On the Stability of Conditional Bases in $L^2[-\pi, \pi]$

Akihiro NAKAMURA

Tokai University

Abstract. We consider the conditions for the multiplication by a weight w(t) that make the system $\{w(t)e^{i\lambda_nt}\}$ a conditional basis for $L^2[-\pi,\pi]$. Furthermore, some stability result is investigated on such bases.

1. Introduction

A sequence $\{x_n\}$ of vectors in a Banach space X is said to be a *bounded basis* for X if it satisfies the following conditions,

(i) to each $x \in X$ there corresponds a unique sequence $\{\alpha_n\}$ of scalars such that

$$x = \sum_{n} \alpha_n x_n$$

with respect to the norm, and

(ii)
$$0 < \inf_{n} \|x_n\| \le \sup_{n} \|x_n\| < \infty.$$

Moreover a basis $\{x_n\}$ is said to be an *unconditional basis* if every convergent series of the form $\sum_n \alpha_n x_n$ is unconditionally convergent. Especially it is said to be a *Riesz basis* if X is a Hilbert space. The basis $\{x_n\}$ is said to be a *conditional basis* if it is non-unconditional. About the theory of bases in a Banach space, we refer to Lindenstrauss and Tzafriri [LT] or Singer [S]. In this note, we deal with the space $L^2[-\pi,\pi]$ of square summable functions on $[-\pi,\pi]$ as X and the system $\{w(t)e^{i\lambda_n t}\}$ multiplied by a nonnegative measurable function w(t) as $\{x_n\}$, where w(t) is called *weight*. As usual, we identify two functions f and g on $[-\pi,\pi]$, if f(x)=g(x) for almost every x in $[-\pi,\pi]$.

EXAMPLE A (see [S, Ch. II, Example 11.1 and Example 14.3]). The system $\{e^{int}\}_{n=-\infty}^{\infty}$ is a Riesz basis for $L^2[-\pi,\pi]$ and a conditional basis for $L^p[-\pi,\pi]$ with 1 .

The class of Riesz bases is so large that the existence of conditional bases is an important problem. Babenko gave the following examples in [B].

Received March 26, 2008; revised September 12, 2008 2000 Mathematical Subject Classification: 42C15, 42C30, 42C99 Key words: Riesz bases, conditional bases, Muckenhoupt condition (A₂) THEOREM A ([B, p.160]; see [S, p. 428, Example 14.4]). The systems

$$\{|t|^{-\beta}e^{int}\}_{n=-\infty}^{\infty}$$
 and $\{|t|^{\beta}e^{int}\}_{n=-\infty}^{\infty}$

with $0 < \beta < 1/2$, are bounded conditional bases for $L^2[-\pi, \pi]$.

We say that a nonnegative measurable function w(t) on the real line **R** satisfies the *Muckenhoupt condition* (A_2) if

$$\left(\frac{1}{|I|}\int_{I}w(t)dt\right)\cdot\left(\frac{1}{|I|}\int_{I}w(t)^{-1}dt\right)\leq K,$$

where I is any finite interval of \mathbf{R} and K is a positive constant independent of I.

Now, we consider the system $\{w(t)e^{int}\}_{n=-\infty}^{\infty}$ for a nonnegative measurable function w(t). By applying Theorem 8 in [HMW] with p=2, a necessary and sufficient condition for this system to be a basis of $L^2[-\pi,\pi]$ is that $w^2(t)$ satisfies the Muckenhoupt condition (A_2) . Moreover, when w(t) is unbounded, we see that $\{w(t)e^{int}\}_{n=-\infty}^{\infty}$ becomes a conditional basis by the same way as in the proof of [B, p. 160] or [S, p. 353] in the case of $w(t) = |t|^{-\beta}$. Therefore, by biorthogonality, we also find that $\{w(t)^{-1}e^{int}\}_{n=-\infty}^{\infty}$ becomes a conditional basis. We obtain a similar result when $w(t)^{-1}$ is unbounded. In addition, we remark that the operator $T_w(f) = wf$ is an isomorphism on $L^2[-\pi,\pi]$ if w(t) and $w(t)^{-1}$ are bounded at the same time. Then, $\{w(t)e^{int}\}_{n=-\infty}^{\infty}$ becomes a Riesz basis of $L^2[-\pi,\pi]$. By the above obserbation, Theorem A may be extended as follows:

THEOREM B. Let $w(t) \geq 0$ be a function with period 2π . Then the system $\{w(t)e^{int}\}_{n=-\infty}^{\infty}$ (or $\{w(t)^{-1}e^{int}\}_{n=-\infty}^{\infty}$) is a conditional basis for $L^2[-\pi,\pi]$ if and only if

- (1) the function $w^2(t)$ satisfies the Muckenhoupt condition (A_2) , and
- (2) one of the functions w(t), $w(t)^{-1}$ is unbounded.

Tha same result is stated in Kazarian [K, p. 241]. Olevskii [O, Corollary 1] gave conditions under which multiplication by a bounded measurable function in $L^2[a,b]$ transforms a complete orthonormal system into a conditional basis. By the way, it is supposed that w(t) and $f \in L^2[-\pi,\pi]$ have the period of 2π in Theorems A and B. This is due to the fact that every exponential function e^{int} has the period of 2π . On the other hand, generally, the nonharmonic functions $e^{i\lambda_n t}$ have no period 2π . In this note, we obtain some results for conditional bases about the nonharmonic case which does not assume the periodicity. In what follows we always assume that w(t) and f(t) are 0 almost everywhere outside the interval $[-\pi,\pi]$. Then we find some conditions on w(t) under which $\{w(t)e^{i\lambda_n t}\}$ becomes a conditional basis for $L^2[-\pi,\pi]$. First, we give some sufficient conditions (Proposition 2.1). Using the conditions and an arguement in [Y1, Theorem 1], we investigate the stability of conditional bases.

2. Main Results

Following [G], we define the *conjugate function*,

$$\tilde{f}(t) = \frac{1}{\pi} \lim_{\varepsilon \to +0} \int_{\varepsilon < |t-s| < \pi} \frac{f(s)}{2 \tan\left(\frac{t-s}{2}\right)} ds$$

and the Hilbert transform,

$$Hf(t) = \frac{1}{\pi} \lim_{\varepsilon \to +0} \int_{\varepsilon < |t-s| < \pi} \frac{f(s)}{x - s} ds$$

for $f \in L^2[-\pi, \pi]$. We will simply express $\tilde{f}(t)$ as

$$\tilde{f}(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(s)}{2 \tan\left(\frac{t-s}{2}\right)} ds.$$

It is well known that Hf(t) exists almost everywhere for $f \in L^2[-\pi, \pi]$. Consequently, $\tilde{f}(t)$ also exists almost everywhere for $f \in L^2[-\pi, \pi]$ (see [G, p. 105]). From now on, we denote by δ , C, C' and C'' positive constants such that C, C' and C'' depend only on δ .

LEMMA 2.1. Assume that a function w(t) on **R** satisfies the following conditions,

- (i) $w(t) \ge \delta > 0$, $-\pi \le t \le \pi$, and
- (ii) $w^2(t)$ satisfies the Muckenhoupt condition (A_2) .

Then

$$\left(\int_{-\pi}^{\pi} \left| \tilde{f}(t) \right|^2 w^2(t) dt \right)^{\frac{1}{2}} \le C \left(\int_{-\pi}^{\pi} |f(t)|^2 w^2(t) dt \right)^{\frac{1}{2}} \tag{2.1}$$

for $f \in L^2[-\pi, \pi]$.

PROOF. When w(t) and f(t) are functions with period 2π , it is known that the condition (ii) is equivalent to the inequality (2.1) by [HMW, Theorem 1].

Let $f \in L^2[-\pi, \pi]$. Then we have

$$||f||_2 \le \delta^{-1} \left(\int_{-\pi}^{\pi} |f(t)|^2 w^2(t) dt \right)^{\frac{1}{2}}$$

by the condition (i) for w(t). And we see from (1.6) in Garnett [G, p. 105] that

$$\left| \tilde{f}(t) \right| \le |Hf(t)| + \frac{2}{\pi} ||f||_1$$

for $f \in L^2[-\pi, \pi]$. Together with [HMW, Theorem 9], we have

$$\begin{split} &\left(\int_{-\pi}^{\pi} \left| \tilde{f}(t) \right|^{2} w^{2}(t) dt \right)^{\frac{1}{2}} \\ &\leq \left(\int_{-\pi}^{\pi} |Hf(t)|^{2} w^{2}(t) dt \right)^{\frac{1}{2}} + \frac{2}{\pi} \|f\|_{1} \left(\int_{-\pi}^{\pi} w^{2}(t) dt \right)^{\frac{1}{2}} \\ &\leq \left(\int_{-\infty}^{\infty} |Hf(t)|^{2} w^{2}(t) dt \right)^{\frac{1}{2}} + C \|f\|_{2} \\ &\leq C' \left(\int_{-\infty}^{\infty} |f(t)|^{2} w^{2}(t) dt \right)^{\frac{1}{2}} + C \|f\|_{2} \\ &= C' \left(\int_{-\pi}^{\pi} |f(t)|^{2} w^{2}(t) dt \right)^{\frac{1}{2}} + C \|f\|_{2} \\ &\leq C'' \left(\int_{-\pi}^{\pi} |f(t)|^{2} w^{2}(t) dt \right)^{\frac{1}{2}} . \end{split}$$

Now, we give a sufficient condition on w(t) where $\{w(t)e^{i\lambda_n t}\}$ is a conditional basis for $L^2[-\pi, \pi]$ without assuming the periodicity of the functions w(t) and $f \in L^2[-\pi, \pi]$.

PROPOSITION 2.1. Assume that a function w(t) on \mathbf{R} satisfies the following conditions,

- (i) $w(t) \ge \delta > 0, -\pi \le t \le \pi$,
- (ii) w(t) is unbounded on $-\pi \le t \le \pi$, and
- (iii) $w^2(t)$ satisfies the Muckenhoupt condition (A_2) .

Then the systems

$$\{w(t)e^{int}\}_{n=-\infty}^{\infty}$$
 and $\{w(t)^{-1}e^{int}\}_{n=-\infty}^{\infty}$

are bounded conditional bases for $L^2[-\pi, \pi]$.

PROOF. We use the argument in [S, Ch. II, §11, Example 11.2], which rests on the periodicity of $f \in L^2[-\pi, \pi]$ to evaluate the convolution operator. As we deal with the non-periodic case, it is necessary to evaluate it without using the periodicity of $f \in L^2[-\pi, \pi]$.

Now, recall that the Dirichlet kernel $D_n(s)$ is represented as

$$D_n(s) = \sum_{k=-n}^n e^{iks} = \frac{\sin\left(n + \frac{1}{2}\right)s}{\sin\frac{s}{2}}.$$

Denote by $S_n(f)$ the partial sum of $f \in L^2[-\pi, \pi]$ associated with the system $\{w(t)e^{int}\}_{n=-\infty}^{\infty}$. Since

$$\{w(t)e^{int}\}_{n=-\infty}^{\infty}$$
 and $\{w(t)^{-1}e^{int}\}_{n=-\infty}^{\infty}$

are biorthogonal, we have

$$S_{n}(f)(t) = \sum_{k=-n}^{n} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)w(s)^{-1} e^{-iks} ds\right) w(t)e^{ikt}$$

$$= w(t) \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)w(s)^{-1} \sum_{k=-n}^{n} e^{ik(t-s)} ds$$

$$= \frac{1}{\pi} w(t) \int_{-\pi}^{\pi} f(s)w(s)^{-1} \frac{\sin\left(n + \frac{1}{2}\right)(t-s)}{2\sin\left(\frac{t-s}{2}\right)} ds$$

$$= \frac{1}{\pi} w(t) \left\{ \int_{-\pi}^{\pi} f(s)w(s)^{-1} \frac{\sin n(t-s)}{2\tan\left(\frac{t-s}{2}\right)} ds + \frac{1}{2} \int_{-\pi}^{\pi} f(s)w(s)^{-1} \cos n(t-s) ds \right\}.$$

It is easy to see that

$$\left| \int_{-\pi}^{\pi} f(s)w(s)^{-1} \cos n(t-s) ds \right| \le C \|f\|_{2}.$$

Next, if we set

$$g_1(s) = f(s)w(s)^{-1}\sin ns$$
, $g_2(s) = f(s)w(s)^{-1}\cos ns$,

we have

$$\left| \frac{1}{\pi} w(t) \int_{-\pi}^{\pi} f(s) w(s)^{-1} \frac{\sin n(t-s)}{2 \tan \left(\frac{t-s}{2}\right)} ds \right|$$

$$= \left| \frac{1}{\pi} w(t) \int_{-\pi}^{\pi} f(s) w(s)^{-1} \frac{\sin nt \cos ns - \cos nt \sin ns}{2 \tan \left(\frac{t-s}{2}\right)} ds \right|$$

$$= \left| \frac{1}{\pi} w(t) \sin nt \int_{-\pi}^{\pi} \frac{f(s) w(s)^{-1} \cos ns}{2 \tan \left(\frac{t-s}{2}\right)} ds - \frac{1}{\pi} w(t) \cos nt \int_{-\pi}^{\pi} \frac{f(s) w(s)^{-1} \sin ns}{2 \tan \left(\frac{t-s}{2}\right)} ds \right|$$

$$= |w(t) (\tilde{g}_{2}(t) \sin nt - \tilde{g}_{1}(t) \cos nt)|$$

$$\leq w(t) (|\tilde{g}_{1}(t)| + |\tilde{g}_{2}(t)|).$$

Since $w(t) |g_i(t)| \le |f(t)|$ for i = 1, 2, it follows from Lemma 2.1 that

$$\left\{ \int_{-\pi}^{\pi} w^{2}(t) \left(|\tilde{g}_{1}(t)| + |\tilde{g}_{2}(t)| \right)^{2} dt \right\}^{\frac{1}{2}} \\
\leq \left(\int_{-\pi}^{\pi} w^{2}(t) |\tilde{g}_{1}(t)|^{2} dt \right)^{\frac{1}{2}} + \left(\int_{-\pi}^{\pi} w^{2}(t) |\tilde{g}_{2}(t)|^{2} dt \right)^{\frac{1}{2}} \\
\leq C \left\{ \left(\int_{-\pi}^{\pi} w^{2}(t) |g_{1}(t)|^{2} dt \right)^{\frac{1}{2}} + \left(\int_{-\pi}^{\pi} w^{2}(t) |g_{2}(t)|^{2} dt \right)^{\frac{1}{2}} \right\} \\
\leq 2C \|f\|_{2}.$$

Thus we get

$$\left(\int_{-\pi}^{\pi} |S_n(f)(t)|^2 dt\right)^{\frac{1}{2}} \\
\leq C \left[\int_{-\pi}^{\pi} w^2(t) \left\{ (|\tilde{g}_1(t)| + |\tilde{g}_2(t)|) + C \|f\|_2 \right\}^2 dt \right]^{\frac{1}{2}} \\
\leq C \left[\left\{\int_{-\pi}^{\pi} w^2(t) (|\tilde{g}_1(t)| + |\tilde{g}_2(t)|)^2 dt\right\}^{\frac{1}{2}} + C \|f\|_2 \left(\int_{-\pi}^{\pi} w^2(t) dt\right)^{\frac{1}{2}} \right] \\
\leq C \left(2C \|f\|_2 + C' \|f\|_2\right) \\
= C'' \|f\|_2.$$

This result implies that

$$\sup_{n}||S_n||<\infty.$$

By the similar way as in the case where $w(t) = |t|^{-\beta}$ (0 < β < 1/2) in [S, p. 353], we find that $\{w(t)e^{int}\}_{n=-\infty}^{\infty}$ is complete in $L^2[-\pi,\pi]$ and becomes a bounded conditional basis.

Finally, by biorthogonality, $\{w(t)^{-1}e^{int}\}_{n=-\infty}^{\infty}$ is also a bounded conditional basis.

THEOREM 2.1. Let M, L and δ be positive constants. Assume that a function w(t) on \mathbf{R} satisfies the following conditions,

- (i) $w(t) \ge \delta > 0, -\pi \le t \le \pi$,
- (ii) w(t) is unbounded and $|t|w(t) \leq M$, $-\pi \leq t \leq \pi$, and
- (iii) $w^2(t)$ satisfies the Muckenhoupt condition (A_2) .

If a sequence $\{\lambda_n\}$ of complex numbers satisfies the inequality $|\lambda_n - n| \le L$ with

$$0 < L < \frac{1}{\pi} \log \left(\frac{\pi \delta}{M} + 1 \right) ,$$

then $\{w(t)e^{i\lambda_n t}\}_{n=-\infty}^{\infty}$ forms a bounded conditional basis for $L^2[-\pi,\pi]$.

PROOF. We see by Proposition 2.1 that the system $\{w(t)e^{int}\}_{n=-\infty}^{\infty}$ is a bounded conditional basis for $L^2[-\pi,\pi]$. By regarding [S, p. 84, Theorem 9.1], it suffices to find a constant θ with $0 < \theta < 1$ such that

$$\left\| \sum_{n} c_n w(t) \left(e^{int} - e^{i\lambda_n t} \right) \right\|_2 \le \theta \left\| \sum_{n} c_n w(t) e^{int} \right\|_2 \tag{2.2}$$

for any finite sequence $\{c_n\}$ of complex numbers. By virtue of (i), we observe

$$\left\| \sum_{n} c_n e^{int} \right\|_2 \le \frac{1}{\delta} \left\| \sum_{n} c_n w(t) e^{int} \right\|_2. \tag{2.3}$$

By the same way as in the proof of [Y1, Theorem 1], we have

$$\left\| \sum_{n} c_{n} w(t) \left(e^{int} - e^{i\lambda_{n}t} \right) \right\|_{2} = \left\| \sum_{n} c_{n} w(t) \left(e^{i(\lambda_{n} - n)t} - 1 \right) e^{int} \right\|_{2}$$

$$= \left\| \sum_{n} c_{n} w(t) \sum_{k=1}^{\infty} \frac{\left\{ i(\lambda_{n} - n) \right\}^{k}}{k!} t^{k} e^{int} \right\|_{2}$$

$$= \left\| \sum_{k=1}^{\infty} \sum_{n} c_{n} w(t) \frac{\left\{ i(\lambda_{n} - n) \right\}^{k}}{k!} t^{k} e^{int} \right\|_{2}$$

$$\leq \sum_{k=1}^{\infty} \left\| \frac{t^{k} w(t)}{k!} \sum_{n} c_{n} \left\{ i(\lambda_{n} - n) \right\}^{k} e^{int} \right\|_{2}.$$

$$(2.4)$$

We also obtain

$$|t^{k}w(t)| = |t^{k-1}| \cdot |t|w(t) \le \pi^{k-1} \cdot M \tag{2.5}$$

by the condition (ii). Combining (2.3), (2.4) and (2.5), we obtain

$$\left\| \sum_{n} c_{n} w(t) \left(e^{int} - e^{i\lambda_{n}t} \right) \right\|_{2} \leq \sum_{k=1}^{\infty} \frac{\pi^{k-1} \cdot M}{k!} \left\| \sum_{n} c_{n} \{ i (\lambda_{n} - n) \}^{k} e^{int} \right\|_{2}$$

$$= \frac{M}{\pi} \sum_{k=1}^{\infty} \frac{\pi^{k}}{k!} \left(\sum_{n} |c_{n}|^{2} \cdot |\lambda_{n} - n|^{2k} \right)^{\frac{1}{2}}$$

$$\leq \frac{M}{\pi} \sum_{k=1}^{\infty} \frac{\pi^{k} \cdot L^{k}}{k!} \left(\sum_{n} |c_{n}|^{2} \right)^{\frac{1}{2}}$$

$$= \frac{M}{\pi} \left(e^{\pi L} - 1 \right) \left\| \sum_{n} c_{n} e^{int} \right\|_{2}$$

$$\leq \frac{M}{\pi \delta} \left(e^{\pi L} - 1 \right) \left\| \sum_{n} c_{n} w(t) e^{int} \right\|_{2}.$$

Observe that L satisfies

$$\frac{M}{\pi\delta}\left(e^{\pi L}-1\right)<1.$$

If we take

$$\theta = \frac{M}{\pi \delta} \left(e^{\pi L} - 1 \right) \,,$$

then (2.2) holds.

REMARK 2.1. We remark that $\{w(t)e^{i\lambda_nt}\}$ and $\{w(t)^{-1}e^{i\lambda_nt}\}$ are not biorthogonal in general. Therefore, $\{w(t)^{-1}e^{i\lambda_nt}\}$ is not necessary a conditional basis even if $\{w(t)e^{i\lambda_nt}\}$ is a conditional basis.

PROBLEM A (e.g., see [Y2, p. 165]). Is there a basis of complex exponentials $\{e^{i\lambda_n t}\}$ that is a conditional basis for $L^2[-\pi, \pi]$?

Recently, a partial answer to this problem is obtained by [N]. Let $\{\lambda_n\}$ and $\{\mu_n\}$ be defined by

$$\lambda_n = \begin{cases} n - \alpha \,, & n > 0 \,, \\ n + \alpha \,, & n < 0 \,, \end{cases} \tag{2.6}$$

and

$$\mu_n = \begin{cases} n + \alpha , & n > 0 ,\\ 0 , & n = 0 ,\\ n - \alpha , & n < 0 , \end{cases}$$
 (2.7)

for $0 < \alpha < 1$. If the completeness is deleted from the definition of a Riesz basis, such a sequence is said to be a *Riesz sequence*. A *basic sequence* is similarly defined.

THEOREM C ([N, Corollary 2.1]). Let $\{\gamma_n\}$ be a sequence given by (2.6) or (2.7), then $\{e^{i\gamma_n t}\}$ is either a Riesz sequence or not a basic sequence in $L^2[-\pi, \pi]$.

In other words, if the systems $\{e^{i\lambda_n t}\}$ and $\{e^{i\mu_n t}\}$ for the sequences given by (2.6) and (2.7) are bases, they are Riesz bases. Consequently, Problem A has a negative solution for these sequences. It is a problem whether the same results hold or not about other sequences.

PROBLEM 2.1. We suppose that w(t) satisfies the conditions (i) and (iii) in Theorem 2.1. If the system $\{w(t)e^{i\lambda_n t}\}$ is a conditional basis for $L^2[-\pi,\pi]$, then is the function w(t) unbounded on $-\pi \le t \le \pi$?

If it is affirmative for $\{\lambda_n\}$ such that $|\lambda_n - n| \le L$ with a positive constant L, we see that every basis $\{e^{i\lambda_n t}\}$ for $L^2[-\pi, \pi]$ is an unconditional basis, i.e., a Riesz basis. If it is negative, in other words, there exists such a bounded function w(t), then $\{e^{i\lambda_n t}\}$ is a conditional basis for $L^2[-\pi, \pi]$.

ACKNOWLEDGMENT. The author would like to express to the referee my gratitude for his careful reading and useful comments.

References

- [B] K.I. BABENKO, On conjugate functions, Dokl. Akad. Nauk SSSR 62 (1948), 157–160.
- [G] J.B. GARNETT, Bounded analytic functions, Academic Press, New York, 1981.

- [HMW] R. HUNT, B. MUCKENHOUPT and R. WHEEDEN, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251.
- [K] K.S. KAZARIAN, On bases and unconditional bases in the spaces $L^p(d\mu)$, $1 \le p < \infty$, Studia. Math. **71** (1982), 227–249.
- [LT] LINDENSTRAUSS and TZAFRIRI, Classical Banach Spaces I and II, Springer-Verlag, Berlin and New York, 1977, 1979.
- [N] A. NAKAMURA, Basis properties and complements of complex exponential systems, Hokkaido Math. J. 36 (2007), 195–208.
- [O] A. M. OLEVSKII, On operators generating conditional bases in a Hilbert space, Mathematical Notes 12 (1972), 476–482 (translated from Mat. Zametki, 12, 1972, 73–84).
- [S] I. SINGER, Bases in Banach spaces I, Springer Verlag, Berlin and New York, 1970.
- [Y1] R. M. YOUNG, On the Stability of Exponential Bases in $L^2[-\pi, \pi]$, Proc. Amer. Math. Soc. **100** (1987), 117–122.
- [Y2] R. M. YOUNG, An Introduction to Nonharmonic Fourier Series, revised first edition, Academic Press, 2001.

Present Address:

DEPARTMENT OF MATHEMATICS,

TOKAI UNIVERSITY,

316 NISHINO, NUMAZU, SHIZUOKA, 410-0395 JAPAN.

e-mail: a-nakamu@wing.ncc.u-tokai.ac.jp