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A NYSTRÖM METHOD FOR A CLASS OF INTEGRAL
EQUATIONS ON THE REAL LINE WITH APPLICA-

TIONS TO SCATTERING BY DIFFRACTION
GRATINGS AND ROUGH SURFACES

A. MEIER, T. ARENS, S.N. CHANDLER-WILDE AND A. KIRSCH

ABSTRACT. We propose a Nyström/product integration
method for a class of second kind integral equations on the
real line which arise in problems of two-dimensional scalar and
elastic wave scattering by unbounded surfaces. Stability and
convergence of the method is established with convergence
rates dependent on the smoothness of components of the
kernel. The method is applied to the problem of acoustic
scattering by a sound soft one-dimensional surface which is
the graph of a function f , and superalgebraic convergence is
established in the case when f is infinitely smooth. Numerical
results are presented illustrating this behavior for the case
when f is periodic (the diffraction grating case). The Nyström
method for this problem is stable and convergent uniformly
with respect to the period of the grating, in contrast to
standard integral equation methods for diffraction gratings
which fail at a countable set of grating periods.

1. Introduction. The most general form of a Fredholm integral
equation of the second kind on the real line is

(1.1) x(s) = y(s) +
∫ +∞

−∞
k(s, t)x(t) dt, s ∈ R,

where the kernel k and the righthand side y are given and the unknown
function x is to be determined. In this paper we consider the case when
the kernel k(s, t) takes the form

(1.2) k(s, t) = a∗(s, t) ln |s− t|+ b∗(s, t),
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where a∗, b∗ ∈ Cn(R2) for some n ∈ N, and a∗(s, t), b∗(s, t) decay
like |s − t|−q as |s − t| → ∞ for some q > 1. We propose and
analyze a Nyström or product integration method for equations of the
form (1.1), establishing its stability and proving convergence results
which guarantee superalgebraic convergence in the case when a∗, b∗ ∈
C∞(R2).

Our motivation is that kernels of the class (1.2) arise when one re-
formulates two-dimensional problems of time harmonic wave scattering
by unbounded obstacles as second kind boundary integral equations.
In particular, we have in mind problems, in scalar wave scattering and
elastodynamics, where one or more components of the boundary (or
one or more interfaces in transmission problems) are the graph of a
bounded smooth function f : R → R. We discuss the application of
the method to a simple problem of this type in Section 4. Specifically,
we consider the problem of scattering of time harmonic acoustic waves
by an infinite rough sound-soft surface; that is, we solve the Dirichlet
boundary value problem for the Helmholtz equation in a non-locally
perturbed half-plane.

Nyström/product integration methods are long established for solving
Fredholm integral equations of the second kind (see [5], [19] and the
references cited therein). Indeed, the method we propose is based in
quite large part on a Nyström method, described in [19], suitable for
second kind integral equations on finite intervals with logarithmically
singular periodic kernels. Such integral equations arise, for example,
from the boundary integral equation formulation of 2D problems in
potential theory if the boundary is a smooth closed curve. The
modification of the method and analysis in [19] to apply to the second
kind integral equation (1.1) on the whole real line requires some
subtlety, however. In particular, since the integral operator is no
longer necessarily compact, collectively compact operator theory is not
sufficient for a stability analysis. To prove stability we modify results
in this theory so that compactness is no longer required.

For descriptions and analyses of related Nyström/product integration
methods for second kind integral equations on the half-line, in the
case when the integral operator is a convolution operator or a compact
perturbation of a convolution operator, see [4], [7], [2], [15].

We start in Section 2 by making more explicit the assumptions on
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the kernel function. The mapping properties of the integral operator K
that follow from these assumptions are established, and we use these
to derive regularity results for (1.1). In Section 3 we describe our
Nyström method which uses equally spaced quadrature points on the
real line and reduces (1.1) to the solution of an infinite set of linear
equations. In the general case this infinite system requires truncation
prior to solution. We point out that a finite linear system is obtained
in the case of a periodic kernel and righthand side. In Section 3 we
also present our stability and convergence results, which show that the
method is superalgebraically convergent if the original equation is well
posed and a∗ and b∗ are smooth.

The application to rough surface scattering is carried out in Section 4.
By using the Green’s function for a half-plane with Dirichlet boundary
conditions and representing the scattered field as a combined single- and
double-layer potential, we obtain a novel integral equation equivalent to
the scattering problem. Our method is applicable to this equation and
is superalgebraically convergent if the scattering surface is smooth. In
the engineering literature integral equation methods are widely used for
rough surface scattering problems, with discretization based on colloca-
tion or Galerkin methods with piecewise polynomial approximation on
a uniform or quasiuniform mesh (e.g., [21], [26], [17]). These methods
achieve an algebraic convergence rate for smooth surfaces. We hope
that the simplicity of implementation and superalgebraic convergence
rate of the discretization scheme we propose will make it an attractive
alternative. In Section 5 we present numerical results, in the case when
the boundary is periodic, forming a diffraction grating, demonstrating
that the claimed convergence rates are achieved.

Throughout the paper we pay attention to obtaining stability and
error estimates which are uniform with respect to the kernel function k.
As a consequence, the final error estimates in Section 4, for scattering
by rough surfaces and diffraction gratings, depend on the maximum
surface amplitude and slope (and on bounds on higher derivatives)
but are otherwise independent of the surface shape. In particular,
for the diffraction grating problem, the numerical scheme we propose
is shown to be uniformly stable and convergent with respect to the
grating period. Such a result does not hold for conventional integral
equation formulations of diffraction grating problems; in fact, the
standard integral equation formulations (e.g., [6], [23], [18]), which



284 MEIER, ARENS, CHANDLER-WILDE AND KIRSCH

use the free field Green’s function rather than the half-plane Dirichlet
Green’s function we propose, fail to hold for a countable set of values
of the grating period.

Throughout the paper we will use the following notations. Let K
denote the integral operator defined by

(1.3) Kψ(s) =
∫ +∞

−∞
k(s, t)ψ(t) dt, s ∈ R.

BCn(Rm) is the Banach space of all functions whose derivatives up
to order n are bounded and continuous on Rm. We abbreviate the
norm ‖ · ‖BCn(Rm) on BCn(Rm) by ‖ · ‖∞ in the case n = 0. For a ∈
BC1(R2), we denote by ∂ja, j = 1, 2, the partial derivatives ∂1a(s, t) =
∂a(s, t)/∂s, ∂2a(s, t) = ∂a(s, t)/∂t, respectively. By Cn,α(R) we denote
the usual Hölder space of those functions φ ∈ BCn(R) for which φ(n)

satisfies a uniform Hölder condition of index α, a Banach space under
the norm

‖ψ‖Cn,α(R) := ‖ψ‖BCn(R) + [ψ(n)]α;R,

where
[ψ]α;R := sup

s,t∈R
s �=t

|ψ(s)− ψ(t)|
|s− t|α .

We define Cn
0,π(R) := {ψ ∈ BCn(R) : ψ(s) = 0, |s| ≥ π} and

Cn
0,π(R

2) := {a ∈ BCn(R2) : a(s, t) = 0, |s − t| ≥ π} and note that
Cn

0,π(R) and Cn
0,π(R

2) are closed subspaces of BCn(R) and BCn(R2),
respectively. We introduce the further nonstandard notation

BCn
p (R) := {ψ ∈ BCn(R) : ‖ψ‖BCn

p (R)

:= sup
m=0,1,... ,n

‖wpψ
(m)‖∞ < ∞},

where wp(t) = (1 + |t|)p, and

BCn
p (R

2) :=
{
a ∈ BCn(R2) : ‖a‖BCn

p (R2)

:= sup
j,k=0,... ,n
j+k≤n

‖w̃p∂
j
1∂

k
2a‖∞ < ∞

}

where w̃p(s, t) := wp(s− t).
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Throughout, N0 will denote N ∪ {0}, and χ ∈ C∞
0 (R) will denote a

fixed ‘cut-off’ function, satisfying that 0 ≤ χ(s) ≤ 1, s ∈ R, χ(s) = 0,
|s| ≥ π, χ(s) = 1, |s| ≤ 1, χ(−s) = χ(s), s ∈ R. In the numerical
examples in Section 5, we use the specific choice of χ given by equation
(5.8) below.

2. Regularity results. The integral equation (1.1) can be written
in operator notation as

(2.1) x = y +Kx.

In this section we consider mapping properties of the operator K from
which we obtain results on the regularity of the solution of (2.1) needed
in the later convergence analysis.

It is well known (e.g., [16]) that, if the kernel k satisfies the following
two properties A and B, then K maps BC(R) to BC(R) and is
bounded with norm ‖K‖ = sups∈R

∫ ∞
−∞ |k(s, t)| dt.

A. sups∈R

∫ +∞
−∞ |k(s, t)| dt < ∞.

B. For all s ∈ R :
∫ +∞
−∞ |k(s, t)− k(s′, t)| dt → 0 as s′ → s.

Throughout we will assume, motivated as indicated in the introduction
by applications to scattering by rough surfaces and diffraction gratings,
that k takes the form specified in one of the following three conditions
Cn, C′

n and C′′
n. We will show shortly that these three conditions are

equivalent and that they imply A and B and thus imply that K is
bounded as an operator on BC(R) (though not necessarily compact).

We will use all three conditions and their equivalence extensively
throughout the paper. It is simplest, in specific applications (see
Section 4) to show that Cn is satisfied. The form C′′

n for the kernel will
be needed to implement the Nyström method. The representation C′

n

will prove particularly convenient in this section for deducing regularity
properties. The proof of equivalence, in particular that Cn =⇒ C′′

n, is
constructive, and we will use this construction when implementing the
Nyström method in Section 4.
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Cn.
k(s, t) = a∗(s, t) ln |s− t|+ b∗(s, t), s, t ∈ R, s �= t,

where a∗, b∗ ∈ Cn(R2), and constants C > 0 and p > 1 exist such that,
for all j, l ∈ N0, with j + l ≤ n, we have

∣∣∣∣∂
j+la∗(s, t)
∂sj∂tl

∣∣∣∣ ≤ C, s, t ∈ R, |s− t| ≤ π,

(2.2)

∣∣∣∣∂
j+lb∗(s, t)
∂sj∂tl

∣∣∣∣ ≤ C, s, t ∈ R, |s− t| ≤ π

(2.3)

and

∣∣∣∣∂
j+lk(s, t)
∂sj∂tl

∣∣∣∣ ≤ C(1 + |s− t|)−p, s, t ∈ R, |s− t| ≥ π.

(2.4)

C′
n.

k(s, t) = a(s, t) ln |s− t|+ b(s, t), s, t ∈ R, s �= t,

where a ∈ Cn
0,π(R

2) and b ∈ BCn
p (R

2), for some p > 1.

C′′
n.

k(s, t) =
1
2π

A(s, t) ln
(
4 sin2

(
s− t

2

))
+B(s, t),

s, t ∈ R, s �= t,

where A ∈ Cn
0,π(R

2) and B ∈ BCn
p (R2) for some p > 1.

Theorem 2.1. For n ∈ N0, Cn, C′
n and C′′

n are equivalent.
Moreover, there exists a constant c > 1 depending only on n and p
such that, if k satisfies Cn, then the functions a, b in C′

n and A,B in
C′′

n can be chosen to satisfy

(2.5)
C ≤ c(‖a‖BCn(R2) + ‖b‖BCn

p (R2))

≤ c2(‖A‖BCn(R2) + ‖B‖BCn
p (R2)) ≤ c3C.
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Proof. C′
n =⇒ Cn. Set a∗ := a, b∗ := b and C := ‖a‖BCn(R2) +

‖b‖BCn
p (R2). Then (2.2) and (2.3) follow immediately; for (2.4), observe

that a∗ and all its derivatives vanish for |s− t| ≥ π and b∗ ∈ BCn
p (R).

Cn =⇒ C′′
n. Set

A(s, t) := πa∗(s, t)χ(s−t)
(2.6)

and

B(s, t) := a∗(s, t)
[
ln |s−t|(1− χ(s−t))

− χ(s−t) ln
(
sin((s−t)/2)
(s−t)/2

)]
+ b∗(s, t).(2.7)

An easy calculation yields the representation of k in C′′
n. As a∗ ∈

Cn(R2) and χ ∈ C∞
0,π(R), A ∈ Cn

0,π(R
2) follows. Furthermore,

ln(sin t/t) ∈ C∞(−π, π) and 0 /∈ supp {ln(t)(1 − χ(t))}, so (2.2),
(2.3) and (2.4) imply B ∈ BCn

p (R2). Moreover, by straightforward
calculations, we obtain the estimate

‖A‖BCn(R2) + ‖B‖BCn
p (R2) ≤ c1C,

where c1 is a constant only depending on n, p and the cut-off function
χ.

C′′
n =⇒ C′

n. Set

γ(x) :=




ln
(
sin x
x

)
x �= 0,

0 x = 0,

and
a(s, t) :=

1
π
A(s, t),

b(s, t) :=
1
π
γ

(
s− t

2

)
A(s, t) +B(s, t).

Again, the representation of k as in C′
n is obvious; so is the fact that

a ∈ Cn
0,π(R

2). From A ∈ Cn
0,π(R

2), B ∈ BCn
p (R2) and the definition
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of γ, we also conclude that b ∈ BCn
p (R2). Again, by straightforward

calculations, we obtain the estimate

‖a‖BCn(R2) + ‖b‖BCn
p (R2) ≤ c2(‖A‖BCn(R2) + ‖B‖BCn

p (R2)),

where c2 is a constant dependent only on n and p.

By applications of the dominated convergence theorem to show B,
we easily establish the following result.

Theorem 2.2. If k satisfies C′
0, then k also satisfies A and B.

Consequently, K is bounded as an operator from BC(R) to BC(R).
In fact,

‖K‖ ≤ C(‖a‖BC(R2) + ‖b‖BC0
p(R2)),

where C > 0 is a constant only dependent on p.

Let

ω(h) := sup
{∫ +∞

−∞
|k(s1, t)− k(s2, t)| dt : s1, s2 ∈ R, |s1−s2| ≤ h

}
,

and note that assumption B is certainly satisfied if ω(h) → 0 as h → 0.
The following sharper bound on the behavior of ω(h) as h → 0 is the
basis of the regularity results in this section.

Theorem 2.3. If k satisfies C′
1, then

ω(h) ≤ C(‖a‖BC1(R2) + ‖b‖BC1
p(R2))h(1 + | lnh|), 0 < h ≤ 1,

where C > 0 is a constant only dependent on p.
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Proof. Let s1, s2 ∈ R, h = |s1 − s2| ≤ 1, s̄ = (s1 + s2)/2. Note that∫ +∞

−∞
|k(s1, t)− k(s2, t)| dt

≤
∫ +∞

−∞
|b(s1, t)− b(s2, t)| dt

+
∫ s̄+π+(1/2)

s̄−π−(1/2)

|a(s1, t)− a(s2, t)|| ln |s1 − t|| dt

+
∫ s̄+π+(1/2)

s̄−π−(1/2)

|a(s2, t)|| ln |s1 − t| − ln |s2 − t|| dt.

By the mean value theorem, there holds

(2.8)
∫ +∞

−∞
|b(s1, t)− b(s2, t)| dt ≤ Ch‖b‖BC1

p(R2)

and

(2.9)

∫ s̄+π+(1/2)

s̄−π−(1/2)

|a(s1, t)− a(s2, t)|| ln |s1 − t|| dt

≤ h‖a‖BC1(R2)

∫ s̄+π+(1/2)

s̄−π−(1/2)

| ln |s1 − t|| dt

≤ Ch‖a‖BC1(R2).

Finally, there holds
∫ s̄+π+(1/2)

s̄−π−(1/2)

|a(s2, t)|| ln |s1 − t| − ln |s2 − t|| dt

≤ ‖a‖BC(R2)

∫ s̄+π+(1/2)

s̄−π−(1/2)

| ln |s1 − t| − ln |s2 − t|| dt,

≤ ‖a‖BC(R2)Ch(1 + | lnh|).
This bound, combined with (2.8) and (2.9), yields the assertion.

To derive further mapping properties for the integral operator K, we
introduce for b ∈ BC0

p(R
2), the operator M b defined by

M bφ(s) :=
∫ +∞

−∞
b(s, t)φ(t) dt, s ∈ R,
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and, for a ∈ C0
0,π(R2), the operator La defined by

Laφ(s) :=
∫ +∞

−∞
a(s, t) ln |s− t|φ(t) dt, s ∈ R.

We will proceed by establishing certain mapping properties of these
operators which are stated in the following theorem.

Theorem 2.4. For n ∈ N,

(a) If b ∈ BCn
p (R2), then M b maps BC(R) to BCn(R) and is

bounded with
‖M b‖ ≤ C‖b‖BCn

p
(R2),

where the constant C > 0 only depends on n and p.

(b) If a ∈ Cn
0,π(R

2), then La maps BCn−1(R) to Cn−1,α(R), α ∈
(0, 1), and is bounded with

‖La‖ ≤ C‖a‖BCn(R2),

where the constant C > 0 only depends on n and α.

(c) If a ∈ Cn
0,π(R2), then La maps Cn−1,α(R) to BCn(R), α ∈ (0, 1),

and is bounded with

‖La‖ ≤ C‖a‖BCn(R2),

where the constant C > 0 only depends on n and α.

To prove this theorem, the following three technical results concerning
the operator La are needed.

Lemma 2.5. If a ∈ C1
0,π(R2), then La maps BC(R) to C0,α(R),

α ∈ (0, 1), and is bounded with

(2.10) ‖La‖ ≤ C‖a‖BC1(R2),

for some constant C > 0 depending only on α.
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Proof. Setting k(s, t) := a(s, t) ln |s − t| and applying Theorem 2.3
yields that, for |s1 − s2| ≤ 1,

|Laφ(s1)− Laφ(s2)| ≤ ‖φ‖∞ω(|s1−s2|)
≤ C|s1−s2|‖a‖BC1(R2)

(
1 +

∣∣∣∣ ln 1
|s1−s2|

∣∣∣∣
)
‖φ‖∞.

For α ∈ (0, 1) and |s1−s2| ≤ 1, |s1−s2| ln(1/|s1−s2|) ≤ (1/(1−α))|s1−s2|α
holds and we have

(2.11) |Laφ(s1)− Laφ(s2)| ≤ C‖φ‖∞‖a‖BC1(R2)|s1 − s2|α.

Now, by Theorem 2.2, ‖Laφ‖∞ ≤ C‖a‖BC(R2)‖φ‖∞. Together with
(2.11), this yields that Laφ ∈ C0,α(R) and the bound (2.10).

Lemma 2.6. If a ∈ CN
0,π(R

2) for some N ∈ N, then, for n =
1, 2, . . . , N and φ ∈ BCn(R), there holds Laφ ∈ BCn(R). Moreover,
there exist functions anj ∈ CN+j−n

0,π (R2), j = 0, . . . , n, satisfying

dn

dsn
(Laφ(s)) =

n∑
j=0

(Lan
j φ(j))(s), s ∈ R,

for all φ ∈ BCn(R). Moreover, for some constant C > 0 depending
only on N ,

(2.12) ‖anj ‖BCj+N−n(R2) ≤ C‖a‖BCN (R2), j = 0, . . . , n.

Proof. We prove this lemma by induction. In the case n = 1, we have
for s ∈ R and any h ∈ (−1, 1) \ {0}, that
1
h
(Laφ(s+h)− Laφ(s))

=
∫ s+π+1

s−π−1

1
h
(a(s+h, t)− a(s, t)) ln |s−t|φ(t) dt

+
∫ s+π+1

s−π−1

1
h
(a(s+ h, t+ h)φ(t+ h)− a(s+ h, t)φ(t)) ln |s−t| dt.
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Letting h → 0, we conclude by the dominated convergence theorem
that

(2.13)
d

ds
(Laφ(s)) = La1

0φ(s) + La1
1φ′(s),

where a1
0 := ∂1a+ ∂2a and a1

1 := a satisfy (2.12) with n = 1.

Assume now that 1 ≤ n < N , φ ∈ BCn+1(R) and that the assertion
of the lemma holds for n. Then there exist anj ∈ CN+j−n

0,π (R2),
j = 0, . . . , n, such that

dn

dsn
(Laφ(s)) =

n∑
j=0

(Lan
j φ(j))(s).

Now set

an+1
j :=




ann j = n+ 1,
∂1a

n
j + ∂2a

n
j + anj−1 1 ≤ j ≤ n,

∂1a
n
0 + ∂2a

n
0 j = 0.

Then an+1
j ∈ CN+j−n−1

0,π (R2) and, by the same argument as for the
case n = 1, notably by (2.13), there holds

dn+1

dsn+1
(Laφ(s)) =

n+1∑
j=0

(Lan+1
j φ(j))(s).

The estimate (2.12) for n replaced by n+ 1 follows from the definition
of the functions an+1

j and the inductive assumption.

Lemma 2.7. If a ∈ C1
0,π(R2), then La maps C0,α(R) to BC1(R),

α ∈ (0, 1), and is bounded with

(2.14) ‖La‖ ≤ C‖a‖BC1(R2),

for some constant C > 0 depending only on α.

Proof. Choose q > 2π and set J := [−q, q]. Further, let χ∗ ∈ C∞(R)
with suppχ∗ ⊂ J and χ∗ ≡ 1 on [π − q, q − π]. Defining ã(s, t) :=
χ∗(t)a(s, t) and ψ(s) := 1, we have Lãψ ∈ BC1(R) by Lemma 2.6 and
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hence, by Lemma 1 (iii) in [25], we obtain Lãφ ∈ C1(J). However, as
Lãφ(s) = Laφ(s) for |s| ≤ q − 2π and, since q was chosen arbitrarily,
there also holds Laφ ∈ C1(R). From Lemma 1 in [25], we also obtain
the representation

d

ds
(Laφ)(s)

=
∫ +∞

−∞

∂

∂s
{a(s, t) ln |s−t|}(φ(t)− φ(s)) dt+ φ(s)

d

ds
Laψ(s).

Since a ∈ C1
0,π(R2) and φ ∈ C0,α(R) we easily obtain that Laφ ∈

BC1(R) and the bound (2.14) by applications of Theorem 2.2,
Lemma 2.6 and elementary estimates.

Proof of Theorem 2.4. With regard to the operator M b, we may
interchange differentiation and integration so that, for φ ∈ BC(R) and
m = 0, . . . , n, we obtain

dm

dsm
M bφ(s) =

∫ +∞

−∞

∂m

∂sm
b(s, t)φ(t) dt.

By applying Theorem 2.2, we conclude the proof of (a).

Lemma 2.5 and Lemma 2.6 immediately imply (b).

For the case n = 1, (c) is the assertion of Lemma 2.7. For n > 1, by
Lemma 2.6 we have

(2.15)
dn−1

dsn−1
(Laφ(s)) =

n−1∑
j=0

(Lan−1
j φ(j))(s), s ∈ R,

where, for j = 0, . . . , n− 1, an−1
j ∈ Cj+1

0,π (R2) with ‖an−1
j ‖BCj+1(R2) ≤

C‖a‖BCn(R2). Applying Lemma 2.7 to the righthand side of (2.15), it
follows that

dn−1

dsn−1
(Laφ(s)) ∈ BC1(R),

with
‖(Laφ)(n−1)‖BC1(R) ≤ C‖a‖BCn(R2)‖φ‖Cn−1,α(R).

Thus Laφ ∈ BCn(R) and the bound ‖La‖ ≤ C‖a‖BCn(R2) follows.
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Corollary 2.8. If k satisfies C′
n for some n ∈ N, then for all

α ∈ (0, 1) and m = 0, . . . , n − 1, the operator K maps BCm(R) to
Cm,α(R) and Cm,α(R) to BCm+1(R), respectively. Further, each of
these mappings is bounded and the operator norms satisfy

‖K‖ ≤ C(‖a‖BCn(R2) + ‖b‖BCn
p (R2)),

where the constant C > 0 depends only on α, n and p.

To complete this section we apply the above mapping properties to
establish the regularity of the solution of (2.1) when K satisfies Cn and
y is sufficiently smooth.

Theorem 2.9. If k satisfies C′
n for some n ∈ N and x ∈ BC(R)

satisfies the integral equation (2.1) and y ∈ BCn(R), then x ∈ BCn(R)
and, for some constant C > 0 dependent only on n and p,

‖x‖BCn(R) ≤ C(‖y‖BCn(R) + (‖a‖BCn(R2) + ‖b‖BCn
p (R2))‖x‖∞).

Proof. This follows easily by induction using Corollary 2.8 and
equation (2.1).

3. The Nyström method. We first describe the Nyström/product
integration method we propose and then analyze its stability and
convergence.

For s ∈ R, define the periodic extension operator Es : BC(R) →
L∞(R) implicitly by

Esφ(t) = φ(t), s− π ≤ t < s+ π,

and

Esφ(t+ 2π) = Esφ(t), t ∈ R.

Throughout this section we continue to assume that (as a minimum)
assumption C′′

0 holds, so that K = KA +KB, where

KAφ(s) :=
1
2π

∫ +∞

−∞
A(s, t) ln

(
4 sin2

(
s− t

2

))
φ(t) dt

=
1
2π

∫ 2π

0

ln
(
4 sin2

(
s− t

2

))
Es(A(s, ·)φ)(t) dt
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and

KBφ(s) :=
∫ +∞

−∞
B(s, t)φ(t) dt.

Note that C′′
0 implies that A ∈ Cn

0,π(R2), so that A(s, t) = 0, |s−t| ≥ π.
We will use this fact extensively in this section.

In the case when f ∈ BCn
p (R) for some p > 1 and n ∈ N0, we can

approximate

If :=
∫ +∞

−∞
f(t) dt

by the trapezoidal rule approximation

Ihf := h
∑
j∈Z

f(jh),

and we will see later that this approximation is very rapidly convergent
as h → 0 if n is large. It makes sense therefore to approximate KBφ
using the trapezoidal rule, by KB

Nφ, where the operator KB
N is defined

by

KB
Nφ(s) = Iπ/N (B(s, ·)φ) = π

N

∑
j∈Z

B(s, tj)φ(tj), s ∈ R,

where tj = jπ/N , j ∈ Z. We choose h = π/N for compatibility with
our approximation of the operator KA.

We turn now to the approximation of the operator KA. Define the
integral operator Q : BC(R) → BC(R) by

Qφ(s) :=
1
2π

∫ 2π

0

ln
(
4 sin2

(
s− t

2

))
φ(t) dt, s ∈ R.

For N ∈ N, let QNφ := QφN , where φN is the unique trigonometric
polynomial of the form φN (t) =

∑N
j=0 αj cos jt+

∑N−1
j=1 βj sin jt which

interpolates φ at tj , j = 0, . . . , 2N −1. Then (see [19, p. 177]) we have
that

QNφ(t) = QφN (t) =
2N−1∑
j=0

R
(N)
j (t)φ(tj), t ∈ R,
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where

(3.1) R
(N)
j (t) := − 1

N

{N−1∑
m=1

1
m

cosm(t− tj) +
1
2N

cosN(t− tj)
}
.

We note from this formula that

R
(N)
j (tk) = R

(N)
j−k, j, k ∈ Z,

where
(3.2)

R
(N)
j := R

(N)
j (0) = − 1

N

{N−1∑
m=1

1
m

cosmtj +
1
2N

cosNtj

}
, j ∈ Z.

Remark 3.1. Note that QNφ = Qφ for any trigonometric polynomial
φ of order N . For if φ(t) =

∑N
j=0 aj cos jt +

∑N−1
j=1 bj sin jt, there

holds φN = φ, so Qφ = QφN = QNφ. Also, φ(t) = sin(Nt) implies
Qφ = QNφ = 0.

We will approximateKAφ(s) which we may write asQ(Es(A(s, ·)φ))(s)
by KA

Nφ(s) where, for s ∈ R,

KA
Nφ(s) := QN (Es(A(s, ·)φ))(s)

=
2N−1∑
j=0

R
(N)
j (s)(Es(A(s, ·)φ))(tj)

=
∑
j∈Z

R
(N)
j (s)A(s, tj)φ(tj).

Finally then, our Nyström method is to approximate K = KA +KB

by KN = KA
N +KB

N , and we have that

KNφ(s) =
∑
j∈Z

α
(N)
j (s)φ(tj), s ∈ R,

where
α

(N)
j (s) := R

(N)
j (s)A(s, tj) +

π

N
B(s, tj), s ∈ R.
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The Nyström method approximation, xN ∈ BC(R), is defined by the
equation

(3.3) xN = y +KNxN ,

or, explicitly,

(3.4) xN (s) = y(s) +
∑
j∈Z

α
(N)
j (s)xN (tj), s ∈ R.

To obtain xjN := xN (tj), j ∈ Z, we set s = tk to obtain the infinite
set of linear equations

(3.5) xkN = yk +
∑
j∈Z

akjx
j
N , k ∈ Z,

where

(3.6)
yk := y(tk),

akj := α
(N)
j (tk) = R

(N)
j−kA(tk, tj) +

π

N
B(tk, tj), j, k ∈ Z.

In general the solution of the infinite linear system (3.5) cannot be
computed exactly. We will analyze the stability and convergence of
truncating (3.5) to a finite linear system in a future publication; see
[8] for this analysis carried out for a related class of integral equations
on the real line. But in certain cases (3.5) reduces to a finite linear
system. One such case is when the following additional assumption
on k is satisfied and y ∈ CL(R), the space of L-periodic continuous
functions on R.

D. There exists L > 0 such that

k(s+ L, t+ L) = k(s, t), s, t ∈ R.

If Assumptions A, B and D hold, then K is a compact operator on
CL(R) but, in general, not on BC(R). (Consider, for example, the
case when k(s, t) = κ(s − t) with κ ∈ L1(R), i.e., K is a convolution
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operator on the real line.) However, the solvability of (1.1) in BC(R)
has been addressed in Theorem 2.10 in [10]. As a corollary of this
theorem and of the compactness of K on CL(R), the following result
holds.

Theorem 3.2. Suppose that assumptions A, B and D are satisfied
and the homogeneous integral equation x = Kx has no nontrivial
solution in BC(R). Then the integral equation (1.1) has exactly one
solution x ∈ BC(R) for every y ∈ BC(R) and, for some constant
C > 0 independent of y,

(3.7) ‖x‖∞ ≤ C‖y‖∞.

If also y ∈ CL(R), then x ∈ CL(R).

Now suppose that assumptions C0 and D are satisfied, that x = Kx
has no nontrivial solution, and that y ∈ CL(R). Then, by Theorems 2.2
and 3.2, x ∈ CL(R). If also L = (Mπ/N) for some M ∈ N, then
xj+M
N = xjN , yj+M = yj , ak+M,j+M = ak,j . Then (3.6) reduces to the

finite linear system

(3.8) xkN = yk +
M∑
j=1

ãkjx
j
N , k = 1, . . . ,M,

where
ãkj =

∑
n∈Z

ak,j+nM .

3.1. Stability analysis. We turn next to establishing stability of
the Nyström method we have proposed. Our stability analysis depends
crucially on the following error estimates which establish convergence
of KNφ to Kφ, uniformly on bounded and uniformly equicontinuous
sets.

Theorem 3.3. If k satisfies assumption C′′
1 and φ ∈ BC(R) is

uniformly continuous, then

‖Kφ−KNφ‖∞ −→ 0
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as N → ∞. Further, if S ⊂ BC(R) is bounded and uniformly
equicontinuous on R, then, for every ε > 0 and β > 0, there exists
N0 ∈ N dependent only on ε, β and S such that

(3.9) ‖Kφ−KNφ‖∞ ≤ ε,

for all N>N0, φ∈S and k∈T := {k : k satisfies C′′
1 with ‖A‖BC1(R2)+

‖B‖BC1
p(R2) ≤ β}.

Proof. Clearly it is sufficient to prove that for every ε > 0, β > 0,
there exists N0 ∈ N such that the estimate (3.9) holds for all N > N0,
φ ∈ S and k ∈ T . Throughout, let C denote a generic constant
dependent only on p and fix β > 0. For δ > 0, let

Ω(δ) := sup{|f(s)− f(t)| : f ∈ S, s, t ∈ R, |s− t| ≤ δ},
and note that, since S is uniformly equicontinuous, Ω(δ) → 0 as δ → 0.
Similarly, let

M := sup
f∈S

‖f‖∞.

For k ∈ T , we have K = KA+KB with A ∈ C1
0,π(R2), B ∈ BC1

p(R2)
and ‖A‖BC1(R2) + ‖B‖BC1

p(R2) ≤ β.

a) First of all, consider KBφ−KB
Nφ. For φ ∈ C(R) and N ∈ N, let

PNφ denote the piecewise constant approximation to φ given by

PNφ(s) = φ(jh),
(
j − 1

2

)
h < s ≤

(
j +

1
2

)
h, j ∈ Z,

where h = (π/N). Then, provided
∑

j∈Z φ(jh) exists, Iπ/N (φ) =
I(PNφ) and, for φ, ψ ∈ C(R), there holds PN (φψ) = PNφPNψ. Thus

|KBφ(s)−KB
Nφ(s)| = |I(B(s, ·)φ)− Iπ/N (B(s, ·)φ)|

= |I(B(s, ·)φ− PN (B(s, ·))PNφ)|
≤ ‖B(s, ·)‖1‖φ− PNφ‖∞
+ ‖PNφ‖∞‖B(s, ·)− PN (B(s, ·))‖1,

where ‖f‖1 :=
∫ +∞
−∞ |f(t)| dt. Now

‖B(s, ·)‖1 ≤ C‖B‖BC1
p(R2) ≤ Cβ,



300 MEIER, ARENS, CHANDLER-WILDE AND KIRSCH

and

‖φ− PNφ‖∞ ≤ Ω
(

π

2N

)
, ‖PNφ‖∞ ≤ ‖φ‖∞ ≤ M.

Also, for (j − (1/2))h < t ≤ (j + (1/2))h, j ∈ Z and some ρj between
t and tj = jπ/N ,

|B(s, t)− PN (B(s, t))| = |B(s, t)−B(s, tj)|
≤ |t− tj |

∣∣∣∣∂B∂t (s, ρj)
∣∣∣∣

≤ π

2N
‖B‖BC1

p(R2)(1 + |s− ρj |)−p.

Thus, for N ∈ N,

‖B(s, ·)− PN (B(s, ·))‖1 =
∑
j∈Z

∫ (j+(1/2))h

(j−(1/2))h

|B(s, t)− PN (B(s, t))| dt

≤ π

N

∑
j∈Z

π

2N
‖B‖BC1

p(R2)(1 + |s− ρj |)−p

≤ C

N
β.

Thus we have

‖KBφ−KB
Nφ‖∞ ≤ Cβ

(
Ω

(
π

2N

)
+

M

N

)
,

so that for all ε > 0, there exists N0 ∈ N such that ‖KBφ−KB
Nφ‖∞ ≤ ε

for all N ≥ N0, φ ∈ S, k ∈ T .

b) Now consider ‖KAφ−KA
Nφ‖∞≤sups∈R ‖(Q−QN )(Es(A(s, ·)φ))‖∞.

We show first that E := {Es(A(s, ·)φ) : φ ∈ S, s ∈ R, A ∈
C1

0,π(R2), ‖A‖BC1(R2) ≤ β} is bounded and uniformly equicontinuous
on R. For φ ∈ S,

‖Es(A(s, ·)φ)‖∞ ≤ M‖A(s, ·)‖∞ ≤ Mβ.

Thus E is bounded.
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Further, after some calculation, we see that for all s, t1, t2 ∈ R,

|Es(A(s, ·)φ)(t1)− Es(A(s, ·)φ)(t2)|
≤ 2β(M |t1 − t2|+Ω(|t1 − t2|)),

so that E is also uniformly equicontinuous. Thus {Es(A(s, ·)φ)|[0,2π] :
φ ∈ S, s ∈ R, k ∈ T} is a bounded and equicontinuous subset of
C[0, 2π], and thus a compact subset by the Arzéla-Ascoli theorem. It is
shown in [19, Theorem 12.13] that the set {QN} is collectively compact
and pointwise convergent to Q. It follows that {QN} is uniformly
convergent on the compact set E (see [19, Corollary 10.4]). Therefore,

‖KAφ−KA
Nφ‖∞ ≤ sup

s∈R
‖(Q−QN )Es(A(s, ·)φ)‖∞

≤ sup
f∈E

‖(Q−QN )f‖∞ −→ 0

as N → ∞, so that for all ε > 0, there exists N0 ∈ N such that
‖KAφ−KA

Nφ‖∞ ≤ ε for all N ≥ N0, φ ∈ S, k ∈ T .

Theorem 3.4. Suppose that S ⊂ BC(R) is bounded and that β > 0,
and let T := {k : k satisfies C′′

1 with ‖A‖BC1(R2) + ‖B‖BC1
p(R2) ≤ β}.

Then {KNφ : N ∈ N, φ ∈ S, k ∈ T} is bounded and uniformly
equicontinuous.

Proof. Let N ∈ N. With PN defined as in the previous proof, we
have that

KNφ(s) = KA
Nφ(s) +KB

Nφ(s)
= QN (Es(A(s, ·)φ)) + IPN (B(s, ·)φ).

Moreover, since {QN} is collectively compact [19, Theorem 12.13], we
conclude by the Arzéla-Ascoli theorem that for any bounded set U ⊂
BC(R) the set ∪N∈NQNU is bounded and uniformly equicontinuous
on [0, 2π] and hence on R, as QNφ is 2π-periodic for all φ ∈ BC(R),
N ∈ N. By an argument similar to that employed in the proof of
Theorem 3.3, we see that {Es(A(s, ·)φ) : φ ∈ S, s ∈ R, k ∈ T} is
bounded. Thus we have that {QNEs(A(s, ·)φ) : φ ∈ S, s ∈ R, k ∈ T}
is bounded and uniformly equicontinuous and, consequently, the same
statement applies to {KA

Nφ : N ∈ N, φ ∈ S, k ∈ T}.
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Since S is bounded with M := supf∈S ‖f‖∞ and since k ∈ T , we
have

‖IPN (B(s, ·)φ)‖∞ = ‖I(PN (B(s, ·))PNφ)‖∞
≤ CMβ.

For 0 ≤ s2 − s1 ≤ 1 and some ρj ∈ [s1, s2], j ∈ Z, we have

|KB
Nφ(s1)−KB

Nφ(s2)| =
∣∣∣∣ πN

∑
j∈Z

B(s1, tj)φ(tj)−B(s2, tj)φ(tj)
∣∣∣∣

≤ π

N
‖φ‖∞

∑
j∈Z

|B(s1, tj)−B(s2, tj)|

≤ π

N
‖φ‖∞

∑
j∈Z

|s1 − s2|β(1 + |ρj − tj |)−p

≤ CMβ|s1 − s2|.

Therefore also {KB
Nφ : N ∈ N, φ ∈ S, k ∈ T} is bounded and uniformly

equicontinuous.

Theorem 3.5. If k satisfies C′′
1, then

‖(K −KN )KN‖∞ −→ 0

and

‖(K −KN )K‖∞ −→ 0 as N −→ ∞.

Moreover, for every β > 0, this convergence is uniform in k for
k ∈ T := {k : k satisfies C′′

1 with ‖A‖BC1(R2) + ‖B‖BC1
P

(R2) ≤ β}.

Proof. Define the set

S := {KNφ : N ∈ N, φ ∈ BC(R), ‖φ‖∞ = 1, k ∈ T}.

By Theorem 3.4, S is bounded and uniformly equicontinuous. Thus we
know from Theorem 3.3 that there exists N0 = N0(ε, β) such that for
φ ∈ BC(R) with ‖φ‖∞ = 1 and k ∈ T ,

‖(K −KN )KNφ‖∞ ≤ ε, N ≥ N0.
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This proves the assertion for (K −KN )KN . Next consider S̃ := {Kφ :
φ ∈ BC(R), ‖φ‖∞ = 1, k ∈ T}. By Corollary 2.8, S̃ is a bounded
subset of C0,α(R) and hence is bounded and equicontinuous in BC(R).
The same argument above can be repeated to prove the assertion for
(K −KN )K.

To make use of the above results we state in the following theorem
and corollary two general results on operator approximation in Banach
spaces. These results, of some interest in their own right, are modifi-
cations of results usually seen as part of collectively compact operator
theory [3], [19]. In particular, Theorem 3.6 up to (3.11) is well known,
see [3, Theorem 1.10] or [19, Theorem 10.8]. If L in Theorem 3.6 is
compact, in particular if L is of finite rank, then the remaining part of
Theorem 3.6 is superfluous, for I−L injective implies (I−L)(X) = X.
But our interest is in cases where the operators involved are bounded
but not compact. Theorem 3.6 and Corollary 3.7 are results which can
be applied in this case.

Theorem 3.6. Let X be a Banach space and B(X) the set of bounded
linear operators on X. Suppose that K,L, (I −K)−1 ∈ B(X) and that

(3.10) ∆ := ‖(I −K)−1(L −K)L‖ < 1.

Then I −L is injective so that there exists (I −L)−1 as an operator on
(I − L)(X) and

(3.11) ‖(I − L)−1‖ ≤ (1 + ‖(I −K)−1‖‖L‖)(1−∆)−1.

Moreover, if also

(3.12) ‖(L −K)(I −K)−1L‖ < 1

then (I − L)(X) = X so that (I − L)−1 ∈ B(X).

Proof. That I−L is injective and (3.11) holds follows exactly as in the
proof of [19, Theorem 10.8]. In the case where L is compact, it follows
automatically that also (I − L)(X) = X. In the general case, if (3.12)
holds, we find that (I+(I−K)−1L)(I−(L−K)(I−K)−1L)−1 is a right
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inverse for I − L and hence (I − L)(X) = X and (I − L)−1 ∈ B(X).

We remark that (I −K)−1 = I +K(I −K)−1, so that

(3.13) ‖(L −K)(I −K)−1L‖ ≤ ‖(L −K)L‖
+ ‖(L− K)K‖‖(I −K)−1‖‖L‖.

Bearing in mind this observation, we obtain the following corollary of
Theorem 3.6.

Corollary 3.7. Let X be an arbitrary Banach space and suppose
that K, (I −K)−1 ∈ B(X), KN ∈ B(X), N = 1, 2, . . . , and that

(3.14)
‖KN‖ = O(1),
‖(KN −K)KN‖ −→ 0,
‖(KN −K)K‖ −→ 0,


 as N −→ ∞.

Then for all N sufficiently large such that

‖(I −K)−1(KN −K)KN‖ < 1

and
‖(KN −K)(I −K)−1KN‖ < 1,

it holds that
(I −KN )−1 ∈ B(X)

with

‖(I −KN )−1‖ ≤ 1 + ‖(I −K)−1‖‖KN‖
1− ‖(I −K)−1(KN −K)K‖ .

To apply these results to our integral equation, we will need the
following assumption of well-posedness:

E. For every y ∈ BC(R), the integral equation (1.1) has exactly one
solution x ∈ BC(R).
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Assumption C1 (see Theorem 2.2) implies that I − K : BC(R) →
BC(R) and is bounded. If also assumption E is satisfied, then I −K :
BC(R) → BC(R) is also bijective and so (I − K)−1 : BC(R) →
BC(R) exists and, by the Banach theorem, is bounded. Thus, by
Theorem 2.1, Theorem 3.5, and Corollary 3.7, and bearing in mind
(3.13), we have the following result.

Theorem 3.8. If assumptions C′′
1 and E are satisfied, then there

exist Ñ ∈ N and C > 0 such that, for all N ≥ Ñ , there holds
(I −KN )−1 ∈ B(BC(R)) and

(3.15) ‖(I −KN )−1‖∞ ≤ C.

For all N ≥ Ñ equation (3.3) has a unique solution, xN , and

‖xN‖∞ ≤ C‖y‖∞.

Further, given any β > 0, the constants Ñ and C can be chosen inde-
pendently of k, for k ∈ T :={k : k satisfies C′′

1 and E with ‖A‖BC1(R2)+
‖B‖BC1

p(R2) ≤ β, ‖(I −K)−1‖ ≤ β}.

3.2. Convergence analysis. The first element in our convergence
analysis is the following error estimate for the trapezoidal rule.

Lemma 3.9. Let m,N ∈ N, g ∈ Cm[a, b] with g(j)(a) = g(j)(b) = 0,
j = 0, 1, . . . ,m − 1, and define h := (b − a)/N , sj := a + jh,
j = 0, 1, . . . , N . Then

eN :=
∣∣∣∣
∫ b

a

g(s) ds− h

N−1∑
j=1

g(sj)
∣∣∣∣ ≤ C‖g‖Cm[a,b]h

m,

where the constant C > 0 depends only on a, b and m.

Proof. For m = 1, 2, this is a standard result. If m ≥ 3 is an odd
integer, the result follows from the standard Euler-Maclaurin expansion
[13, p. 108] which gives, under the assumptions of the lemma, that

(3.16) eN =
∣∣∣∣hm

∫ b

a

Pm

(
s− a

h

)
g(m)(s) ds

∣∣∣∣
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with Pm ∈ C(R) given by

(3.17) Pm(s) =
∞∑
n=1

2 sin 2πns
(2πn)m

.

Integrating (3.16) by parts we see that if g ∈ Cm[a, b] and m is even,
then (3.16) holds with Pm given by (3.17) but with the sin replaced by
cos.

Lemma 3.10. If, for some p > 1 and m ∈ N, f ∈ BCm
p (R), then

|If − Ihf | ≤ C‖f‖BCm
p (R)h

m, h > 0,

where the constant C > 0 depends only on m and p.

Proof. Let φ ∈ C∞(R) be such that φ(s) = −(1/2), s ≤ −(1/2),
φ(s) = (1/2), s ≥ (1/2). Let ψ0(s) := φ(s) − φ(s − 1) and let
ψj(s) := ψ0(s − j), j ∈ Z. Then ψj ∈ C∞

0 (R), with suppψj =
[−(1/2) + j, (3/2) + j] and

∑
j∈Z

ψj(s) = 1, s ∈ R,

so that we have a partition of unity. Let, for h > 0, j ∈ Z,
ej(h) := I(ψjf)− Ih(ψjf). Then

If − Ihf =
∑
j∈Z

ej(h)

and, by Lemma 3.9,

|ej(h)| ≤ Cmhm‖f‖BCm
p (R) max

t∈[−(1/2)+j,(3/2)+j]
(1 + |t|)−p,

where Cm depends only on m and on ‖ψj‖Cm[−(1/2)+j,(3/2)+j] =
‖ψ0‖Cm[−(1/2),(3/2)]. Thus,

|If − Ihf |
≤

∑
j∈Z

|ej(h)| ≤ Cm‖f‖BCm
p (R)h

m
∑
j∈Z

max
t∈[−(1/2)+j,(3/2)+j]

(1 + |t|)−p

≤ C‖f‖BCm
p (R)h

m,
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where C > 0 depends only on m and p.

Lemma 3.11. If k satisfies assumption C′′
m for some m ∈ N and

φ ∈ BCm(R), then

(3.18) ‖KBφ−KB
Nφ‖ ≤ C‖B‖BCm

p (R2)‖φ‖BCm(R)N
−m,

for some constant C > 0 dependent only on p and m.

Proof.

‖KBφ−KB
Nφ‖ = sup

s∈R
|I(B(s, ·)φ)− Iπ/N (B(s, ·)φ|

≤ C

(
π

N

)m

‖B(s, ·)φ‖BCm
p (R),

by Lemma 3.10. Thus the bound (3.18) holds.

Lemma 3.12. If k satisfies assumption C′′
m for some m ∈ N and

φ ∈ BCm(R), then

‖KAφ−KA
Nφ‖ ≤ C‖A‖BCm(R2)‖φ‖BCm(R)N

−m,

for some constant C > 0 dependent only on m.

Proof. We have

(KAφ−KA
Nφ)(s) = (Q−QN )((Es(A(s, ·)φ))(s).

Let p be the trigonometric polynomial of order N which is the best
approximation to Es(A(s, ·)φ) with respect to the norm ‖ · ‖∞. Then,
see Remark 3.1, Qp = QNp. Thus,

|KAφ(s)−KA
Nφ(s)| ≤ ‖(Q−QN )(Es(A(s, ·)φ)− p)‖∞

≤ (‖Q‖+ ‖QN‖)‖Es(A(s, ·)φ)− p‖∞
≤ C̃‖Es(A(s, ·)φ)− p‖∞,
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where C̃ > 0 is a constant independent of N , since Q is bounded
and QN is bounded uniformly in N [19, Theorem 12.13]. Now A ∈
Cm

0,π(R
2), φ ∈ BCm(R), so that Es(A(s, ·)φ) ∈ BCm(R) with

‖Es(A(s, ·)φ)‖BCm(R) ≤ C‖A‖BCm(R2)‖φ‖BCm(R).

It follows from Theorem 13.6 in [28] that

‖KAφ−KA
Nφ‖ ≤ C‖A‖BCm(R2)‖φ‖BCm(R)N

−m.

Combining the numerical quadrature estimate in Lemmas 3.11 and
3.12 with the stability result of Theorem 3.8, we obtain the following
main convergence result.

Theorem 3.13. If assumptions C′′
1 and E are satisfied, then there

exist Ñ ∈ N and C1, C2 > 0 such that, for N ≥ Ñ , a uniquely
determined numerical solution xN exists and satisfies

‖x− xN‖∞ ≤ C1‖(K −KN )x‖∞.

If also assumption C′′
m is satisfied for some m ∈ N and y ∈ BCm(R),

then
‖x− xN‖∞ ≤ C2N

−m‖y‖BCm(R)

for N ≥ Ñ . Moreover, given any β > 0, the constants Ñ , C1

and C2 can be chosen independently of k for k ∈ T := {k :
k satisfies C′′

m and E with ‖A‖BCm(R2)+‖B‖BCm
p (R2) ≤ β, ‖(I−K)−1‖

≤ β}.

Proof. That, for some Ñ ∈ N, (I −KN )−1 ∈ BC(R) and is bounded
by (3.15), follows from Theorem 3.8. Further,

xN −KNxN = y ⇐⇒ xN = (I −KN )−1y.

Thus xN exists and is unique for N ≥ Ñ . Also for N ≥ Ñ ,

x− xN = (I −KN )−1(K −KN )x,
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so that, by (3.15),

‖x− xN‖∞ ≤ C1‖(K −KN )x‖∞.

From Theorem 2.9 we have that x ∈ BCm(R) since y ∈ BCm(R).
Applying Lemmas 3.11 and 3.12,

‖Kx−KNx‖∞ ≤ ‖KAx−KA
Nx‖∞ + ‖KBx−KB

Nx‖∞
≤ C(‖A‖BCm(R2) + ‖B‖BCm

p (R2))‖x‖BCm(R)N
−m.

Since ‖x‖BCm(R) can be bounded in terms of ‖y‖BCm(R) and ‖x‖∞ by
Theorem 2.9, and ‖x‖∞ ≤ ‖(I −K)−1‖‖y‖∞, we obtain the required
result.

4. Application to scattering by rough surfaces. In this section
we will consider the application of the Nyström method to a problem
of the scattering of time-harmonic waves by unbounded rough surfaces.
The propagation of time-harmonic acoustic waves with wave number κ
in a domain Ω is governed by the reduced wave equation or Helmholtz
equation,

∆u+ κ2u = 0 in Ω.

We will consider here domains of the form Ω := {x ∈ R2 : x2 > f(x1)}
where we assume f ∈ BCn+2(R) for some n ∈ N0, and the existence
of constants c1, c2 with 0 < c1 ≤ f(s) ≤ c2 for all s ∈ R. Set Γ := ∂Ω.

In the following, let Φ denote the free field Green’s function for the
Helmholtz equation,

Φ(x,y) :=
i

4
H

(1)
0 (κ|x − y|), x,y ∈ R2, x �= y,

where H(1)
0 denotes the Hankel function of the first kind of order zero.

Use shall also be made of the notations Uh := {x ∈ R2 : x2 > h} and
Γh := {x ∈ R2 : x2 = h}.
We suppose that a field ui is incident on the boundary Γ and that ui

is a bounded solution to the Helmholtz equation in a neighborhood of
Γ and seek to find the scattered field us as the solution to the following
scattering problem. We consider the sound soft case where the total
field u = ui + us vanishes on Γ.
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Problem 4.1. Given the incident field ui, find the scattered field
us ∈ C2(Ω) ∩ C(Ω) that satisfies

1. ∆us + κ2us = 0 in Ω,

2. us = −ui on Γ,

3. the upwards propagating radiation condition [11] in Ω that, for
some h > sup f and some φ ∈ L∞(Γh),

us(x) = 2
∫

Γh

∂Φ(x,y)
∂y2

φ(y) ds(y), x ∈ Uh,

holds,

4. for every a > 0, us is bounded in the horizontal strip Ω \ Ua.

Remark 4.2. Uniqueness of solution for Problem 4.1 was shown in
[12] and existence of solution in [12], [9], [24].

In reformulating Problem 4.1 as a boundary integral equation, we will
make use of Green’s function for the Helmholtz equation in a half-plane
with Dirichlet boundary conditions. This function is given by

G(x,y) := Φ(x,y)− Φ(x,y′), x,y ∈ U0, x �= y,

where y′ := (y1,−y2)�. We will make the following Brakhage-Werner
type ansatz for the scattered field:

us(x) =
∫

Γ

(
∂G(x,y)
∂n(y)

− i η G(x,y)
)
ψ(y) ds(y), x ∈ Ω,

with some density ψ ∈ BC(Γ), where η > 0 is a fixed constant and
n(y) denotes the unit normal to Γ at y directed into Ω.

A scattered field of this type is a solution to Problem 4.1 if and only
if the density ψ satisfies the boundary integral equation

(4.1) ψ +Dψ − i ηSψ = −2ui on Γ,

where D,S : BC(Γ) → BC(Γ) are the boundary integral operators
given by

Dψ(x) := 2
∫

Γ

∂G(x,y)
∂n(y)

ψ(y) ds(y), x ∈ Γ,

Sψ(x) := 2
∫

Γ

G(x,y)ψ(y) ds(y), x ∈ Γ.



A NYSTRÖM METHOD 311

Using a parameterization of Γ as {(s, f(s))� : s ∈ R} and setting
φ(s) := ψ(s, f(s)) and g(s) := −2ui(s, f(s)), s ∈ R, we find (4.1) to be
equivalent to

(4.2) φ−Kφ = g,

where
Kφ(s) :=

∫ ∞

−∞
k(s, t)φ(t) dt, s ∈ R,

and

k(s, t) := 2
(
i ηG(x,y)− ∂G(x,y)

∂n(y)

)∣∣∣∣x=(s,f(s))
y=(t,f(t))

√
1 + f ′(t)2,

s, t ∈ R, s �= t.

Now define, for c1,M > 0,

Bc1,M := {f ∈ BCn+2(R) : c1 ≤ inf f, ‖f‖BCn+2(R) ≤ M}.

Theorem 4.3. For f ∈ BCn+2(R), n ∈ N0, k satisfies condition
Cn. Moreover, given any c1, M > 0, condition Cn is satisfied with the
same constant C for all f ∈ Bc1,M .

Proof. Using the notation x := (s, f(s))� and y := (t, f(t))�, we set

a∗(s, t) := − 1
π

(
i ηJ0(κ|x− y|)

− κJ1(κ|x− y|)n(y) · (x− y)
|x − y|

)√
1 + f ′(t)2

and

b∗(s, t) := k(s, t)− a∗(s, t) ln(|s− t|)

for s, t ∈ R, s �= t, where Jj denotes the Bessel function of the
first kind of order j, j = 0, 1. As f ∈ BCn+2(R), there holds
(n(y) · (x − y)/|x − y|2) ∈ BCn(R2) [5, Section 7.1.3], and the norm
of this function is uniformly bounded for all f with ‖f‖BCn+2(R) ≤ M .
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Thus, from H
(1)
n = Jn + iYn and using ascending series expansions of

Bessel functions (see [1, Equations 9.1.10 and 9.1.11]) and the regularity
of f , we conclude that a∗, b∗ ∈ BCn(R2). Further, for some constant
C > 0 dependent on M and c1,

(4.3)
∣∣∣∣ ∂j+l

∂sj∂tl
b∗(s, t)

∣∣∣∣ ≤ C

for all j + l ≤ n and all s, t ∈ R, |s − t| ≤ π, and the same estimate
holds for a∗(s, t).

The kernel function k can also be written as

k(s, t) := 2i ηG(x,y)
√
1 + f ′(t)2 + 2gradyG(x,y) · n(y).

In [24] it is shown that for |x− y| ≥ ε > 0, there holds

|G(x,y)| ≤ C
(1 + x2)(1 + y2)

|x − y|3/2 ,

and from regularity estimates for solutions to elliptic partial differential
equations [14, Theorem 3.9], it can be seen that such estimates in
fact hold for partial derivatives of G(x,y) of any order. On the
other hand, as f ∈ BCn+2(R) with ‖f‖BCn+2(R) ≤ M , we have
that

√
1 + f ′2,n((., f(.))T ) ∈ BCn(R) and are bounded in norm by

a constant only dependent on M . Combining these bounds we thus
conclude that

∣∣∣∣ ∂j+l

∂sj∂tl
k(s, t)

∣∣∣∣ ≤ C

(1 + |s− t|)3/2 , j + l ≤ n

for s, t ∈ R, |s− t| ≥ π, where C is a constant dependent on M .

Theorem 4.4. The kernel function k satisfies assumptions A, B
and E. Further, given any c1, M > 0, there exists β > 0 such that
‖(I −K)−1‖ ≤ β for all f ∈ Bc1,M .

Proof. That A and B are satisfied follows from Theorem 4.3 and
Remark 2.2. That assumption E is satisfied and the uniform bound on
(I −K)−1 is the content of Theorem 3.2 in [27].
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By the two previous theorems, we can apply the theoretical Nyström
method to the integral equation (4.2) and, by Theorems 2.1, 3.8 and
3.13, the following result is proved:

Theorem 4.5. Suppose n ∈ N0 and c1, M > 0. Then there exists
Ñ ∈ N such that, provided N ≥ Ñ and f ∈ Bc1,M , the equation

(4.4) (I −KN )φN = g

has a unique solution φN . Further, there exists a constant C > 0 such
that, provided f ∈ Bc1,M , it holds that g ∈ BCn(R) and

(4.5) ‖φ− φN‖∞ ≤ C‖g‖BCn(R)N
−n, N ≥ Ñ .

Remark 4.6. In the next section we consider the case when the
incident wave is a plane wave. Then

(4.6) ui(x) = eiκx·θ̂,

where θ̂ := (cos θ,− sin θ)� is the direction of the plane wave and
θ ∈ (0, π) specifies its angle of incidence. In this case there exists a
constant c > 0, depending only on κ and n, such that

‖g‖BCn(R) ≤ c‖f‖BCn(R).

As a consequence, (4.5) simplifies to

‖φ− φN‖∞ ≤ CN−n, N ≥ Ñ ,

where the value of C > 0 depends only on κ, n, c1 and M .

Remark 4.7. In the case when f ∈ C∞(R), Theorem 4.5 predicts
that φN is superalgebraically convergent, i.e., that

‖φ− φN‖∞ = o(N−n) as N → ∞

for every n ∈ N.
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5. Scattering by periodic surfaces. In general φN cannot be
computed exactly; to obtain an approximation to φN the infinite system
of equations (4.4) has to be truncated. As was pointed out in Section 3,
exact computation of φN is however possible if the kernel function and
the righthand side of equation (4.2) show some periodicity. For the
scattering problem 4.1 this is the case if we assume f to be L-periodic
and the incident wave to be a plane wave, so that ui is given by (4.6).
By multiplying (4.2) by e−iκs cos θ and setting

φ̃(s) := e−iκs cos θφ(s),

K̃φ̃(s) :=
∫ ∞

−∞
eiκ(t−s) cos θk(s, t)φ̃(t) dt,

g̃(s) := e−iκs cos θg(s) = −2e−iκs cos θui(s, f(s)),

the modified integral equation

(5.7) (I − K̃)φ̃ = g̃

is obtained, which satisfies the periodicity assumption D of Section 3.

The implementation of the numerical scheme also relies on a repre-
sentation of k as in assumption C′′

n. Recalling the proof of Theorem 2.1,
we find that

k(s, t) =
1
2π

A(s, t) ln
(
4 sin2

(
s− t

2

))
+B(s, t),

where A and B are given by (2.6) and (2.7), respectively. We choose
the cut-off function χ in these equations to be

(5.8) χ(t) :=




1 |t| ≤ 1,(
1 + exp

(
π − 1
π − |t| −

1− π

1− |t|
))−1

1 < |t| < π,

0 π < |t|.

Now, setting

k̃(s, t) :=
(

1
2π

A(s, t) ln
(
4 sin2

(
s− t

2

))
+B(s, t)

)
eiκ(t−s) cos θ,
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so that K̃φ̃(s) =
∫ ∞
−∞ k̃(s, t)φ̃(t) dt, Theorems 4.3, 4.4 and 4.5 also hold

with k replaced by k̃ and, by Remark 4.6, we deduce that the Nyström
method approximation, φ̃N , satisfies that

(5.9) ‖φ̃− φ̃N‖∞ ≤ CN−n, N ≥ Ñ ,

where the constants C > 0 and Ñ ∈ N depend on κ, c1, M and n, but
not on θ or on the particular choice of f ∈ Bc1,M , and hence not on
the period of the diffraction grating, L.

By choosing the unit of length measurement appropriately, we can
ensure that L is a multiple of π/N . Then, recalling that tk := kπ/N
and setting xkN := φN (tk), yk := g(tk), we have to solve the linear
system (3.8) with M = LN/π. The entries of the matrix are given by

(5.10) ãkj =
∑
n∈Z

ak,j+nM

and, recalling (3.2),

akj := (R(N)
j−kA(tk, tj) +

π

N
B(tk, tj))eiκ(tj−tk) cos θ.

Noting that akj = πk̃(tk, tj)/N for |k − j| > N , to compute ãkj we
have to evaluate sums of the form

ksum
+ (s, t) =

∞∑
d=0

k̃(s, t+ dL) for t− s > π,

ksum
− (s, t) =

∞∑
d=0

k̃(s, t− dL) for s− t < π.

Each of these was rewritten as a Laplace-type integral (cf. [20, Equation
2.36]), via integral representations of Hankel functions ([22, formulae
2.13.52 and 2.13.60]). Then each integrand was expressed as the sum
of a simple term containing the simple pole singularity nearest the
positive real axis, evaluated exactly in terms of the complementary
error function, and a complex but smooth remainder. The integral
corresponding to this latter part of the integrand was evaluated by a
40 point Gauß-Laguerre rule.



316 MEIER, ARENS, CHANDLER-WILDE AND KIRSCH

5.1. Results for a flat surface. In the case of a flat surface, the
integral equation (5.7) is a convolution equation on the real line, and
its solution can be computed exactly. Setting f(s) = h for some h > 0,
there follows

g̃(s) = −2e−iκs cos θeiκ(s cos θ−h sin θ) = −2e−iκh sin θ,

and
k̃(s, t) = κ̃(s− t)e−iκ(s−t) cos θ,

where
κ̃(z) :=

η

2

(
H

(1)
0 (κ

√
z2 + 4h2)−H

(1)
0 (κ|z|)

)

+
i

2
∂H

(1)
0

∂y2
(κ

√
z2 + (h+ y2)2)

∣∣∣∣
y2=h

.

It follows that φ is a constant, in fact

(5.11) φ = φ̃ =
g̃

1− ∫ ∞
−∞ κ̃(u)eiκu cos θ du

and, computing the Fourier transform of κ̃, we find that
∫ ∞

−∞
κ̃(u)eiκu cos θ du = − η

κ sin θ
(1− e2iκh sin θ)− e2iκh sin θ.

In Table 1 results are presented showing the differences between the
exact solution given by (5.11) and the approximations obtained by the
Nyström method, solving (3.8) for various values of N , with ãkj given
by (5.10) and taking L = 2π. The error tabulated is

eN := max
j∈Z

|φ̃(tj)− φ̃N (tj)|,

and the estimated order of convergence (EOC) is defined as

(5.12) EOC :=
ln(eN/e2N )

ln 2
.

The error, eN , satisfies the bound (5.9), and the superalgebraic con-
vergence rate predicted in Remark 4.7 can clearly be observed until
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TABLE 1. Error and estimated order of convergence

against N for (a) η=κ=
√
2, h=1, θ=π/2

and (b) η=κ=2
√
2, h=5/2, θ=π/6.

N eN EOC N eN EOC

2 1.329e-2 2 3.510e-1
4.71 3.47

4 5.072e-4 4 3.177e-2
5.18 9.72

8 1.398e-5 8 3.779e-5
6.72 6.00

16 1.326e-7 16 5.909e-7
6.58 9.34

32 1.385e-9 32 9.103e-10
9.61 9.08

64 1.769e-12 64 1.679e-12
4.73 2.72

128 6.664e-14 128 2.549e-13
(a) (b)

rounding errors and the errors inherent in the Gauß-Laguerre rule
become significant.

5.2. Results for a sinusoidal surface. We next consider a
configuration treated previously by other authors (see [6] and references
contained therein). We assume the surface to be sinusoidal, given by

f(s) = h+ ε sin(s),

with h > ε. For this application we will assume that κ = 1.25/0.546 and
L = 2π. These values correspond to the physical problem of scattering
of a plane wave of wavelength 0.546 µm by a sinusoidal diffraction
grating with period 1.25 µm and height (1.25ε/π)µm.

For x2 > max f , we can write the scattered field as a Rayleigh series,

us(x) =
∑
n∈Z

une
iαnx1+iβnx2 ,

where αn := n + κ cos θ and βn :=
√
κ2 − α2

n with Imβn ≥ 0 and
un ∈ C, n ∈ Z. Only a finite number of terms in this expansion
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TABLE 2. Comparison of results for η=
√
2, h=3 and θ=π/2.

ε Rayleigh our results v. d. Berg’s
coefficients N = 8 N = 16 results

|u0|2 0.42284 0.42285 0.42229

0.375 |u−1|2 = |u1|2 0.01294 0.01294 0.01282
|u−2|2 = |u2|2 0.56909 0.56907 0.56988

β−1
0

∑2
n=−2 βn|un|2 1.00000 1.00000 1.00002

|u0|2 0.33677 0.33678 0.3352

0.500 |u−1|2 = |u1|2 0.18897 0.18896 0.1888
|u−2|2 = |u2|2 0.33214 0.33213 0.3311

β−1
0

∑2
n=−2 βn|un|2 1.00002 1.00000 0.9971

|u0|2 0.34570 0.34573 0.3443

0.700 |u−1|2 = |u1|2 0.10551 0.10556 0.1049
|u−2|2 = |u2|2 0.47715 0.47709 0.4772

β−1
0

∑2
n=−2 βn|un|2 0.99994 1.00000 0.9975

represent plane waves propagating away from the diffraction grating.
For these there holds (see [6])

∑
α2

n≤κ2

βn|un|2 = β0.

Using the Rayleigh series expansion [20] for the sums of Hankel func-
tions appearing in the kernel k̃,

∑
n∈Z

eiαn2πH
(1)
0 (κ|x− y − np|) = 1

π

∑
n∈Z

1
βn

eiαn(x1−y1)+iβn|x2−y2|,

where p = (2π, 0)�, we obtain the formula

un =
∫ 2π

0

(
1− f ′(t)

αn
βn

+
η

βn

√
1 + f ′(t)2

)
e−int−iβnf(t)φ̃(t) dt

+
∫ 2π

0

(
1 + f ′(t)

αn
βn

− η

βn

√
1 + f ′(t)2

)
e−int+iβnf(t)φ̃(t) dt



A NYSTRÖM METHOD 319

TABLE 3. Estimated error and estimated order of convergence against

N for η=
√
2, h=3, ε=0.7 and (a) θ=π/2 and (b) θ=π/6.

N en EOC N eN EOC

2 1.933e+0 2 8.038e-1
1.45 0.11

4 7.098e-1 4 7.429e-1
6.43 6.18

8 8.213e-3 8 1.028e-2
10.07 11.07

16 7.646e-6 16 4.773e-6
10.33 9.64

32 5.958e-9 32 5.974e-9
9.39 9.91

64 8.887e-12 64 6.191e-12
5.67 4.89

128 1.420e-13 128 2.095e-13
(a) (b)

for the Rayleigh coefficients un. Table 2 compares results obtained
with the Nyström method to those obtained in [6] and shows that
good accuracy is reached for even modest values of N . Table 3 lists the
estimated error

eN := max
j∈Z

|φ̃512(tj)− φ̃N (tj)|,

and the estimated order of convergence given by (5.12). Again the
claimed superalgebraic convergence rate is clearly demonstrated.
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