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ON ADMISSIBLE DATA OF CAUCHY PROBLEM

FOR SECOND ORDER EQUATIONS WITH

CONSTANT COEFFICIENTS

BY HARUKI YAMADA

§1. Introduction.

Let P(D) be a linear partial differential operator with constant coefficients
and let X be a hyperplane. It is well known that if P(D) is hyperbolic with
respect to N which is a normal vector of X, then the Cauchy problem for P(D)
with any given C°°-data on X has unique solution defined on both sides of X
(see. [2] Chap. V). On the contrary, if P(D) is not hyperbolic with respect to
N, Cauchy data of the Cauchy problem which have solutions make a proper
subset of the class of C°°-functions. In this note we shall consider the pro-
perties of admissible data (see. Definition 1.1) for such not necessary hyperbolic
Cauchy problems. We shall restrict our considerations to operators of second
order with real constant coefficients.

Let P(D)=P(DX, Dy) be a linear partial differential operator acting on Rn+1

with the following form :

(1.1) P=P(DX, Dy)=a0Dy

2+Σι α.^^.+Σ atJDXiDXJ+b0Dy+} blDXί+c ,
1 — 1 I, .7 = 1 1 = 1

where a0,
 aι, aιj, b0, bit c are real constant coefficients, x=(xlt •••, Xn)<=Rn, and

Dy=d/dy, DXi=d/dxl (i=l, •••, ri). Without loss of generality we can assume
that alj=aji. We note the characteristic polynomial of P(D) as follows:

(1.2) P(ξ, τ)=α0
z=l ^,J = 1 ι = l

In what follows, we always assume that the hyperplane

is non-characteristic for P(D) (i.e. P(0, I)=α0^=0). Consider the following Cauchy
problem : For given functions /(*), g(x) which are defined in some neighbour-
hood of 0 in X, find the solution u=u(x, y) of
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P(D)u=Q on some neighbourhood Ω of 0 in Rn+1,
(1-3)

u\y=0=f(x), Dyu\y=0=g(x) on ω=

DEFINITION 1.1. (/, ^)eC°°(^)xC00(Z) are called admissible data for the
Cauchy problem (1.3) at the origin if there is an open neighbourhood Ω of Oe
Rn+1 and there is a function u(x, y) e C°°(β) which satisfies (1.3). By D(P) we
mean the vector space of all such admissible data. For the simplicity we shall
often call (f,g)<ΞD(P) the admissible data for P(Π).

Remark 1.1. That (/, g)^D(P) is a local property of the function /(*) and
g(x). Thus we can assume that D(P) is a subspace of

(C°°xC00)o=the germs at the origin of C°°-f unctions on X.

We shall often take this interpretation. Then the corresponding solution can
be interpreted as a germ at Oeβn+1 of the sheaf of C°°-f unctions on Rn+1. As
the germ, u is determined uniquely by (/, g).

Remark 1.2. The data (/, g) e D(P) are, in some sense, two sides admissible
data. Similarly, we can define the space of one side admissible data D+(P)
(see. [5]). Roughly speaking, (/, £)eD+(P) means that the Cauchy problem
(1.3) has a solution u which is defined in only one side of X in Rn+l (near 0).
It can be shown that if P(D) is a non-hyperbolic homogeneous operator there
are one side admissible data which are not two sides admissible. Furthermore,
the condition (f,g)^D+(P) does not prescribe the structure of the functions
f(x) and g(x). In fact, generally, for any given f(x\ we can find an appropriate
g(x) such that (/, g)^D+(P). This is not true for (/, g)eD(P). In other words,
when (/, g}^D(P\ f(x) and g(x) have some special regularity properties. In
what follows we shall only consider two sides admissible data.

It is clear that for any given a^R, α^O, D(P}=D(aP\ Thus, in (1.1), we
can assume that α0— 1 without loss of generality. The operator defined by
(1.1) is called hyperbolic with respect to N=(Q, •••, 0, 1) when there is a const-
ant C^O such that

when ξ eβn, |Reτ | >C.

If P(D) is hyperbolic, as is well known (see. [2]), we have

D(F)=(CoβxCβ )0.

On the other hand, we know from the Cauchy-Kovalevsky theorem that for
any P(D\

0— the germs at the origin of real analytic functions on X.

In general this inclusion is proper. When P(D} is elliptic (i.e. p(ξ, τ)^0 for any
(ξ, r)e/2n+1\0 where p(ξ, τ) is the principal symbol of P(D)\ from a well known

regularity theorem for solutions of the elliptic equation P(D)u=Q we have
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It seems that there are some gaps in these situations. Our aim is to fill these
gaps in some sense. We shall prove in §2 that

(I) For any given homogeneous operator

(1.4) P(D)=Dv*+£ atDyDXi+± aτjDx.DXj ,
i=l ι,J=l

there is an operator of the form

(1.5)

such that

For given surjective linear transformation A\Rn-»Rn (i.e. regular nxn
matrix A\ we note

(1.6) DA(P)= {*^(f(Ax\ g(Ax)} (/(*), g(x)}^D(P}} .

Then from (I) we have
(II) For any given p(D) defined by (1.4) there is an orthogonal transforma-

tion and there is an operator

(1.7)

such that

The number of positive and negative coefficients cl are uniquely determined by
P(D\

Thus for studying regularity properties of admissible data for second order
operators, it is sufficient to study thats of the operators

(1.8) PkW=Dy*+Dx*+ - +Dx*-DXk^ ------ DXk^ .

For details see §2. There the influences of lower order terms are also dis-
cussed.

Next we shall consider to compare D(p) and D(q) for different operators
p(D), q(D). From (I), we can assume that p(D\ q(D] are of the form (1.5). But
in general we cannot transform p(D), q(D) to the operators of the form (1.7) by
the same matrix A. Thus we have to study the relations of D(p) and D(q)
for the operators of the form (1.5). We shall prove that

(III) Let
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Suppose that there are ξ\ξ2^Rn such that ix^'ί/^ and
l,J = l

Then, for D(p)aD(q\ it is necessary and sufficient that

This will be proved in §3. There we shall see some examples of the rela-
tion D(p)C.D(q).

In [3], John have studied many interesting properties of D(P) and D+(P)
when P(D) is given by

(1.9) P(D)=Dx*-c*(DS+Dx;+Dxf)+k ,

where c, k^R, c^Q. Our methods of proofs are due to him. Studies of admis-
sible data for operators of the form (1.9) are done by Hadamard [1], John [3]
and others. But it seems that there are no general theory. In [4], Kawai have
proved very interesting necessary and sufficient conditions for data to be
admissible in terms of hyperfunction theory. Though, in the category of C°°-
functions, some necessary conditions are knowm by Volterra, Hadamard (see.
[1] pp. 247-261), John (see. [3], §8) and others, those are far from sufficiency
([!]) or difficult to examine ([3]) and general situations are not clear yet even
those of operators of the form (1.8). But in this note we shall be content to
classify and compare the spaces of admissible data without investigating micro-
local structure of them.

I would like to express my sincere gratitude to professor Yoshikazu Hira-
sawa for his encouragements and advices. I also would like to thank Dr.
Nobuhisa Iwasaki to whom I owe the simple proof of Lemma 3.2.

§2. Normal form of the space of admissible data.

Let

(2.1) P(D)=Dy

2+ atDvDXi+ aτjDx.DXj+b0Dy+ btDxt+c .
i=l ι,j=ι J 1=1

At first we recall some basic facts concerning hyperbolic operators. For all
the statements and proofs we refer to [2], Chapter V.

THEOREM 2.1. For given P(D\ the following conditions are equivalent to
each other:

(a) 0(F)=(C-χC-)0.
(b) There is a constant C<=R such that P(ζ, τ)=£θ for all ξ^Rn, τ<=C with

|Reτ |>C.

DEFINITION 2.2. P(D) is called hyperbolic with respect to the real vector
N=(Q, •••(), 1) if the conditions (a) or (b) of the above theorem are valid.
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THEOREM 2.3. When p(D) is a homogeneous operator, the condition (a) of
Theorem 2.1 is equivalent to the condition

(c) For any gixen ξ<^Rn, p(ξ, τ)=0 has only real roots as an equation af τ.

Concerning perturbations of lower order terms we have

THEOREM 2.4. Let p(D) be a homogeneous hyperbolic operator of second order
and let q(D} be an operator of first order. Then in order that p(D)+q(D) be
hyperbolic it is necessary and sufficient that

There is a constant C>0 such that

(2'2) )I^C Σ
l«!+;<2

for all (£, r)eΛn+1.

Especially we know

COROLLARY 2.5. The operator p(D)=Dy

2+Σ,aiDXi

2, α^O, is hyperbolic with

respect to (0, •••, 0, 1). Further, when the operator q(D} is given by

for p(D}+q(D} be hyperbolic, it is necessary and sufficient that

Q for every z— 1, 2, •••, n.

Remark 2.1. If p(Dx, Dy) is hyperbolic with respect to N=(Q, •••, 0, 1) as an
operator acting on (x, j>)-space Rn+1, it is also hyperbolic with respect to Λ/7—
(0, ••-, 0, 1, 0) as an operator acting on (x, y, z)-space Rn+2 where z<=R. This is
not true when we replace "hyperbolic" to "elliptic".

EXAMPLE 2.1. Dy*-Dx* is hyperbolic in (xlt x2, ;y)-space R\ But Dy

2+Dx*
is not elliptic in Λ3.

Next consider non-hyperbolic cases. For any operator P=P(DX1 Dy) we
denote by P=P(DX, Dz) the operator obtained by replacing differentiations with
respect to y by the corresponding differentiations with respect to z. Similary,
for any function u— u(x, y\ we denote u=u(x, z). Note that P and P are con-
sidered as operators acting on (x, y, 0)-sρace Rn+2' The following lemma is
essential.

LEMMA 2.6. Let P(D] and Q(D) be operators acting on (x, y)-space Rn+1. If
Q—P is hyperbolic with respect to N=(Q, •••, 0, 0, 1) as an operator acting on (x,
y, z)-space Rn+\ then

Proof. Let ( f , g ) e D ( P ) be any admissible data for P(D). Then there ex-
ists a solution u(x, y) of the Cauchy problem (1.3) in some full neighbourhood
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of the origin Oe/2n+1. Using this u(x, y), consider the Cauchy problem

r Rw=R(Dx,Dy,Dz}w=Q,
(2.3)

1 w\z=0=u(x, y), Dzw\z=0=DyU(x, y) ,

near the origin of the (x, y, 2)-sρace Rn+2 where we define the operator R=
R(DX, Dy, Dz) by R=Q—P. From the assumption that R is hyperbolic with
respect to N=(Q, — , 0, 0, 1), there is a solution w=w(x, y, z) of (2.3) near the
origin Q^Rn+2. We note that PWΞΞU near Q<=Rn+2. In fact, when we write
W=Pw, W is a solution of the following Cauchy problem :

RW=Q,

near Oejβn+2, since RW=RPw=PRw=Q, W\g=

DzPw\z:=0=PDzw\z=Q=PDyU\z=Q=Q. Thus from the Holmgren's uniqueness
theorem, we have that W=Pw=Q near the origin in Rn+2. Hence from Rw=
(Q—P)w=Q, we have Qw=0. When we define the function v=v(x, y) by v—
v(x, z)=w(x, 0, z), this is a solution of the following Cauchy problem in (x, z)-
space Rn+1 :

f ϋ=0,

* =
since

v\z=v=w(λ, 0, z}\z=0=u(x, 0)=f(x)
and

Dzv\z=0=Dzw(x, 0, z)\g=Q=DyU(x, y)\y^=g(χ) .

Thus we have (f,g)^D(Q) and the proof is complete.

Remark 2.2. That Q—P is hyperbolic with respect to (0, •••, 0, 1) is not a
necessary condition for D(P}dD(Q) in general.

EXAMPLE 2.2. Condsider operators

P(D)=Dy

2-DXl

2-DX2, Q(D}=Dy

2-2DXl

2 ,

acting on R*. Then Q is hyperbolic with respect to (0, 0, 1) but P is not so
(see. Corollary 2.5). Thus

On the other hand, for any cκ=R\Q,

is not hyperbolic with respect to (0, 0, 0, 1).
For homogeneous operator we have the following proposition.
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PROPOSITION 2.7. Let p(D\ q(D} be operators defined by

(2.4)

bυDX{Dx .
= l,j = l

If there is a positive constant c such that the quadratic form

(2.5) C(£)=

is positive semi-definite (i.e. C(f)^0 for all £eΛn), then D(p}c.D(q\

Proof. When there is a positive constant c such that q— cp is hyperbolic
with respect to (0, — , 0, 0, 1), we have from Lemma 2.6 that D(q)^D(cp)=D(p).
Thus for the proof, it is sufficient to show that if the condition (2.5) is valid,
q—cp is hyperbolic. Consider the characteristic polynomial of q—cp;

From Theorem 2.3, it is necessary and sufficient for this to be hyperbolic that

(Σ ̂

= 4cr2+(4Σ
1=1 M = l

for all (f, r)e/2n+1. For this it is necessary and sufficient that

4(Σ cflif t)a-4c Σ

for all ξ^Rn. Thus, if (2.5) is valid for some c, then q—cp is hyperbolic and
this proves the proposition.

Especially we have the following theorem.

THEOREM 2.8. Let p(D} be a homogeneous operator given by the formula
(2.4). Then if we take

with bij=alj—(l/£)aiaj, we have D(p)=D(q).

Proof. Note that the characteristic polynomial of q— p is factored as
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follows :

This shows that q— p is hyperbolic with respect to (0, •••, 0, 1, 0) and with re-
spect to (0, — , 0, 0, 1). Thus from Proposition 2.7, the theorem follows.

Here we note a geometric meaning of the transformation bij—al3— (1/4)0*0,.

DEFINITION 2.9. For homogeneous polynomial

p(ξ, τ)=a0
=ι i, .7=1

we define an open cone I(p) as follows;

={£ eΛn\0; τ^Φτ^ξ}, τ,(£)€=Λ, i=l, 2} ,

where ?*(£) are roots of the equation p(ξ, τ}—0 of r.
Under this definition, it is easy to verify that

PROPOSITION 2.10. Let p(D} and q(D) be as in Theorem 2.8. Then I(p}=I(q).

EXAMPLE 2.3. Let

Since

l(ξ, J?)-X£, f)

we have D(p)=D(q). Note that

By using Theorem 2.8, we have the following corollary which we have
noted in §1.

COROLLARY 2.11. For any given operator p(D} defined by (2.4), there is an
orthogonal matrix A, some positive integers k, I and some positive constants ct, i=
1, •-•, k+l, such that for

(2.6) q(D)=Dy*+ClDXi*+ - +ckDx*-cMDXk^ ----- cMDxk+* ,

we have D(p}=DA(q). Further, if we permit A to be a product of an orthogonal
matrix and a diagonal matrix, we may take ct=l for all i=l, •••, k+l in (2.6).

Remark 2.3. The numbers k, I are determined uniquely by p(D). This will
follow from Theorem 3.1 in §3.

Finally we note a influence of lower order terms. We have only the follow-
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ing theorem.

THEOREM 2.12. Let p(D) be a homogeneous operator defined by (2.4) and let

P(D)=p(D)+b(2Dy+Σί diDxJ+c ,
1 = 1

where b, c are any real constants. Then we have D(P}=D(p}.

Proof. When we take q(D} as

we have

From Theorem 2.4 we know that q—cP is also hyperbolic with respect (0, •••, 0,
1) and (0, •••, 1, 0). Then from Lemma 2.6 the theorem follows.

Remark 2.4. It is well known that when p(D) is hyperbolic or elliptic, for
any first order operator q(D) which satisfies the condition (2.2), we have D(p)=
D(pjrq). I don't know whether this fact is true or not for general operators.

§3. Comparison of the spaces of admissible data.

In this section we shall consider the conditions for D(P}aD(Q) for given
P(D\ Q(D\ We have already proved Proposition 2.7 which was a sufficient
condition for D(P)aD(Q}. Our main result of this section is a necessary and
sufficient condition for this. Without loss of generality we may assume that
homogeneous operators p(D\ q(Π) are given by

(3.1) p(D)=Dy

2+Σ_aljDXiDXj, q(D)=Dy

2+ΣLbijDXίDXj.

We write the characteristic polynomials of p(D), q(D} as follows:

P(ξ, τ)-τ2+^(f), q(ξ, τ)=7

where

If B(ξ) is negative semi-definite (i.e. 5(£)^0 for all ξ <ΞRn), then q(D) is
hyperbolic and thus D(p)dD(q) for all p(D). On the other hand, if A(ξ) is
positive semidefinite (i.e. Λ(ξ)^Q for all ξ<^Rn), then p(D) is an elliptic operator
acting on some linear subspace Λ of Rn. When Λζ^Rn, it is clear that

D(p}d{(f,g)^C00xCco') for every fixed y£ΞRn,

f and g are analytic on {.
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But this inclusion is proper in general.

EXAMPLE 3.1. Let q(D)=Dy

2-}-Dx

2 be an operator acting on (xlt x2, ;y)-space
/23. When we pose the initial data

g(*ι, X2)= exp (— -τf==r) sin -I1- when
I \ V * ' X2

when #2=0 ,

These are C°°-functions and analytic on every line parallel to the ^-axis. On
the other hand when we put, for *2^0,

exp - sin - - ,

this is a solution of the Cauchy problem with data (/, g) on any neighbourhood
of (*!, x2, 0) when *2^0. But we cannot continue this solution to any neigh-
bourhood of (xlt x2, 0) with *2— 0 as a C^-solution since lim u(xlt x2, y) does not

a:2->0

exists. Hence we know that (f,g)&D(q).

Remark 3.1. Let

£M(/,£)eC"(Λ2) ;/(*ι, ^2) and g(xl9 x2} are real

analytic functions of x± for any fixed x2} .

Volterra proved that for the operator p(D}=Dy

2-\-Dx*—Dx*, it is true that
DdD(p) (see [1] p. 248). On the other hand, for the operator q(D)=Dy

2+DXl

2

acting on R3, from Example 3.1 stated above, we have

Note that p(D) is /-hyperbolic in the sense of [4] for

but q(D) is not /-hyperbolic for every /cT*(/22).
When we exclude above two special cases (i.e. B(ξ)^Q for all ξ^Rn or
)^Q for all ξ(=Rn), we have the following theorem.

THEOREM 3.1. Let p(D), q(D] be operators defined by (3.1). Suppose that
B(ξ) is not negative semi-definite and A(ξ) is not positive semi-definite. Then the
following conditions are equivalent :

( i )
(ii)

First we prove the following lemma.

LEMMA 3.2. Suppose that the assumption of the theorem is valid. Then from
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(ii) of the theorem it follows that there is a positive constant c such that

(3.2) A(ξ) - cB(ξ^Q for all ξ e Rn .

Proof. First note that the assumption of the theorem can be stated as
follows :

(3.3) There are ξl, ξ2^Rn such that ^(f1)<0, £(f)>0.

Put

ΓA={ξ eΛ»; Λ(β<0}, ΓB= {

From (3.3) we have Γ^0, Γβ^. Since on Rn\(ΓAVΓB\ A(ξ)-cB(ξ)^Q for
any c>0 and for all ξ^Rn, we only have to find a constant c>0 such that
(3.2) is true on ΓA\JΓB. Put

_. f A(ξ) __. f B(ξ)
^ -~

From (ii) it is clear that c^O, c2^0. Now we shall show that c^^l. For
this, suppose that c1c2<l. Then from (3.3), we can take ξ2^ΓA and ξ1^
such that

where

* — »̂ w J ? —_L I— R^l^ * 2—

For fixed such ξ1, ξ2, consider

where ^(f1, f2), ^(f1, f2) are constants independent to λ^R. Since we have
assumed that c/2<l, by compareing the roots of A^+ζ^O and
0, we know that there must be some λ^R such that

This contradicts to the assumption (ii). Hence we have c^^l and then we
can take a constant c>0 such that c^c^c^1. For such c, we have

for all f eΓ Λ ,

for a1

Since β(f)>0 for all ξeΓs, A(ζ)<0 for all ξeΓA, we have
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and hence on Rn. This proves -the lemma.

Proof of Theorem 3.1. That (ii) o (i) follows from Proposition 2.7 and
Lemma 3.2.

To prove that (i) o (ii), suppose that (ii) is not true. Then there is some
n such that

(3.4)

Clearly £0=£θ. We shall show that under the condition (3.4), there are data
(f,g)^D(p) with ( f , g ) G D ( q ) . This will prove the theorem.

Take a function F(ζ) of one complex variable which is holomorphic in
|ζ|<l, of clss C°° in |ζ|^l with respect to Re ζ and Im ζ and has the circle
|ζ| = l as the natural boundary. We fix such a function. For example, we
may take

F(ζ)=Σe~2nIζC2nI)2

n-\ί

Take τ°, rf such that p(ξ°, τ°)=0, q(ξ°, ?°)=0. From (3.4) we know r°eΛ,
τ°^=0, η°<^iR, 57° ̂ 0. Without loss of generality we can suppose that Inn/X).
Define the function u(x, y) as follows :

(3.5) u(x, y)=F(exp i«*, ξ °

This is well defined and real analytic for x<^Rn, y^Q. Further we have

(3.6) q(D)u=-q(ξ', ?°)F"(exp i«x, f °

when x(ΞRn, y^Q. Note that we may continue ReF(ζ), Im F(ζ) to |ζ |>l as
C°°-functions. But then F/x(ζ) cannot be defined and thus we cannot say that
(3.6) is true for x^Rn, y<0. In fact we can prove that such u(x, y) cannot be
continued to y<Q as a solution of q(D)u—Q.

For this, since ξ°=(ζl°, — , fn0)^0, suppose that f iVO without loss of gener-
ality. Then for the operator r(D) defined by

we have

when x<^Rn, y^Q. Note that the operator r(D) is elliptic in (xlt 3^)-space since
η**ΞiR, 57° 9^0, ξ^ΦQ.

Now suppose that u(x, y) was continued to some full neighbourhood Ω of
Q^Rn+1 as a solution of q(D)u—^. We denote this function by u=u(x, y). Then
if we put U=r(D)u,
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,q(D)U=Q inΩ,

* £7 1, -o=0, DvU\w=Q in Ωn{y=Q] .

Thus from the Holmgrem's theorem, U=r(D)u=Q in some neighbourhood of
Q<=Rn+1. On the other hand, since r(D) is elliptic as an operator acting on
(*ι» O-space, u(x, y) is real analytic with respect to variables xlt y in some
neighbourhood of the origin. Hence F(ζ) must be holomorphic in some neigh-
bourhood of ζ=expi«*, ?0>+3^°) But this is a contradiction since

when ;y<0. Thus when we define

f(x)=u(x, y) I y=Q

g(x)=Dyu(x, y} I ̂ 0

we have ( f , g ) G D ( q ) . On the other hand, when we define the function v—

v(x, y)

— F(exp i«*, ί°>-^^°)) ,

by using the same F(ζ), this is a solution of p(D)v—0 on full space Rn+1 since
. Further,

Hence (f,g)^D(p) and the proof is complete.
Combineing Theorem 3.1 and Proposition 2.10, we have

THEOREM 3.3. Let p(D) and q(D) be homogeneous operators. Assume that
I(p) Φφ, I(q)φRn. Then the following conditions are equivalent.

( i )
(ii)

COROLLARY 3.4. (c.f. [3]). Let

DXί*-b0Dv*-btDX2* ----- bnDXn*,

where α^O, ^^0, a0b0^Q. Then in order that D(p)aD(q), it is necessary and
sufficient that a^bi for every ι=2, •••, n.

As John had pointed out this is related to the phenomena of "total reflec-
tion" of waves (see. [3] p. 254).
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