi �⊥ Zi.

In practice, we need the correlation to be substantial in
order to draw precise inferences. A recent literature on
weak instruments is concerned with credible inference
in settings where this correlation between the instru-
ment and the treatment is weak; see Staiger and Stock
(1997) and Andrews and Stock (2007).

The random assignment assumption and the exclu-
sion restriction are conveniently captured by the graph-
ical model below, although the monotonicity assump-
tion does not fit in as easily. The unobserved compo-
nent U has a direct effect on both the treatment X and
the outcome Y (captured by arrows from U to X and
to Y ). The instrument Z is not related to the unob-
served component U (captured by the absence of a link
between U and Z), and is only related to the outcome
Y through the treatment X (as captured by the arrow
from Z to X and an arrow from X to Y , and the ab-
sence of an arrow between Z and Y ).

I will primarily focus on the case with all four
assumptions maintained, random assignment, the ex-
clusion restriction, monotonicity and instrument rele-
vance, without additional covariates, because this case
has been the focus of, or a special case of the focus
of, many studies, allowing me to compare different ap-
proaches. Methodological studies considering essen-
tially this set of assumptions, sometimes without ex-
plicitly stating instrument relevance, and sometimes
adding additional assumptions, include Robins (1989),
Heckman (1990), Manski (1990), Imbens and Angrist
(1994), Angrist, Imbens and Rubin (1996), Robins
and Greenland (1996), Balke and Pearl (1995, 1997),
Greenland (2000), Hernán and Robins (2006), Robins
(1994), Robins and Rotnitzky (2004), Vansteelandt and
Goetghebeur (2003), Vansteelandt et al. (2011), Hirano
et al. (2000), Tan (2006, 2010), Abadie (2002, 2003),
Duflo, Glennester and Kremer (2007), Brookhart et al.
(2006), Martens et al. (2006), Morgan and Winship

(2007), and others. Many more studies make the same
assumptions in combination with a constant treatment
effect assumption.

The modern literature analyzed this setting from a
number of different approaches. Initially, the literature
focused on the inability, under these four assumptions,
to identify the average effect of the treatment. Some
researchers, including prominently Manski (1990),
Balke and Pearl (1995) and Robins (1989), showed
that although one could not point-identify the average
effect under these assumptions, there was information
about the average effect in the data under these assump-
tions and they derived bounds for it. Another strand of
the literature, starting with Imbens and Angrist (1994)
and Angrist, Imbens and Rubin (1996) abandoned the
effort to do inference for the overall average effect, and
focused on subpopulations for which the average ef-
fect could be identified, the so-called compliers, lead-
ing to the local average treatment effect. We discuss
the bounds approach in the next section (Section 4.3)
and the local average treatment effect approach in Sec-
tions 4.4–4.6.

4.3 Point Identification versus Bounds

In a number of studies, the primary estimand is the
average effect of the treatment, or the average effect for
the treated:

τ = E
[
Yi(1) − Yi(0)

]
and

(4.2)
τt = E

[
Yi(1) − Yi(0)|Xi = 1

]
.

With only the four assumptions, random assignment,
the exclusion restriction, monotonicity, and instrument
relevance Robins (1989), Manski (1990) and Balke and
Pearl (1995) established that the average treatment ef-
fect can often not be consistently estimated even in
large samples. In other words, that it is often not point-
identified.

Following this result, a number of different ap-
proaches have been taken. Heckman (1990) showed
that if the instrument takes on values such that the
probability of treatment given the instrument can be ar-
bitrarily close to zero and one, then the average effect is
identified. This is sometimes referred to as identifica-
tion at infinity. Robins (1989) also formulates assump-
tions that allow for point identification, focusing on the
average effect for the treated, τt . These assumptions re-
strict the average value of the potential outcomes when
not observed in terms of average outcomes that are ob-
served. For example, Robins formulates the condition
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that

E
[
Yi(1) − Yi(0)|Zi = 1,Xi = 1

]
= E

[
Yi(1) − Yi(0)|Zi = 0,Xi = 1

]
,

which, in combination with the random assignment and
the exclusion restriction, this allows for point identi-
fication of the average effect for the treated. Robins
also formulates two other assumptions, including one
where the effects are proportional to survival rates
E[Yi(1)|Zi = 1,Xi = 1] and E[Yi(1)|Zi = 0,Xi = 1]
respectively, that also point-identifies the average ef-
fect for the treated. However, Robins questions the
applicability of these results by commenting that “it
would be hard to imagine that there is sufficient under-
standing of the biological mechanism. . . to have strong
beliefs that any of the three conditions. . . is more likely
to hold than either of the other two” (Robins, 1989,
page 122).

As an alternative to adding assumptions, Robins
(1989), Manski (1990) and Balke and Pearl (1995),
focused on the question what can be learned about
τ or τt given these four assumptions that do not al-
low for point identification. Here, I focus on the case
where the three assumptions, random assignment, the
exclusion restriction and monotonicity are maintained
(without necessarily instrument relevance holding), al-
though Robins (1989) and Manski (1990) also consider
other combinations of assumptions. For ease of exposi-
tion, I focus on the bounds for the average treatment ef-
fect τ under these assumptions, in the case where Yi(0)

and Yi(1) are binary. Then

E
[
Yi(1) − Yi(0)

]
∈ [−(

1 −E[Xi |Zi = 1]) ·E[Yi |Zi = 1,Xi = 0]
+E[Yi |Zi = 1] −E[Yi |Zi = 0]
+E[Xi |Zi = 0] · (

E[Yi |Zi = 0,Xi = 1] − 1
)
,(

1 −E[Xi |Zi = 1])
· (

1 −E[Yi |Zi = 1,Xi = 0])
+E[Yi |Zi = 1] −E[Yi |Zi = 0]

+E[Xi |Zi = 0] ·E[Yi |Zi = 0,Xi = 1]],
which are known at the natural bounds. In this simple
setting, this is a straightforward calculation. Work by
Manski (1995, 2003, 2005, 2007), Robins (1989) and
Hernán and Robins (2006) extends the partial identi-
fication approach to substantially more complex set-
tings.

For the McDonald–Hiu–Tierney flu data, the esti-
mated identified set for the population average treat-
ment effect is

E
[
Yi(1) − Yi(0)

] ∈ [−0.24,0.64].
There is a growing literature developing methods for
establishing confidence intervals for parameters in set-
tings with partial identification taking sampling uncer-
tainty into account; see Imbens and Manski (2004) and
Chernozhukov, Hong and Tamer (2007).

4.4 Compliance Types

Imbens and Angrist (1994) and Angrist, Imbens and
Rubin (1996) take a different approach. Rather than fo-
cusing on the average effect for the population that is
not identified under the three assumptions given in Sec-
tion 4.2, they focus on different average causal effects.
A first key step in the Angrist–Imbens–Rubin set up
is that we can think of four different compliance types
defined by the pair of values of (Xi(0),Xi(1)), that is,
defined by how individuals would respond to different
assignments in terms of receipt of the treatment:12

Ti =

⎧⎪⎪⎨⎪⎪⎩
n (never-taker) if Xi(0) = Xi(1) = 0,
c (complier) if Xi(0) = 0,Xi(1) = 1,
d (defier) if Xi(0) = 1,Xi(1) = 0,
a (always-taker) if Xi(0) = Xi(1) = 1.

Given the existence of deterministic potential out-
comes this partitioning of the population into four sub-
populations is simply a definition.13 It clarifies im-
mediately that it will be difficult to identify the av-
erage effect of the primary treatment (the receipt of
the vaccine) for the entire population: never-takers and
always-takers can only be observed exposed to a sin-
gle level of the treatment of interest, and thus for these
groups any point estimates of the causal effect of the
treatment must be based on extrapolation.

We cannot infer without additional assumptions the
compliance type of any unit: for each unit we observe
Xi(Zi), but the data contain no information about the
value of Xi(1 − Zi). For each unit, there are therefore
two compliance types consistent with the observed be-
havior. We can also not identify the proportion of in-
dividuals of each compliance type without additional
restrictions. The monotonicity assumption implies that

12Frangakis and Rubin (2002) generalize this notion of subpop-
ulations whose membership is not completely observed into their
principal stratification approach; see also Section 7.2.

13Outside of this framework, the existence of these four subpopu-
lations would be an assumption.



INSTRUMENTAL VARIABLES 341

there are no defiers. This, in combination with random
assignment, implies that we can identify the popula-
tion shares of the remaining three compliance types.
The proportion of always-takers and never-takers are

πa = pr(Ti = a) = pr(Xi = 1|Zi = 0) and

πn = pr(Ti = n) = pr(Xi = 0|Zi = 1),

respectively, and the proportion of compliers is the re-
mainder:

πc = pr(Ti = c) = 1 − πa − πn.

For the McDonald–Hiu–Tierney data these shares are
estimated to be

π̂a = 0.189, π̂n = 0.692, π̂c = 0.119,

although, as I discuss in Section 5.2, these shares may
not be consistent with the exclusion restriction.

4.5 Local Average Treatment Effects

If, in addition to monotonicity, we also assume that
the exclusion restriction holds, Imbens and Angrist
(1994) and Angrist, Imbens and Rubin (1996) show
that the local average treatment effect or complier av-
erage causal effect is identified:

τlate = E
[
Yi(1) − Yi(0)|Ti = c

]
(4.3)

= E[Yi |Zi = 1] −E[Yi |Zi = 0]
E[Xi |Zi = 1] −E[Xi |Zi = 0] .

The components of the right-hand side of this expres-
sion can be estimated consistently from a random sam-
ple (Zi,Xi, Yi)

N
i=1. For the McDonald–Hiu–Tierney

data, this leads to

τ̂late = −0.125 (s.e. 0.090).

Note that just as in the supply and demand example,
the causal estimand is the ratio of the intention-to-treat
effects of the letter on hospitalization and of the letter
on the receipt of the vaccine. These intention-to-treat
effects are

ÎTTY = −0.015 (s.e. 0.011),

ÎTTX = π̂c = 0.119 (s.e. 0.016),

with the latter equal to the estimated proportion of
compliers in the population.

Without the monotonicity assumption, but maintain-
ing the random assignment assumption and the exclu-
sion restriction, the ratio of ITT effects still has a clear

interpretation. In that case, it is equal to a linear com-
bination average of the effect of the treatment for com-
pliers and defiers:

E[Yi |Zi = 1] −E[Yi |Zi = 0]
E[Xi |Zi = 1] −E[Xi |Zi = 0]

= pr(Ti = c)

pr(Ti = c) − pr(Ti = d)

·E[
Yi(1) − Yi(0)|Ti = c

]
(4.4)

− pr(Ti = d)

pr(Ti = c) − pr(Ti = d)

·E[
Yi(1) − Yi(0)|Ti = d

]
.

This estimand has a clear interpretation if the treatment
effect is constant across all units, but if there is hetero-
geneity in the treatment effects it is a weighted average
with some weights negative. This representation shows
that if the monotonicity assumption is violated, but the
proportion of defiers is small relative to that of com-
pliers, the interpretation of the instrumental variables
estimand is not severely impacted.

4.6 Do We Care About the Local Average
Treatment Effect?

The local average treatment effect is an unusual esti-
mand. It is an average effect of the treatment for a sub-
population that cannot be identified in the sense that
there are no units whom we know for sure to belong
to this subpopulation, although there are some units
whom we know do not belong to it. A more conven-
tional approach is to start an analysis by clearly articu-
lating the object of interest, say the average effect of a
treatment for a well-defined population. There may be
challenges in obtaining credible estimates of this ob-
ject of interest, and along the way one may make more
or less credible assumptions, but typically the focus re-
mains squarely on the originally specified object of in-
terest.

Here, the approach appears to be quite different.
We started off by defining unit-level treatment effects
for all units. We did not articulate explicitly what the
target estimand was. In the McDonald–Hiu–Tierney
influenza-vaccine application a natural estimand might
be the population average effect of the vaccine. Then,
apparently more or less by accident, the definition of
the compliance types led us to focus on the average ef-
fects for compliers. In this example, the compliers were
defined by the response in terms of the receipt of the
vaccine to the receipt of the letter. It appears difficult
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to argue that this is a substantially interesting group,
and in fact no attempt was made to do so.

This type of example has led distinguished re-
searchers both in economics and in statistics to ques-
tion whether and why one should care about the local
average treatment effect. The economist Deaton writes
“I find it hard to make any sense of the LATE [local
average treatment effect]” (Deaton, 2010, page 430).
Pearl similarly wonders “Realizing that the popula-
tion averaged treatment effect (ATE) is not identifi-
able in experiments marred by noncompliance, they
have shifted attention to a specific response type (i.e.,
compliers) for which the causal effect was identifi-
able, and presented the latter [the local average treat-
ment effect] as an approximation for ATE. . . . How-
ever, most authors in this category do not state ex-
plicitly whether their focus on a specific stratum is
motivated by mathematical convenience, mathemati-
cal necessity (to achieve identification) or a genuine
interest in the stratum under analysis” (Pearl, 2011,
page 3). Freedman writes “In many circumstances, the
instrumental-variables estimator turns out to be esti-
mating some data-dependent average of structural pa-
rameters, whose meaning would have to be elucidated”
(Freedman, 2006, pages 700–701). Let me attempt to
clear up this confusion. See also Imbens (2010). An in-
strumental variables analysis is an analysis in a second-
best setting. It would have been preferable if one had
been able to carry out a well-designed randomized ex-
periment. However, such an experiment was not carried
out, and we have noncompliance. As a result, we can-
not answer all the questions we might have wanted to
ask. Specifically, if the noncompliance is substantial,
we are limited in the questions we can answer credibly
and precisely. Ultimately, there is only one subpopula-
tion we can credibly (point-)identify the average effect
of the treatment for, namely, the compliers.

It may be useful to draw an analogy. Suppose a re-
searcher is interested in evaluating a medical treatment
and suppose a randomized experiment had been carried
out to estimate the average effect of this new treatment.
However, the population of the randomized experiment
included only men, and the researcher is interested in
the average effect for the entire population, including
both men and women. What should the researcher do?
I would argue that the researcher should report the re-
sults for the men, and acknowledge the limitation of the
results for the original question of interest. Similarly, in
the instrumental variables I see the limitation of the re-
sults to the compliers as one that was unintended, but

driven by the lack of identification for other subpop-
ulations given the design of the study. This limitation
should be acknowledged, but one should not drop the
analysis simply because the original estimand cannot
be identified. Note that our case with instrumental vari-
ables is slightly worse than in the gender example, be-
cause we cannot actually identify all individuals with
certainty as compliers.

There are alternatives to this view. One approach is
to focus solely or primarily on intention-to-treat ef-
fects. The strongest argument for that is in the context
of randomized experiments with noncompliance. The
causal interpretation of intention-to-treat effects is jus-
tified by the randomization. As Freedman writes, “Ex-
perimental data should therefore be analyzed first by
comparing rates or averages, following the intention-
to-treat principle. Such comparisons are justified be-
cause the treatment and control groups are balanced,
within the limits of chance variation, by randomiza-
tion” (Freedman, 2006, page 701). Even in that case
one may wish to also report estimates of the local av-
erage treatment effects because they may correspond
more closely to the object of ultimate interest. The ar-
gument for focusing on intention-to-treat or reduced-
form estimates is weaker in other settings. For exam-
ple, in the Fulton Fish Market demand and supply ap-
plication, the intention-to-treat effects are the effects of
weather conditions on prices and quantities. These ef-
fects may be of little substantive interest to policy mak-
ers interested in tax policy. The substantive interest for
these policy makers is almost exclusively in the struc-
tural effects of price changes on demand and supply,
and reduced form effects are only of interest in sofar as
they are informative about those structural effects. Of
course, one should bear in mind that the reduced form
or intention-to-treat effects rely on fewer assumptions.

A second alternative is associated with the partial
identification approach by Manski (1990, 2002, 2003,
2007); see also Robins (1989) and Leamer (1981) for
antecedents. In this setting that suggests maintaining
the focus on the original estimand, say the overall av-
erage effect, we cannot estimate that accurately be-
cause we cannot estimate the average value of Yi(0)

for always-takers or the average value of Yi(1) for nev-
ertakers, but we can bound the average effect of inter-
est because we know a priori that the average value of
Yi(0) for always-takers and the average value of Yi(0)

for nevertakers is restricted to lie in the unit interval.
Manski’s is a principled and coherent approach. One
concern with the approach is that it has often focused
on reporting solely these bounds, leading researchers
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to miss relevant information that is available given the
maintained assumptions. Two different data sets may
lead to the same bounds even though in one case we
may know that the average effect for one subpopula-
tion (the compliers) is positive and statistically signif-
icantly different from zero whereas in the other case
there need not be any evidence of a nonzero effect for
any subpopulation. It would appear to be useful to dis-
tinguish between such cases by reporting estimates of
both the local average treatment effect and the bounds.

5. THE SUBSTANTIVE CONTENT OF THE
INSTRUMENTAL VARIABLES ASSUMPTIONS

In this section, I will discuss the substantive content
of the three key assumptions, random assignment, the
exclusion restriction and the monotonicity assumption.
I will not discuss here the fourth assumption, instru-
ment relevance. In practice, the main issue with that
assumption concerns the quality of inferences when the
assumption is close to being violated. See Section 7.5
for more discussion, and Staiger and Stock (1997) for
a detailed study.

5.1 Unconfoundedness of the Instrument

First, consider the random assignment or uncon-
foundedness assumption. In a slightly different setting,
this is a very familiar assumption. Matching methods
often rely on random assignment, either uncondition-
ally or conditionally, for their justification.

In some of the leading applications of instrumental
variables methods, this assumption is satisfied by de-
sign, when the instrument is physically randomized.
For example, in the draft lottery example (Angrist,
1990), draft priority is used as an instrument for vet-
eran status in an evaluation of the causal effect of vet-
eran status on mortality and earnings. In that case, the
instrument, the draft priority number was assigned by
randomization. Similarly, in the flu example (Hirano
et al., 2000), the instrument for influenza vaccinations,
the letter to the physician, was randomly assigned.

In other cases, the conditional version of this as-
sumption is more plausible. In the McClellan and New-
house (1994) study, proximity of an individual to a hos-
pital with particular facilities is used as an instrument
for the receipt of intensive treatment of acute myocar-
dial infarction. This proximity measure is not randomly
assigned, and McClellan and Newhouse use covariates
to make the unconfoundedness assumption more plau-
sible. For example, they worry about differences be-
tween individuals living in rural versus urban areas. To

adjust for such differences, they use as one of the co-
variates the distance to the nearest hospital (regardless
of the facilities at the nearest hospital).

A key issue is that although on its own this random
assignment or unconfoundedness assumption justifies
a causal interpretation of the intention-to-treat effects,
it is not sufficient for a causal interpretation of the in-
strumental variables estimand, the ratio of the ITT ef-
fects for outcome and treatment.

5.2 The Exclusion Restriction

Second, consider the exclusion restriction. This is
the most critical and typically most controversial as-
sumption underlying instrumental variables methods.

First of all, it has some testable implications; see
Balke and Pearl (1997) and the recent discussions in
Kitagawa (2009) and Ramsahai and Lauritzen (2011).
This testable restriction can be seen most easily in
a binary outcome setting. Under the three assump-
tions, random assignment, the exclusion restriction and
monotonicity, the intention-to-treatment effect of the
assignment on the outcome is the product of two causal
effects. First, the average effect of the assignment on
the outcome for compliers, and second, the intention-
to-treat effect of the assignment on receipt of the treat-
ment, which is equal to the population proportion of
compliers. If the outcome is binary, the first factor is
between −1 and 1. Hence, the intention-to-treat effect
of the assignment on the outcome has to be bounded
in absolute value by the intention-to-treat effect of the
assignment on the receipt of the treatment. This is a
testable restriction. If the outcomes are multivalued,
there is in fact a range of restrictions implied by the
assumptions. However, there exist no consistent tests
that will reject the null hypothesis with probability go-
ing to one as the sample size increases in all scenarios
where the null hypothesis is wrong.

Let us assess these restrictions in the flu example.
Because

pr(Yi = 1,Xi = 0|Zi = 1)

= pr
(
Yi(0) = 1|Ti = n

) · pr(Ti = n)

and

pr(Yi = 1,Xi = 0|Zi = 0)

= pr
(
Yi(0) = 1|Ti = n or c

)
· pr(Ti = n or c)

= pr
(
Yi(0) = 1|Ti = n

) · pr(Ti = n)

+ pr
(
Yi(0) = 1|Ti = c

) · pr(Ti = c)
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it follows that

pr(Yi = 1,Xi = 0|Zi = 1)
(5.1)

≤ pr(Yi = 1,Xi = 0|Zi = 0).

There are three more restrictions in this setting with
a binary outcome, binary treatment and binary instru-
ment; see Imbens and Rubin (1997b), Balke and Pearl
(1997) and Richardson, Evans and Robins (2011) for
details. For the flu data, the simple frequency estima-
tor for the left-hand side of (5.1) is 30/1389 = 0.0216,
and the right-hand side is 31/72 = 0.0211, leading to
a slight violation as pointed out in Richardson, Evans
and Robins (2011) and Imbens and Rubin (2014). Al-
though not statistically significant, it shows that these
restrictions have content in practice.

To assess the plausibility of the exclusion restriction,
it is often helpful to do so separately in subpopulations
defined by compliance status. Let us first consider the
exclusion restriction for always-takers, who would re-
ceive the influenza vaccine irrespective of the receipt of
the letter by their physician. Presumably, such patients
are generally at higher risk for the flu. Why would such
patients be affected by a letter warning their physicians
about the upcoming flu season when they will get in-
oculated irrespective of this warning? It may be that
the letter led the physician to take other actions be-
yond giving the flu vaccine, such as encouraging the
patient to avoid exposure. These other actions may af-
fect health outcomes, in which case the exclusion re-
striction would be violated. The exclusion restriction
for never-takers has different content. These patients
would not receive the vaccine in any case. If their
physicians did not regard the risk of flu as sufficiently
high to encourage their patients to have the vaccination,
presumably the physician would not take other actions
either. For these patients, the exclusion restriction may
therefore be reasonable.

Consider the draft lottery example. In that case, the
always-takers are individuals who volunteer for mili-
tary service irrespective of their draft priority number.
It seems plausible that the draft priority number has no
causal effect on their outcomes. never-takers are indi-
viduals who do not serve in the military irrespective of
their draft priority number. If this is for medical rea-
sons, or more generally reasons that make them inel-
igible to serve, this seems plausible. If, on the other
hand these are individuals fit but unwilling to serve,
they may have had to take actions to stay out of the mil-
itary that could have affected their subsequent civilian
labor market careers. Such actions may include extend-
ing their educational career, or temporarily leaving the

country. Note that these issues are not addressed by the
random assignment of the instrument.

In general, the concern is that the instrument cre-
ates incentives not only to receive the treatment, but
also to take additional actions that may affect the out-
come of interest. The nature of these actions may well
differ by compliance type. Most important is to keep
in mind that this assumption is typically a substantive
assumption, not satisfied by design outside of double-
blind, single-dose placebo control randomized experi-
ments with noncompliance.

5.3 Monotonicity

Finally, consider the monotonicity or no-defiers as-
sumption. Even though this assumption is often the
least controversial of the three instrumental variables
assumptions, it is still sometimes viewed with suspi-
cion. For example, whereas Robins views the assump-
tion as “often, but not always reasonable” (Robins,
1989, page 122), Freedman (2006) wonders: “The
identifying restriction for the instrumental-variables
estimator is troublesome: just why are there no de-
fiers?” (Freedman, 2006, page 700). In many applica-
tions, it is perfectly clear why there should be no or at
most few defiers. The instrument plays the role of an
incentive for the individual to choose the active treat-
ment by either making it more attractive to take the ac-
tive treatment or less attractive to take the control treat-
ment. As long as individuals do not respond perversely
to this incentive, monotonicity is plausible with either
no or a negligible proportion of defiers in the popula-
tion. The term incentive is used broadly here: it may be
a financial incentive, or the provision of information,
or an imperfectly monitored legal requirement, but in
all cases something that makes it more likely, at the
individual level, that the individual participates in the
treatment.

Let us consider some examples. If noncompliance is
one-sided, and those assigned to the control group are
effectively embargoed from receiving the treatment,
monotonicity is automatically satisfied. In that case
Xi(0) = 0, and there are no always-takers or defiers.
The example discussed in Sommer and Zeger (1991),
Imbens and Rubin (1997a) and Greenland (2000) fits
this set up.

In the flu application introduced in Section 4, the let-
ter to the physician creates an additional incentive for
the physician to provide the flu vaccine to a patient,
something beyond any incentives the physician may
have had already to provide the vaccine. Some individ-
uals may already be committed to the vaccine, irrespec-
tive of the letter (the always-takers), and some may not
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be swayed by the receipt of the letter (the never-takers),
and that is consistent with this assumption. Monotonic-
ity only requires that there is no patient, who, if their
physician receives the letter, would not take the vac-
cine, whereas they would have taken the vaccine in the
absence of the letter.

Consider a second example, the influential draft lot-
tery application by Angrist (1990) (see also Hearst,
Newman and Hulley, 1986). Angrist is interested in
evaluating the effect of military service on subsequent
civilian earnings, using the draft priority established
by the draft lottery as an instrument. Monotonicity re-
quires that assigning an individual priority for the draft
rather than not, may induce them to serve in the mil-
itary, or may not affect them, but cannot induce them
to switch from serving to not serving in the military.
Again that seems plausible. Having high priority for
the draft increases the cost of staying out of the mili-
tary: that may not be enough to change behavior, but it
would be unusual if the increased cost of staying out of
the military induced an individual to switch from serv-
ing in the military to not serving.

As a third example, consider the Permutt and Hebel
(1989) study of the effect of smoking on birthweight.
Permutt and Hebel use the random assignment to a
smoking-cessation program as an instrument for the
amount of smoking. In this case, the monotonicity as-
sumption requires that there are no individuals who
as a causal effect of the assignment to the smoking-
cessation program end up smoking more. There may
be individuals who continue to smoke as much under
either assignment and individuals who reduce smok-
ing as a result of the assignment, but the assumption
is that there is nobody who increases their smoking as
a result of the smoking-cessation program. In all these
examples, monotonicity requires individuals not to re-
spond perversely to changes in incentives. Systematic
and major violations in such settings seem unlikely.

In other settings, the assumption is less attractive.
Suppose a program has assignment criteria that are
checked by two administrators. Individuals entering
the assignment process are assigned randomly to one
of the two administrators. The assignment criteria may
be interpreted slightly differently by the two admin-
istrators, with on average administrator A being more
strict than administrator B. Monotonicity requires that
anyone admitted by administrator A would also be ad-
mitted by administrator B, or vice-versa. In this type
of setting, monotonicity does not appear to be as plau-
sible as it is in the settings where the instrument can
be viewed as creating an incentive to participate in the

treatment. For example, in an analysis of the effect of
prison time on recidivism, Aizer and Doyle (2013) use
random assignment of cases to judges, and in an analy-
sis of the effect of bankruptcy, Dobbie and Song (2013)
use random assignment of bankruptcy applications to
judges.

The discussion in this section focuses primarily on
the case with a binary treatment and a binary instru-
ment. In cases with multivalued treatments, the mono-
tonicity can be generalized in two different ways. In
both cases, it may be less plausible than in the bi-
nary case. Let Xi(z) be the potential treatment level
associated with the assignment z. One can generalize
the monotonicity assumption for the binary instrument
case to this case as

Xi(z) is nondecreasing in z for all i

(monotonicity in instrument).

This generalization is used in Angrist and Imbens
(1995). It is consistent with the view of the instrument
as changing the incentive to participate in the treat-
ment: increasing the incentive cannot decrease the level
of the treatment received. Angrist and Imbens show
that this assumption has testable implications.

An alternative generalization is

if Xi(z) > Xj(z)

then Xi

(
z′) ≥ Xj

(
z′) for all z, z′, i, j

(monotonicity in unobservables).

This assumption, referred to as rank preservation in
Robins (1986), implicitly ranks all units in terms of
some unobservables (Imbens, 2007). It assumes this
ranking is invariant to the level of the instrument. It
implies that if Xi(z) > Xj(z), then it cannot be that
Xj(z

′) > Xi(z
′). It is equivalent to the “continuous

prescribing preference” in Hernán and Robins (2006).
In both cases, the special case with a binary treat-

ment is identical to the previously stated monotonic-
ity. In settings with multivalued treatments, these as-
sumptions are more restrictive than in the binary treat-
ment case. In the demand and supply example in Sec-
tion 3 with linear supply and demand functions, both
the monotonicity in the instrument and monotonicity
in the unobservables conditions are satisfied.

6. THE LINK TO THE TEXTBOOK DISCUSSIONS
OF INSTRUMENTAL VARIABLES

Most textbook discussions of instrumental variables
use a framework that is quite different at first sight
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from the potential outcome set up used in Sections 4
and 5. These textbook discussions (graduate texts in-
clude Wooldridge, 2010; Angrist and Pischke, 2009;
Greene, 2011; and Hayashi, 2000, and introductory un-
dergraduate textbooks include Wooldridge, 2008; and
Stock and Watson, 2010) are often closer to the simul-
taneous equations example from Section 3. An excep-
tion is Manski (2007) who uses the potential outcome
set up used in this discussion. In this section I will dis-
cuss the standard textbook set up and relate it to the po-
tential outcome framework and the simultaneous equa-
tions set up.

The textbook version of instrumental variables does
not explicitly define the potential outcomes. Instead the
starting point is a linear regression function describing
the relation between the realized (observed) outcome
Yi , the endogenous regressor of interest Xi and other
regressors Vi :

Y obs
i = β0 + β1Xi + β ′

2Vi + εi.(6.1)

These other regressors a well as the instruments are
often referred to in the econometric literature as ex-
ogenous variables. Although this term does not have a
well-defined meaning, informally it includes variables
that Cox (1992) called attributes, as well as potential
causes whose assignment is unconfounded. This set up
covers both the demand function setting and the ran-
domized experiment example. Although this equation
looks like a standard regression function, that similar-
ity is misleading. Equation (6.1) is not an ordinary re-
gression function in the sense that the first part does not
represent the conditional expectation of the outcome Yi

given the right-hand side variables Xi and Vi . Instead it
is what is sometimes called a structural equation repre-
senting the causal response to changes in the input Xi .

The key assumption in this formulation is that the
unobserved component εi in this regression function
is independent of the exogenous regressors Vi and the
instruments Zi , or, formally

εi ⊥ (Zi,Vi).(6.2)

The unobserved component is not independent of the
endogenous regressor Xi though. The value of the re-
gressor Xi may be partly chosen by individual i to opti-
mize some objection function as in the noncompliance
example, or the result of an equilibrium condition as
in the supply and demand model. The precise relation
between Xi and εi is often not fully specified.

How does this set up relate to the earlier discussion
involving potential outcomes? Implicitly, there is in the
background of this set up a causal, unit-level response

function. In the potential outcome notation, let Yi(x)

denote this causal response function for unit i, describ-
ing for each value of x the potential outcome corre-
sponding to that level of the treatment for that unit.
Suppose the conditional expectation of this causal re-
sponse function is linear in x and some exogenous co-
variates:

E
[
Yi(x)|Vi

] = β0 + β1 · x + β ′
2Vi.(6.3)

Moreover, let us make the (strong) assumption that the
difference between the response function Yi(x) and its
conditional expectation does not depend on x, so we
can define the residual unambiguously as

εi = Yi(x) − (
β0 + β1 · x + β ′

2Vi

)
,

with the equality holding for all x. The residual εi is
now uncorrelated with Vi by definition. We will as-
sume that it is in fact independent of Vi . Now suppose
we have an instrument Zi such that

Yi(x) ⊥ Zi |Vi.

This assumption is, given the linear representation for
Yi(x), equivalent to

εi ⊥ Zi |Vi.

In combination with the assumption that εi ⊥ Vi , this
gives us the textbook version of the assumption given
in (6.2). We observe Vi , Xi , the instrument Zi , and the
realized outcome

Y obs
i = Yi(Xi) = β0 + β1Xi + β ′

2Vi + εi,

which is the starting point in the econometric textbook
discussion (6.1).

This set up is more restrictive than it needs to be. For
example, the assumption that the difference between
the response function Yi(x) and its conditional expec-
tation does not depend on x can be relaxed to allow for
variation in the slope coefficient,

Yi(x) − Yi(0) = β1 · x + ηi · x,

as long as the ηi satisfies conditions similar to those
on εi . The modern literature (e.g., Matzkin, 2007) dis-
cusses such models in more detail.

One key feature of the textbook version is that there
is no separate role for the monotonicity assumption.
Because the linear model implicitly assumes that the
per-unit causal effect is constant across units and lev-
els of the treatment, violations of the monotonicity as-
sumption do not affect the interpretation of the esti-
mand. A second feature of the textbook version is that
the exclusion restriction and the random assignment as-
sumption are combined in (6.2). Implicitly, the exclu-
sion restriction is captured by the absence of Zi in the
equation (6.1), and the (conditional) random assign-
ment is captured by (6.2).
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7. EXTENSIONS AND GENERALIZATIONS

In this section, I will briefly review some of other
approaches taken in the instrumental variables litera-
ture. Some of these originate in the statistics literature,
some in the econometrics literature. They reflect differ-
ent concerns with the traditional instrumental variables
methods, sometimes because of different applications,
sometimes because of different traditions in economet-
rics and statistics. This discussion is not exhaustive.
I will focus on highlighting the most interesting devel-
opments and provide some references to the relevant
literature.

7.1 Model-based Approaches to Estimation and
Inference

Traditionally, instrumental variables analyses relied
on linear regression methods. Additional explanatory
variables are incorporated linearly in the regression
function. The recent work in the statistics literature has
explored more flexible approaches to include covari-
ates. These approaches often involve modeling the con-
ditional distribution of the endogenous regressor given
the instruments and the exogenous variables. This is in
contrast to the traditional econometric literature which
has focused on settings and methods that do not rely on
such models.

Robins (1989, 1994), Hernán and Robins (2006),
Greenland (2000), Robins and Rotnitzky (2004) and
Tan (2010) developed an approach that allow for identi-
fication of average treatment effect by adding paramet-
ric modelling assumptions. This approach starts with
the specification of what they call the structural mean,
the expectation of Yi(x). This structural mean can be
the conditional mean given covariates, or the marginal
mean, labeled the marginal structural mean. The spec-
ification for this expectation is typically parametric.
Then estimating equations for the parameters of these
models are developed. In the simple setting consid-
ered here, this would typically lead to the same esti-
mators considered already. An important virtue of the
method is that it has been extended to much more gen-
eral settings, in particular with time-varying covariates
and dynamic treatment regimes in a series of papers.
In other settings, it has also led to the development of
doubly robust estimators (Robins and Rotnitzky, 2004).
A key feature of the models is that the models are ro-
bust in a particular sense. Specifically, the estimators
for the average treatment effects are consistent irre-
spective of the misspecification of the model, in the
absence of intention-to-treat effects (what they call the
conditional ITT null).

Imbens and Rubin (1997a) and Hirano et al. (2000)
propose building a parametric model for the compli-
ance status in terms of additional covariates, combined
with models for the potential outcomes conditional
on compliance status and covariates. Given the mono-
tonicity assumption, there are three compliance types:
never-takers, always-takers and compliers. A natural
model for compliance status given individual charac-
teristics Vi is therefore a trinomial logit model:

pr(Ti = n|Vi = v) = exp(v′γn)

1 + exp(v′γn) + exp(v′γn)
,

pr(Ti = a|Vi = v) = exp(v′γa)

1 + exp(v′γn) + exp(v′γn)

and

pr(Ti = c|Vi = v) = 1

1 + exp(v′γn) + exp(v′γn)
.

With continuous outcomes, the conditional outcome
distributions given compliance status and covariates
may be normal:

Yi(x)|Ti = t, Vi = v ∼ N
(
β ′

txv, σ 2
tx

)
,

for (t, x) = (n,0), (a,1), (c,0), (c,1). With binary
outcomes, one may wish to use logistic regression
models here. This specification defines the likelihood
function. Hirano et al. (2000) apply this to the flu data
discussed before. Simulations in Richardson, Evans
and Robins (2011) suggest that the modeling of the
compliance status here is key. Specifically, they point
out that even in the absence of ITT effects there can
be biases if the model of the compliance status is mis-
specified.

Like Hirano et al. (2000), Richardson, Evans and
Robins (2011) build parametric model only for the
identified distributions. They use them to estimate the
bounds so that the parametric assumptions do not con-
tain identifying information.

Little and Yau (1998) and Yau and Little (2001) sim-
ilarly model the conditional expectation of the outcome
given compliance status and covariates. In their appli-
cation, there are no always-takers, only never-takers
and compliers. Their specification specifies parametric
forms for the conditional means given the compliance
types and the treatment status:

E
[
Yi(0)|Ti = n,Vi = v

] = βn0 + β ′
n1v,

E
[
Yi(0)|Ti = c,Vi = v

] = βc00 + β ′
c01v

and

E
[
Yi(1)|Ti = c,Vi = v

] = βc00 + β ′
c11v.
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7.2 Principal Stratification

Frangakis and Rubin (2002) generalize the latent
compliance type approach to instrumental variables in
an important and novel way. Their focus is on the
causal effect of a binary treatment on some outcome.
However, it is not the average effect of the treatment
they are interested in, but the average within a subpop-
ulation. It is the way this subpopulation is defined that
creates the complications as well as the connection to
instrumental variables. There is a post-treatment vari-
able that may be affected by the treatment. Frangakis
and Rubin postulate the existence of a pair of potential
outcomes for this post-treatment variable. The subpop-
ulation of interest is then defined by the values for the
pair of potential outcomes for this post-treatment vari-
ables.

Let us consider two examples: first, the randomized
experiment with noncompliance. The treatment here is
the random assignment. The post-treatment variable is
the actual receipt of the treatment. The pair of potential
outcomes for this post-treatment variable captures the
compliance status. The subpopulation of interest is the
subpopulation of compliers.

The second example shows how principal stratifi-
cation generalizes the instrumental variables set up
to other cases. Examples of this type are considered
in Zhang, Rubin and Mealli (2009), Frumento et al.
(2012) and Robins (1986). Suppose we have a random-
ized experiment with perfect compliance. The primary
outcome is survival after one year. For patients who
survive, a quality of life measure is observed. We may
be interested in the effect of the treatment on quality of
life. This is only defined for patients who survive up to
one year. The principal stratification approach suggests
focusing on the subpopulation or principal stratum of
patients who survive irrespective of the treatment as-
signment. Membership in this stratum is not observed,
and so we cannot directly estimate the average effect
of the treatment on quality of life for individuals in
this stratum, but the data are generally still informative
about such effects, particularly under monotonicity as-
sumptions.

7.3 Randomization Inference with
Instrumental Variables

Most of the work on inference in instrumental vari-
ables settings is model-based. After specifying a model
relating the treatment to the outcome, the conditional
distribution or conditional mean of outcomes given in-
struments is derived. The resulting inferences are con-

ditional on the values of the instruments. A very differ-
ent approach is taken in Rosenbaum (1996) and Imbens
and Rosenbaum (2005).

Rosenbaum focuses on the distribution for statis-
tics generated by the random assignment of the instru-
ments. In the spirit of the work by Fisher (1925) con-
fidence intervals for the parameter of interest, β1 in
equation (6.3) are based on this randomization distri-
bution. Similar to confidence intervals for treatment ef-
fects based on inverting conventional Fisher p-values,
these intervals have exact coverage under the stated as-
sumptions. However, these results rely on arguably re-
strictive constant treatment effect assumptions.

7.4 Matching and Instrumental Variables

In many observational studies using instrumental
variables approaches, the instruments are not randomly
assigned. In that case, adjustment for additional pre-
treatment variables can sometimes make causal in-
ferences more credible. Even if the instrument is
randomly assigned, such adjustments can make the in-
ferences more precise. Traditionally, in econometrics
these adjustments are based on regression methods.
Recently, in the statistics literature matching methods
have been proposed as a way to do the adjustment for
pretreatment variables (Baiocchi et al., 2010).

7.5 Weak Instruments

One concern that has arisen in the econometrics lit-
erature is about weak instruments. For an instrument to
be helpful in estimating the effect of the treatment, it
not only needs to have no direct effect on the outcome,
it also needs to be correlated with the treatment. Sup-
pose this correlation is very close to zero. In the simple
case, the IV estimator is the ratio of covariances,

β̂1,iv = ĉov(Yi,Zi)

ĉov(Xi,Zi)

= (1/N)
∑N

i=1(Yi − Y )(Zi − Z)

(1/N)
∑N

i=1(Xi − X)(Zi − Z)
.

The distribution of this ratio can be approximated by
a normal distribution in large samples, as long as the
covariance in the denominator is nonzero in the popu-
lation. If the population value of the covariance in the
denominator is exactly zero, the distribution of the ra-
tio β̂1,iv is Cauchy in large samples, rather than normal
(Phillips, 1989; Staiger and Stock, 1997). The weak
instrument literature is concerned with the construc-
tion of confidence intervals in the case the covariance
is close to zero. Interest in this problem rose sharply
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after a study by Angrist and Krueger (1991), which re-
mains the primary empirical motivation for this liter-
ature. Angrist and Krueger were interested in estimat-
ing the causal effect of years of education on earnings.
They exploited variation in educational achievement
by quarter of birth attributed to differences in com-
pulsory schooling laws. These differences in average
years of education by quarter of birth were small,
and they attempted to improve precision of their es-
timators by including interactions of the basic instru-
ments, the three quarter of birth dummies, with indi-
cators for year and state of birth. Bound, Jaeger and
Baker (1995) showed that the estimates using the in-
teractions as additional instruments were potentially
severely affected by the weakness of the instruments.
In one striking analysis, they reestimated the Angrist–
Krueger regressions using randomly generated quar-
ter of birth data (uncorrelated with earnings or years
of education). One might have expected, and hoped,
that in that case one would find an imprecisely esti-
mated effect. Surprisingly, Bound, Jaeger and Baker
(1995) found that the confidence intervals constructed
by Angrist and Krueger suggested precisely estimated
effects for the effect of years of education on earnings.
It was subsequently found that with weak instruments
the TSLS estimator, especially with many instruments,
was biased, and that the standard variance estimator led
to confidence intervals with substantial undercoverage
(Bound, Jaeger and Baker, 1995; Staiger and Stock,
1997; Chamberlain and Imbens, 2004).

Motivated by the Bound–Jaeger–Baker findings, the
weak and many instruments literature focused on point
and interval estimators with better properties in set-
tings with weak instruments. Starting with Staiger and
Stock (1997), a literature developed to construct confi-
dence intervals for the instrumental variables estimand
that remained valid irrespective of the strength of the
instruments. A key insight was that confidence inter-
vals based on the inversion of Anderson–Rubin (1949)
statistics have good properties in settings with weak
instruments; see also Moreira (2003), Andrews and
Stock (2007), Kleibergen (2002) and Andrews, Mor-
eira and Stock (2006).

Let us look at the simplest case with a single endoge-
nous regressor, a single instrument, and no additional
regressors and normally distributed residuals:

Yi(x) = β0 + β1 · x + εi with εi |Zi ∼ N
(
0, σ 2

ε

)
.

The Anderson–Rubin statistic is, for a given value of b

AR(b) =
(

1√
N

N∑
i=1

(Zi − Z) · (Yi − b · Xi)

)2

/(
1

N

N∑
i=1

(Zi − Z)2 · σ̂ 2
ε

)
,

where Z = ∑N
i=1 Zi/N , and for some estimate of the

residual variance σ 2
ε . At the true value b = β1, the AR

statistic has in large samples a chi-squared distribution
with one degree of freedom. Staiger and Stock (1997)
propose constructing a confidence interval by inverting
this test statistic:

CI0.95(β1) = {
b|AR(b) ≤ 3.84

}
.

The subsequent literature has extended this by allow-
ing for multiple instruments and developed various al-
ternatives, all with the focus on methods that remain
valid irrespective of the strength of the instruments; see
Andrews and Stock (2007) for an overview of this lit-
erature.

7.6 Many Instruments

Another strand of the literature motivated by the
Angrist–Krueger study focused on settings with many
weak instruments. The concern centered on the Bound,
Jaeger and Baker (1995) finding that in a setting similar
to the Angrist–Krueger setting using TSLS with many
randomly generated instruments led to confidence in-
tervals that had very low coverage rates.

To analyze this setting, Bekker (1994) considered
the behavior of various estimators under an asymp-
totic sequence where the number of instruments in-
creases with the sample size. Asymptotic approxi-
mations to sampling distributions based on this se-
quence turned out to be much more accurate than
those based on conventional asymptotic approxima-
tions. A key finding in Bekker (1994) is that under
such sequences one of the leading estimators, Two-
Stage-Least-Squares (TSLS, see the Appendix for de-
tails) estimator is no longer consistent, whereas another
estimator, Limited Information Maximum Likelihood
(LIML, again see the Appendix for details) estima-
tor remains consistent although the variance under this
asymptotic sequence differs from that under the stan-
dard sequence; see also Kunitomo (1980), Morimune
(1983), Bekker and van der Ploeg (2005), Chamberlain
and Imbens (2004), Chao and Swanson (2005), Hahn
(2002), Hansen, Hausman and Newey (2008), Kolesár
et al. (2013).
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7.7 Proxies for Instruments

Hernán and Robins (2006) and Chalak (2011) ex-
plores settings where the instrument is not directly ob-
served. Instead a proxy variable Z∗

i is observed. This
proxy variable is correlated with the underlying in-
strument Zi , but not perfectly so. The potential out-
comes Yi(z, x) are still defined in terms of the un-
derlying, unobserved instrument Zi . The unobserved
instrument Zi satisfies the instrumental variables as-
sumptions, random assignment, the exclusion restric-
tion and the monotonicity assumption. In addition, the
observed proxy Z∗

i satisfies

Z∗
i ⊥ Yi(0,0), Yi(0,1), Yi(1,0),

Yi(1,1),Xi(0),Xi(1)|Zi.

Chalak shows that the ratio of covariances (now no
longer the ratio of intention-to-treat effects) still has an
interpretation of an average causal effect.

7.8 Regression Discontinuity Designs

Regression Discontinuity (RD) designs attempt to
estimate causal effects of a binary treatment in set-
tings where the assignment mechanism is a determin-
istic function of a pretreatment variable. In the sharp
version of the RD design, the assignment mechanism
takes the form

Xi = 1Vi≥c,

for some fixed threshold c: all units with a value for the
covariate Vi exceeding c receive the treatment and all
units with a value for Vi less than c are in the control
group. Under smoothness assumptions, it is possible
in such settings to estimate the average effect of the
treatment for units with a value for the pretreatment
variable equal to Vi ≈ c:

E
[
Yi(1) − Yi(0)|Vi = c

]
= lim

w↑c
E[Yi |Vi = w] − lim

w↓c
E[Yi |Vi = w].

These designs were introduced by Thistlewaite and
Campbell (1960), and have been used in psychology,
sociology, political science and economics. For exam-
ple, many educational programs have eligibility criteria
that allow for the application of RD methods; see Cook
(2008) for a recent historical perspective and Imbens
and Wooldridge (2009) for a recent review.

A generalization of the sharp RD design is the Fuzzy
Regression Discontinuity or FRD design. In this case,

the probability of receipt of the treatment increases dis-
continuously at the threshold, but not necessarily from
zero to one:

lim
w↓c

pr(Xi = 1|Vi = w) �= lim
w↑c

pr(Xi = 1|Vi = w).

In that case, it is no longer possible to consistently esti-
mate the average effect of the treatment for all units at
the threshold. Hahn, Todd and Van der Klaauw (2001)
demonstrate that there is a close link to the instrumen-
tal variables set up. Specifically Hahn, Todd and Van
der Klaauw show that one can estimate a local average
treatment effect at the threshold. To be precise, one can
identify the average effect of the treatment for those
who are on the margin of getting the treatment:

E
[
Yi(1) − Yi(0)

∣∣
Vi = c, lim

w↑c
Xi(w) = 0, lim

w↓c
Xi(w) = 1

]
= limw↑c E[Yi |Vi = w] − limw↓c E[Yi |Vi = w]

limw↑c E[Xi |Vi = w] − limw↓c E[Xi |Vi = w] .

This estimand can be estimated as the ratio of an es-
timator for the discontinuity in the regression function
for the outcome and an estimator for the discontinuity
in the regression function for the treatment of interest.

8. CONCLUSION

In this paper, I review the connection between the re-
cent statistics literature on instrumental variables and
the older econometrics literature. Although the econo-
metric literature on instrumental variables goes back to
the 1920s, until recently it had not made much of an
impact on the statistics literature. The recent statistics
literature has combined some of the older insights from
the econometrics instrumental variables literature with
the separate literature on causality, enriching both in
the process.

APPENDIX: ESTIMATION AND INFERENCE,
TWO-STAGE-LEAST-SQUARES AND OTHER

TRADITIONAL METHODS

A.1 Set up

In this section, I will discuss the traditional econo-
metric approaches to estimation and inference in in-
strumental variables settings. Part of the aim of this
section is to provide easier access to the econometric
literature and terminology on instrumental variables,
and to provide a perspective and context for the recent
advances.
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The textbook setting is the one discussed in the pre-
vious section, where a scalar outcome Yi is linearly re-
lated to a scalar covariate of interest Xi . In addition,
there may be additional exogenous covariates Vi . The
traditional model is

Yi = β0 + β1Xi + β ′
2Vi + εi.(A.1)

In addition, we have a vector of instrumental variables
Zi , with dimension K .

An important distinction in the traditional economet-
ric literature is between the case with a single instru-
ment (K = 1), and the case with more than one instru-
ment (K > 1). More generally, with more than one en-
dogenous regressor, the distinction is between the case
with the number of instruments equal to the number of
endogenous regressors and the case with the number of
instruments larger than the number of endogenous re-
gressors. In the empirical literature, there are few cred-
ible examples with more than one endogenous regres-
sor, so I focus here on the case with a single endoge-
nous regressor. The first case, with a single instrument,
is referred to as the just-identified case, and the second,
with multiple instruments and a single endogenous re-
gressor, as the over-identified case. In the textbook set-
ting with a linear model and constant coefficients, this
distinction has motivated different estimators and spec-
ification tests. In the modern literature, with its explicit
allowance for heterogeneity in the treatment effects,
these tests, and the distinction between the various esti-
mators, are of less interest. In the recent statistics litera-
ture, little attention has been paid to the over-identified
case with multiple instruments. An exception is Small
(2007).

Obviously, it is often difficult in applications to find
even a single variable that satisfies the conditions for it
to be a valid instrument. This raises the question how
relevant the literature focusing on methods to deal with
multiple instruments is for empirical practice. There
are two classes of applications where multiple instru-
ments could credible arise. First, suppose one has a
single continuous (or multivalued) instrument that sat-
isfies the instrumental variables assumptions, mono-
tonicity, random assignment and the exclusion restric-
tion. Then any monotone function of the instruments
also satisfies these assumptions, and one can use mul-
tiple monotone functions of the original instrument as
instruments. Second, if one has a single instrument in
combination with exogenous covariates, then one can
use interactions of the instrument and the covariates to
generate additional instruments.

Consider, for example, the Fulton fish market study
by Graddy (1995, 1996). Graddy uses weather condi-
tions as an instrument that affects supply but not de-
mand. Specifically, she measures wind speed and wave
height, giving her two basic instruments. She also con-
structs functions of these basic instruments, such as in-
dicators that the wind speed or wave height exceeds
some threshold.

A.2 The Just-Identified Case with no
Additional Covariates

The traditional approach to estimation in this case is
to use what is known in the econometrics literature as
the instrumental variables estimator. In the case with-
out additional exogenous covariates, the most widely
used estimator is simply the ratio of two covariances:

β̂1,iv = ĉov(Yi,Zi)

ĉov(Xi,Zi)

= (1/N)
∑N

i=1(Yi − Y )(Zi − Z)

(1/N)
∑N

i=1(Xi − X)(Zi − Z)
,

where Y , Z and X denote sample averages. If the in-
strument Zi is binary, this is also known as the Wald
estimator:

β̂1,iv = Y 1 − Y 0

X1 − X0
,

where for z = 0,1

Y z = 1

Nz

∑
i:Zi=z

Yi, Xz = 1

Nz

∑
i:Zi=z

Xi,

and N1 = ∑N
i=1 Zi and N0 = ∑N

i=1(1 − Zi).
One can interpret this estimator in two different

ways. These interpretations are useful for motivat-
ing extensions to settings with multiple instruments
and additional exogenous regressors. First, the indirect
least squares interpretation. This relies on first estimat-
ing separately the two reduced form regressions, the
regressions of the outcome on the instrument:

Yi = π10 + π11 · Zi + ε1i ,

and the regression of the endogenous regressor on the
instrument:

Xi = π20 + π21 · Zi + ε2i .

The indirect least squares estimator is the ratio of the
least squares estimates of π11 and π21, or β̂1,ils =
π̂11/π̂21. Note that in the randomized experiment ex-
ample where Xi and Zi are binary, the π11 and π12 are
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the intention-to-treat effects, with π̂11 = Y 1 − Y 0 and
π̂12 = X1 − X0.

Second, I discuss the two-stage-least-squares inter-
pretation of the instrumental variables estimator. First,
estimate the reduced form regression of the treatment
on the instruments and the exogenous covariates. Cal-
culate the predicted value for the endogenous regressor
from this regression:

X̂i = π̂20 + π̂21 · Zi.

The estimate the regression of the outcome on the pre-
dicted endogenous regressor and the additional covari-
ates,

Yi = β0 + β1X̂i + ηi,

by least squares to get the TSLS estimator β̂tsls. In this
just-identified setting, the three estimators for β1 are
numerically identical: β̂1,iv = β̂1,ils = β̂1,tsls.

A.3 The Just-Identified Case with
Additional Covariates

In most econometric applications, the instrument is
not physically randomized. There is in those cases no
guarantee that the instrument is independent of the po-
tential outcomes. Often researchers use covariates to
weaken the requirement on the instrument to condi-
tional independence given the exogenous covariates. In
addition, the additional exogenous covariates can serve
to increase precision. In that case with additional co-
variates, the estimation strategy changes slightly. The
two reduced form regressions now take the form

Yi = π10 + π11 · Zi + π ′
12Vi + ε1i ,

and the regression of the endogenous regressor on the
instrument:

Xi = π20 + π21 · Zi + π ′
22Vi + ε2i .

The indirect least squares estimator is again the ratio of
the least squares estimates of π11 and π21, or β̂1,ils =
π̂11/π̂21.

For the two-stage-least-squares estimator, we again
first estimate the regression of the endogenous regres-
sor on the instrument, now also including the exoge-
nous regressors. The next step is to predict the endoge-
nous covariate:

X̂i = π̂20 + π̂21 · Zi + π̂ ′
22Vi.

Finally, the outcome is regressed on the predicted value
of the endogenous regressor and the actual values of
the exogenous variables:

Yi = β0 + β1X̂i + β ′
2Vi + ηi.

The TSLS estimator is again identical to the ILS esti-
mator.

For inference, the traditional approach is to assume
homoscedasticity of the residuals Yi − β0 − β1Xi −
β ′

2Vi with variance σ 2
ε . In large samples, the distribu-

tion of the estimator β̂iv is approximately normal, cen-
tered around the true value β1. Typically, the variance
is estimated as

V̂ = σ̂ 2
ε ·

⎛⎜⎝
⎛⎜⎝ 1

X̂i

Vi

⎞⎟⎠
⎛⎜⎝ 1

X̂i

Vi

⎞⎟⎠
′⎞⎟⎠

−1

.

See the textbook discussion in Wooldridge (2010).

A.4 The Over-Identified Case

The second case of interest is the overidentified case.
The main equation remains

Yi = β0 + β1Xi + β ′
2Vi + εi,

but now the instrument Zi has dimension K > 1.
We continue to assume that the residuals εi are inde-
pendent of the instruments with mean zero and vari-
ance σ 2

ε . This case is the subject of a large litera-
ture, and many estimators have been proposed. I will
briefly discuss two. For a more detailed discussion, see
Wooldridge (2010).

A.5 Two-Stage-Least-Squares

The TSLS approach extends naturally to the setting
with multiple instruments. First, estimate the reduced
form regression of the endogenous variable Xi on the
instruments Zi and the exogenous variables Vi ,

Xi = π20 + π ′
21Zi + π ′

22Vi + ε2i ,

by least squares. Next, calculate the predicted value,

X̂i = π̂20 + π̂ ′
21Zi + π̂ ′

22Vi.

Finally, regress the outcome on the predicted value
from this regression:

Yi = β0 + β1X̂i + β ′
2Vi + ηi.

The fact that the dimension of the instrument Zi is
greater than one does not affect the mechanics of the
procedure.

To illustrate this, consider the Graddy Fulton Fish
Market data. Instead of simply using the binary indica-
tor stormy/not-stormy as the instrument, we can use the
trivalued weather indicator, stormy/mixed/fair to gen-
erate two instruments. This leads to TSLS estimates
equal to

β̂1,tsls = −1.014 (s.e. 0.384).
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A.6 Limited-Information-Maximum-Likelihood

The second most popular estimator in this over-
identified setting is the limited-information-maximum-
likelihood (LIML) estimator, originally proposed by
Anderson and Rubin (1949) in the statistics literature.
The likelihood is based on joint normality of the joint
endogenous variables, (Yi,Xi)

′, given the instruments
and exogenous variables (Zi,Vi):(

Yi

Xi

) ∣∣∣∣Zi,Vi ∼ N
((

π10 + β1π
′
21Zi + π ′

12Vi

π20 + π ′
21Zi + π ′

22Vi

)
,�

)
.

The LIML estimator can be expressed in terms of some
eigenvalue calculations, so that it is computationally
fairly simple, though more complicated than the TSLS
estimator which only requires matrix inversion. Al-
though motivated by a normal-distribution-based like-
lihood function, the LIML estimator is consistent under
much weaker conditions, as long as (ε1i , ε2i )

′ are inde-
pendent of (Zi,Vi) and the model (A.1) is correct with
εi independent of (Zi,Vi).

Both the TSLS and LIML estimators are consistent
and asymptotically normally distributed with the same
variance. In the just-identified case, the two estima-
tors are numerically identical. The variance can be es-
timated as in the just-identified case as

V̂ = σ̂ 2
ε ·

⎛⎜⎝
⎛⎜⎝ 1

X̂i

Vi

⎞⎟⎠
⎛⎜⎝ 1

X̂i

Vi

⎞⎟⎠
′⎞⎟⎠

−1

.

In practice, there can be substantial differences be-
tween the TSLS and LIML estimators when the in-
struments are weak (see Section 7.5) or when there are
many instruments (see Section 7.6), that is, when the
degree of overidentification is high.

For the fish data, the LIML estimates are

β̂1,liml = −1.016 (s.e. 0.384).

A.7 Testing the Over-Indentifying Restrictions

The indirect least squares procedure does not work
well in the case with multiple instruments. The two re-
duced form regressions are

Xi = π20 + π ′
21Zi + π ′

22Vi + ε2i

and

Yi = π10 + π ′
11Zi + π ′

12Vi + ε1i .

If the model is correctly specified, the K-component
vector π11 should be equal to β1 · π21. However, there
is nothing in the reduced form estimates that imposes

proportionality of the estimates. In principle, we can
use any element of the K-component vector or ratios
π̂21/π11 as an estimator for β1. If the assumption that
ε1i is independent of Zi is true for each component
of the instrument, all estimators will estimate the same
object, and differences between them should be due to
sampling variation. Comparisons of these K estimators
can therefore be used to test the assumptions that all
instruments are valid.

Although such tests have been popular in the econo-
metrics literature, they are also sensitive to the other
maintained assumptions in the model, notably linearity
in the endogenous regressor and the constant effect as-
sumption. In the local-average-treatment-effect set up
from Section 4.5, differences in estimators based on
different instruments can simply be due to the fact that
the different instruments correspond to different popu-
lations of compliers.
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