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0. Introduction.

Let k be an algebraically closed field of arbrtrary characteristic.
Let G be a linear algebraic group and let X be an algebraic vairety
on which there is given a regular action, i.e. there is a morphism
0:GxX>(g, x)»a(g, x)=gxe X satisfying ex=x (e being the unit
element of G), (g9,9,)x=g,(g,x) for every point x of X and any
elements g,,g, of G. We are assuming that G, X and o are defined
over k. In this paper, we shall show the following three results.

a) If G is a connected linear algebraic group (resp. a torus group)
and if X is a normal variety on which there is given a regular action
of G, then X has an open covering which consists of G-stable quasi-
projective (resp. affine) open subsets of X (cf. Lemma 8 and Corollary 2).
Furthermore, if X is a normal quasi-projective variety on which G
acts regularly, then we may assume that the action is linear, i.e. there
exist a projective embedding ¢: X—P" and a projective representation
p: G>PGL(n) such that ¢(gx)=p(g)p(x) for every g of G and every
x of X (cf. Theorem 1).

Therefore, combining these results, we see that every regular action
of connected linear algebraic group (resp. a torus group) on a normal
variety is obtained by patching finitely many linear actions on normal
quasi-projective (resp. affine) varieties.

b) Let X be a variety on which connected linear algebraic group
G acts regularly. Then X has an equivariant Chow cover, i.e. there
exist a quasi-projective variety X on which G acts regularly, a G-
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birational projective, surjective morphism ¢: X—»X and a non-empty
G-stable open subset U of X such that ¢l !(U)SU is an isomor-
phism (cf. Theorem 2).

¢) M. Nagata proved in [4] that every algebraic variety X is em-
bedded in a complete algebraic varitey X as an open subset. We
shall generalize this beautiful result in the following way. Let G
be a linear algebraic group (not necessarily connected) and let X be a
normal variety on which there is given regular action of G. Then,
there exists a complete variety X on which a regular action of G is
given such that X is embdded in X as an open subset and the regular
action of G on X is an extension of the given regular action of G
on X (cf. Theorem 3). We call such a complete variety X a G-comple-
tion (or equivariant completion) of X.

Notations and conventions.

We shall fix a universal domain . For every algebraic variety
X and every subfield K of Q, the set of all K-rational points of X
is denoted by X(K). If X is an algebraic variety defined over k(cQ),
then the field of rational functions of X defined over k is denoted
by k(X). Furthermore, if X is affine, the ring of regular functions
of X defined over k is denoted by k[X].

Let G be a linear algebraic group and let X be an algebraic variety
on which there is given a regular action of G. We assume that G, X
and the action are defined over k. For every f of k(X) and every g
of G, we shall define f9(x)=f(g~'x) where x is a generic point of X
over k(g). Then we have that f9192=(f92)9: for every g, and g, of G.

The author wishes to express his sincere thanks to Professor M.
Nagata, Professor T. Oda, Professor M. Miyanishi and Professor M.
Maruyama for many valuable comments and discussions.

1. Invertible regular functions.

In this section, we shall prepare some lemmas on invertible regular

functions.

Lemma 1. Let G be a connected linear algebraic group defined
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over an algebraically closed field k and let K be an extension field
of k. If f is an invertible regular function defined over K on G,
then there is an element ¢ of K and a rational character A defined
over k of G such that f=cA.

Proof. See the proof of Theorem 3.4 of [7].

Lemma 2. Let X be a variety defined over k on which G acts
regularly and let f be an invertible regular function defined over
k of X. Then there is a rational character A of G such that f9
=Mg~V)f for any element g of G.

Proof. Let x be a generic point of X over k and let o: G>g
—g.xeX be the operation. Put f'=foos. Then f’ is an invertible
regular function defined over k(x) on G. By virtue of Lemma 1,
we have an element d of k(x) and a rational character A defined over
k on G such that f'=dA. Hence, (f')(g)=f' (g 'g)=dMg~lg)=
dMg=DMg)=Mg )dXNg)=Ag~")f'(g") for any elements g and g'.
If we put g'=e, then we have that (f')9(e)=A(g"')f'(¢e) and that
Fx)=f(g7'x)=f"(g= ) =(f)(e)=Ug~ ") f'(e)=Ag~") f(x).

g.e.d.

Lemma 3. Let X be a variety defined over k and let K be
an extension field of k. If f is an invertible regular function defined
over K on X, then there is an element ¢ of K and an invertible

regular function f' defined over k on X such that f=cf'.

Proof. We may assume that X is normal and its completion X
is normal. If we regard f as a rational function on X, then the
components of (f) (the divisor of f on X) is contained in X—X.
Since X —X is k-closed, (f)=E for some k-rational divisor E. Thus,
by virtue of Cor. 2 ([8] p. 265), there is an element ¢ of K and a
rational function f’ defined over k such that f=c.f’. It is obvious
that f' is an invertible regular function. q.e.d.

The next lemma 4 is interesting, however we shall not use it below.
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Lemma 4. Let X be a variety defined over k. There are finitely
many invertible regular functions fi,...,f, defined over k on X such

that every invertible regular function f on X is written uniquely in
r

the following form; f=c ]I f? - where ¢ is a non-zero element of
i=1

k and n; (i=1, 2,..., r) are integers.

Proof. We may assume that X is normal and that its completion
X is normal. Let E; (i=1,2,...,s) be the irreducible components of
codimension 1 of X—X. For every invertible regular function f on

X, ()= F1E. Put H={I=(h ()= L E, fET(X, O}
(cZ®s), H is a torsion free Z-submodule of Z®s. Therefore, there

are finitely many invertible regular functions {f;} <<, on X such that
N= Zr]ni(f,-)({ni},s,.s, are uniquely determined) for every invertible
i=1

regular function f on X. q.e.d.

2. Quasi-projective case.

Let G be a connected linear algebraic group defined over k and
let X be a normal quasi-projective algebraic variety defined over k
on which G acts regularly. Under this circumstance, we shall prove
in this section that there is a G-linearlizable ample line bundle on X
(cf. [3]) i.e., there is a projective embedding ¥: X—P" and a group
representation p: G—»PGL(n) such that p(g)y(x)=y(g'x) for every gG
and xe X. ‘

At first, we shall prepare a lemma which is a key in our proof.

Lemma 5. Let G be a connected linear algebraic group defined
over k and let X be a variety defined over k on which G acts regular-
ly and let Z be a k-rational cycle on X. Then, for every element
g of G, g+Z is rationally equivalent to Z.

Proof. We may assume that Z is a prime cycle. Let g be a
generic point of G over k and let z be a generic point of Z over
k(g). Let W be the closure of (g, g-z) in Gx X. It is enough to prove
that go,Z is rationally equivalent to Z for any k-rational point g,
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of G. Since k(g) and k(z) is linearly disjoint over k, if z, is a speciali-
zation of z over k, then (g, zo) is a specialization of (g, z) over k.
Furthermore, (go, go'zo) is a specialization of (g, g-z) over k. Hence,
go X goZ is contained in (gox X)NW. On the other hand, if (go, z)
is a specialization of (g, gz) over k, then z’'=g,z” for some element
z” of Z, because z=g !(gz). Thus, goxgoZ is the only one compo-
nent of (goxX)NW. Next we shall prove that the multiplicity is
equal to one, i.e. (gox X)-W=goXxgoZ. In order to prove this, we
may assume that go=unit element of G. Let ¢:GxX>(g, x)—
g '-xeX be the operation map and let p;:GxX—G, p,: GxX-X
be the projections. Put ¢*: k(X)— k(G x X) (respectively p*: k(G)—
k(G x X), p§: k(X)— k(G x X)) be the map induced from ¢ (respectively
py and p,). Furthermore, let n be the maximal ideal of O,y and
let m be the maximal ideal of O,;. Then, (ex X)N Spec(O,xz,gxx)
is defined by pY(m)0,xz,6xx and (exZ)NSpec(O.xz,6xx) is defined
bY (PF0m)0xz,6xx) + (PE(M0exz,6xx). Let I(W) be the defining ideal
of WNSpec(O,xz,6xx)- Then I(W)+(pF(m)0.xz 6xx) = (0*(1)0,xz 6xx)
+(pf(m)0,xz,6xx). In fact, if fen, then o*(f)(g, g-z2)=f(z)=0 for
any zeZ. Let f be an element of I(W). f(g, x)=f(e, g~ '-x)+(f(g, x)
—fle,97!"x)) and f(e, 97" X)€Ep*(n)0cxz,6xx»» f(g X)—fle, g7 x)E€
PT(m)0exz,6xx> thus I(W)+(pT(m)0.xz,6xx) = (¢*(M)0¢xz,6xx) + ( pF(m)
O.xz,6xx). Let f be an element of n. Then, (o*(f)—p3(f))g, x)
=f(g™", x)—f(x) and therefore ¢*(f)—p3(f)€pf(m)0.xz,6xx. Hence
(0*(1)0.xz,6xx) + (PT(M)0exz,6xx) = (PT(1M)0,x z,6xx) + (PE(M) 0,x 2,6 xx)-
Therefore, (ex X)W=exZ. Since G is a rational variety, gZ is ratio
nally equivalent to Z. g.e.d.
Now we shall prove the main theorem of this section.

Theorem 1. Let G be a connected linear algebraic group and
let X be a normal quasi-projective variety on which G acts regularly.
Then there is a projective embedding y: X—P" and a group represen-
tation p: G->PGL(n) such that p(gW(x)=y(gx) for every geG and
xeX.

Proof. Let D be a very ample effective divisor on X such that
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X—D is an affine open subset of X and let g be a generic point of
G over k. By virtue of Lemma5, gD is linearly equivalent to D,
hence for a rational function ¢, definec over k(G), we have that
gD=D+(p,). Since ¢, is regular on X-—D, we may assume that
¢, has the following form: ¢y=i;zll afg)x;, where afg) (i=1,2,...,n)
are elements of k[G], and x; (i=1, 2,..., n) are elements of k[X—D]
and are linearly independent over k. Let U={geG|a(g)+#0 for
some i}. Then U is a non-empty k-open subset of G and for any
element g of U, we have that gD=D+(¢,). In particular, for any
independent generic points g, g’ of G over k,

g9'D=g(D+(p,)=gD+(p5) =D+ (¢, ¢5).

Therefore, there is an invertible regular function (g, g’) on X defined
over k(GxG) such that ¢, =g, g)e,e5. By virtue of Lemma 3,
there exist an element c¢(g, g') of k(GxG) and an invertible regular
function 6 on X defined over k such that &(g, g’)=c(g, g')d. By
taking d¢p, instead of ¢, and by virtue of Lemma 2, we may assume
that (g, g’) is an element of k(GxG) (6(g, g') is defined at g, g’
whenever g, g’ and gg’ are contained in U). Let {D=D,, Dy,...,D,}
be very ample divisors which are linearly equivalent to D and such that
they give a projective embedding ¢: X—P™. Then, there exist rational
functions ¢; defined over k such that D;=D+(¢;) and ¢:X>x—
(0o(X);...; pum(x))=P™ gives an embedding of X. Put V= OSZ_; ¢ 07

geG

Q (If g¢U, then ¢,=0). We shall prove that V is a finite dimen-
sional vector space over Q. In fact, let g be a generic point of G
over k. Then we have that gD;=gD+(¢?)=D+(p,0f). Since ¢ 0!
is regular on X-D, gogzp’,?=;oc,-j(g)y,~j for some o;;(g9)(€k(G)) and
yi{(€k[X—D]). Therefore, V is a vector subspace of the vectorspace
generated by y;;’s over @, hence V is a finite dimensional vector space
over Q. It is easy to see that we can take Yo=¢, 0l ..., ¥,=0¢, 0"
(g:€U(k)) as a basis of V. Let g be a generic point of G over
k. Then we have that ¢,-Yi '=¢,-1(¢, 1) "=, 105 "ol ‘0=
3(g™Y, i) e, 15.00 k. Since ¢, -1,,07, 9% is contained in V, gg-1pf 7"
= fi‘oaik(g)lﬁi for some a,(g)(€k(G)). Furthermore, for any independent
=0
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generic points g, g’ of G over k,
y-1 r-1g-1
'l’(yy’)"l/’}cgg ) =@y =

8(g'™ " g™y -1pg - (W)Y T =009 g7 Deg -1 (el

:5(9,—1’ g_l)¢y"l( ii:oaik(g)lpi)g'-l=5(g,—l’ g_l) ;":oaik(g)‘Py"“/’g’_l
=0d(g'"" " g7") igioaik(g)jﬁoaﬁ(g’)lﬁj

=3(g""", g7 2 (2 aul @)@ NV .
Jj=0 i=0

By the above fact, if we shall define p(g)=the class of the transposed
matrix of (ou(g)) in PGL(n), then p(gg’)=p(g)p(g’) for any independent
generic points g, g’ of G over k. Hence p(g) is an everywhere defined
rational representation of G. Moreover, ¥:X3x— Wo(X);...; Y (X))
€P" gives an embedding of X, because V contains {p,¢%,..., 0,08}
(ge U(k)). These p and y are desired ones. In fact, let g be a generic
point of G over k and let x be a generic point of X over k(G).
Y(gx) = o(gx);-- 5 Yu(gx) = (-1 Y87 (X): ... -1 ' (x)) = p(9) (Yo(x);
vy Yu(x) =p(gW(x). Therefore, for every element g of G and x of
X, we have that Y(gx)=p(g)¥(x), because p and ¥ are both regular.

g.e.d.

Remark 1. If X is not normal, Theorem 1 is not necessarily true.

3. Egquivariant Chow lemma.

Let G be a connected linear algebraic group and let X be a variety
on which G acts regularly. In this section, we shall prove that there
are a quasi-projective variety X on which G acts regularly and a
G-birational projective surjective morphism f: X—»X and a non-empty
G-stable open subset U of X such that f|f~"(U)5 U is an isomorphism.
This is a generalization of Chow’s lemma.

The following Lemma 7 is well-known.

*) This Remark 1 was pointed out to the author by Professor T, Oda,
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Lemma 7. Let X be a normal variety and let D be an effective
divisor of X such that,

1) There are a finite number of effective divisors D=D,, Dy,
..., D, which are linearly equivalent to D.

2) X—D,(i=0, 1,....n) is affine and ig/O(X—D,-)=X Then, X is

quasi-projective.

Lemma 8. Let G be a connected linear algebraic group and let
X be a normal variety on which G acts regularly. Then, for any
point x of X, there is a G-stable quasi-projective open neighbourhood

of x.

" Proof. Let D be an effective divisor of X such that X—D is
an affine open neighbourhood of x. Put Y= N gD and U=X-Y.

9eG(k)

Then U is a G-stable open neighbourhood of x. If Y=D, ie. D is
G-stable, then U is a G-stable affine open neighbourhood of x. If
Y+D, then we put D’=D—Y. D’ is an effective divisor of U and

U= U (U—gD’). Furthermore, for every element g of G(k), gD’
geG(k)

is linearly equivalent to D’, by virtue of Lemma 5 and U—gD’ is
affine. By virtue of Lemma 7, U is quasi-projective. q.ed.

Corollary 1. Let G be a connected linear algebraic group and

let X be a G-homogeneous variety. Then X is quasi-projective.

Corollary 2.*) Let T be a torus group and let X be a normal
variety on which T acts regulary. Then, for any point x of X,
there is a G-stable affine open neighbourhood of x.

Proof. We may assume that x is a k-rational point. Furthermore,
by virtue of Theorem 1 and Lemma 8, we may assume that X is T-
stable locally closed subvariety P* on which T acts linearly. Let X
be the closure of X in P” and let {x,,...,x,} be a T-semi invariant,

*) This Corollary 2 was pointed out to the author by Professor T. Oda and the
author heard from Professor M, Maruyama that Professor D, Mumford conjectured
this Corollary 2,
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homogeneous coordinate of P". If X=X, then Corollary 2 is obvious.
Let Y=X—X and let I be the homogeneous ideal defined by Y,
and let m be the homogeneous ideal defined by the point x. Then
I is T(k)-stable and m=pI. Take a homogeneous polynomial f which
is contained in I and is not contained in m. Put V=t TZ(:k)f'k, J=

N mt and W=VnJ. Then V and W are T(k)-stable and finite
(tieigléilsional vector spaces. Since every representation of T is completely
reducible, there is a T(k)-stable vector subspace Z of V such that
V=W®Z. Therefore, there is a T-semi invariant homogeneous poly-
nomial F(#0) which is contained in Z. Let S be the T-stable hypersur-
face of P" defined by F and let U=X—S. Then U is the dérired
T-stable affine open neighbourhood of x. In fact, we have only to
prove that x¢S. If x is contained in S, then F is contained in W.
This is a contradiction. g.e.d.

Corollary 3. Let T be a torus group and let X be a normal
variety on which T acts regularly. If the action is closed, i.e. every
orbit is closed in X, then there exists a universal geometric quotient
Y of X and Y is a normal pre-variety. Furthermore, if the action
is separated (cf. [3]), then Y is a normal variety.

Proof. Use Corollary 2 and see Amplication [.3 and Lemma 0.6
in [3]. g.e.d.

Remark 2. Let G be a connected linear algebraic group (resp.
a torus group). Then, Theorem 1 and Lemma 8 (resp. Corollary 2)
show that every regular action on a normal algebraic variety is obtained
by patching linear actions of G on normal quasi-projective (resp. affine)
varieties.

Theorem 2. (Equivariant Chow lemma) Let X be an algebraic
variety on which a connected linear algebraic group G acts regularly.
Then, there exist a quasi-projective variety X on which G acts regular-
ly such that. .

1) There is a G-birational projective surjective morphism f: X—X,

2) There is a non-empty G-stable open subset U of X such that
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flf~Y(U)3 U is an isomorphism.

Proof. We may assume that X is normal. The almost part of the
proof of Theorem 2 is nothing but the one of Theorem 5.6.1. [1].
However, for the completeness of the proof, we shall prove it here.
By virtue of Lemma 8, there is a G-stable quasi-projective open covering
U=(Up)i<k<n of X. By virtue of Theorem I, for each k(I<k<n),
there are a projective variety P, on which G acts reqularly and an
open immersion ¢,: U,—P, such that ¢, (gx)=g¢(x) for every element
x of U, and g of G. Put U=,‘f"\l U, Then U is a G-stable open
subset of X. Let ¢: UBx—>(gol(x_),..., e(x))EP; % - xP,=P (p being
a G-open immersion) and let Y =(j, ¢): U> X xP where j is the
inclusion map of U.  is a G-immersion. Put X’'=y(U). Then X’
is a G-stable closed subset and  is factored through X',

YUY X X xp

where ': U-» X’ is a G-open immersion and /i: X'—>X x P is a G-closed
immersion. Let ¢,: X xP—-X be the first projection and let ¢,: X x
P—>P be the second projection and let f=qoh; X't Xx P2 X,
Then X', f and U are the desired ones. First of all, we shall prove
that f is a G-projective surjective morphism and that f|f~Y{(U)3U
is an isomorphism. Since ¢q, is a projecitve morphism, f is a G-
projective morphism. Furthermore, f(X’) contains U, because foy’=
qiohoy’ =j. Hence f is surjective. We shall put U'=f"1'(U). Then
U'=(qch)y"'(U)=X"Nq7'(U) and U’ is a closure of I, being
a graph of ¢) in ¢7'(U). However, since ¢ is a morphism from
U to UxP=q7'(U), I', is a closed subset of UxP. Hence, U' =
r,=y'(U) and f|U'=U is an isomorphism. Next we shall prove that
X' is quasi-projective. For the purpose it is enough to prove that
g: X't XxP-25P is an immersion. For each k(I <k<n), we shall
put V,=¢ (U, (G-open subset of P,), W,=pi'(V,) (G-open subset
of P where p,: P>P, is the k-th projection), U;=f"1(U,) (G-stable
open subset of X') and U} =g '(W,) (G-stable open subset of X’).
Then, W =(U});<k<, is & G-open covering of X'. For each k(1<



Equivariant completion 11

k<n), we shall prove that U] contains Uj;. Therefore, U =(U}),<i<n
is a G-open covering of X, too. For the purpose, we shall prove that
the following diagram is commutative.

glU;

f|U,;l Jﬂk

Ui—— Pi

Since all maps are morphisms, it is enough to prove that p,g|U’'=
oo flU’. However, this equality is true by the definition. Thus, W=
(W)1<k<n is a G-stable open covering of g(X’). In order to prove
the Theorem 2, we have only to prove that g: U} —» W (1<k<n) is an
immersion. For any k(1<k<n) we shall put

k
ug: W v,—U,—sX.

u, is a G-morphism. The restriction of ¢, on I, which is a graph
of u, is a G-isomorphism. Let v,: U;SX x W, be a canonical injec-
tion and let wy,=gq,v,. We have only to prove that v =TI, ow(l<
k<n). Since all maps are morphisms, it is enough to prove that the
equality is true on U’. We shall consider all things through the
isomorphism y’: U U’. We shall prove that ¢ ov,=u,oq,ov,, because
the second components of v, and I, ow, are equal. However, since
Ve’ |U=y|U, it is enough to prove that g oy =u,oq,°¥. Moreover,
since j=q,°y, p=q,°Y, it is enough to prove that j=u,op. This is
obvious.

g.e.d.

4. G-twisted valuation rings.

Let G be a connected algebraic group (not necessarly linear) and
let X be a variety on which G acts regulary and let v be a valuation
ring of k(X). We shall define the G-twisted valuation ring # of v and
study properties of #. The notion of G-twisted valuation ring plays
an important roll in a proof of the existence theorem of G-completion.
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Lemma 9. Let K, and K, be extension fields of k such that

1) K, and K, are linearly disjoint over k.

2) K, is a regular extension of k.
Let v be a wvaluation ring of K, and let m, be its maximal ideal.
Then (K1C7‘<>U)K.®km., is a valuation ring of the quotient field Q(Kxg@Kz)
of K1(>;)K2.

Proof. 1t is ovbious.

q.e.d.
Remark 3. (K;®v)x,@.n, 15 an extension of v in Q(K,®K,).
3 k

Definition 1. Let X be a variety on which a connected algebraic
group G acts regularly and let 0: Gx X>(g, x)>gxE X be its opera-
tion. Then ¢ induces the injective homomorphism ¢*: k(X)— k(G x X).
For any valuation ring v of k(X), we shall call the induced valuation
ring 6* ' (K(G)RV)i(6)®um,) in k(X) the G-twisted valuation ring of
v and simply d;note it by 0.

Lemma 10. Let X be a variety on which a connected algebraic
group G acts regularly. Let v be a valuation ring of k(X) domi-
nating a point x of X, i.e. v dominating O,y. Then the G-twisted
valuation ring © satisfies the following properties.

1) o is G(k)-stable.

2) © dominates X where X is a generic point of the orbit G(x)
of x over k.

3) For every element f of © (resp. my), there is a non-empty
open subset U of G(k) such that f°' belongs to v (resp. m;) for
every element g of U. Conversely, if f is an element of k(X) and
if there is a non-empty open subset U of G(k) such that f° ' is an
element of v (resp. m,) for every element g of U, then f is an ele-
ment of © (resp. my).

4) N ISt U v, N\ micSm;C U md.
geG(k) geG(k) geG(k) geG(k)
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Proof. 1) and 3). Let f be an element of # and let g and x
be independent generic points of G and X over k. Then we have

that o*(f)(g, x)=f*" '(x)=-§:z;((“g7——% where {a,, c;} are elements

of k(G) and {b,, ds} are elements of v and Y c;®d; ¢ k(G)®m,. Fur-
thermore if f is an element of my, then }a,&b,€k(G)®m,. At any
case, there is a non-empty open subset U of G(k) such that f97' is
an element of v or m, If f is an element of k(X) and if f satisfies
the last condition of 3), then it is easily seen that f is contained in ¥
or my; by the same method. Let g’ be an element of G(k). o*(f9)

(9. )=1*(g. x)=(f”')“’_'(x)=(f””"')(x)=§—‘;§:833—;gg. On the other

hand, k(G)®@m, is stable under the ring isomorphism induced by
the morphism L,; GxX 3(g, x)>(¢9'"'g, x) € G xX. Therefore, & is
G(k)-stable.

4) follows immediately from 3). Let f be an element of Ofy where
X is a generic point of the orbit G(x) of x over k and let g be a
generic point of G over k(x). Since f?' is defined at x, f9 '=

—%%;EZ%ZZ where {b,, d;} are elements of 0,, and 2.c5(9)Qdg ¢

k(g)®m,. Since v dominates x, i.e. v20,x and m,N0,x=m,, c*(f)

=%E(k(®®u)k(c)®mu. Hence f is an element of 7 and
B B

v contains O;y. Let f be an elements of myy. Then o*(f)=

Za¢®bd

Z%@dp ’
ments of O,y and where X a,Qb,Ek(G)Qm,, 3 c;Rds¢ k(G)RQm,.
Since m,N0,x=m,, 6*(f) is contained in (k(G)® m,)kyom,. Hence
m;N Og, x = m;. q.e.d.

where {a,, c;} are elements of k(G) and {b,, d,;} are ele-

The G-twisted valuation ring & of v is characterized by the proper-
ty 3) of Lemma 10.

Lemma 11. Under the situation of Definition 1, let v be a
valuation ring of k(X) satisfying the property 3) of Lemma 10, i.e.
for every element f of v' (resp. m,), there is a non-empty open subset
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U of G(k) such that f*' is an element of v (resp. m,) for every
element g of U. Then, v=v'.

Proof. Let f be an element of #. Then there is a non-empty
open subset U of G(k), such that f9°' is an element of v for every
element g of U. If fé¢v, then f~'em,. Therefore, there is a
non-empty open subset V of G(k) such that (f~')¢"" is an element
of m, for every element g of V. Since G is connected, UNV+d.
This is a contradiction. Hence, s<v’. The inverse inclusion relation
is proved similarly. q.e.d.

Corollary 4. Let G be a connected algebraic group and let X
be a G-homogeneous variety. If v is a valuation ring of k(X) which
dominates a point of X. Then we have that \J v9=k(X) and

9eG(k)
N m?=(0).
geG(k)

Proof. Since v=k(X), mz=(0), Corollary 4 is easily seen by
Lemma 10. 4). g.e.d.

Corollary 5. Let X be a variety on which G acts regularly and
let R be a G(k)-stable local ring in k(X). Then there is a G(k)-
stable valuation ring v of k(X) which dominates R.

Proof. Let v be a valuation ring of k(X) which dominates R
and let v=9" be the G-twisted valuation ring of v'. Then v is the

desired one. In fact, RS N v9Cd=v by virtue of Lemma 10.
9eG(k)

Furthermore, my (the maximal ideal of R)= N m§= N (m, NR)?
geG(k) 9eG(k)

=N m) NR)=( N m’)NRSm,NR by virtue of Lemma 10.
geG(k) 9eG)k)

Hence, mg=m,NR. q.e.d.

Lemma 12. Let X be a variety on which a connected algebraic
group G acts regularly and let v be a wvaluation ring of k(X) and
let & be the G-twisted valuation ring of v. Then v dominates a point
of X if and only if © dominates a point of X.
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Proof. 1Tt is enough to prove that if ©# dominates a point of X,
then v dominates a point of X. It is easily seen that a valuation
ring v dominates a point of X if and only if v contains a coordinate
ring of an affine open subset of X. Therefore, there is an affine open
subset U of X such that 62A4=k[f,,...,f,] where A is the coordinate
ring of U. By virtue of Lemma 10, for every i (1<i<n), there is
an open subset U; of G(k) such that f¢°' is an element of v for
every element g of U;. Since G is connected, U,N---NU,#¢. There-
fore, A° '=k[f{",...,f% '] is contained in v for every element g
of U;n---NnU, Hence v dominates a point of X.

g.e.d.

We shall next study the rational rank, rank and dimension of v.

Lemma 13. Let K and L(KDL) be extension fields of k and
let v be a valuation ring of K and let v =vNL be the restriction
of v on L. Then we have that

1) rational rank v' < rational rank v, rank v < rank v.

2) dimv <dimuo.

3) If K and L are algebraic function fields over k, then

rational rank v +dimv +tr, K> rational rank v+dimo.

Proof. We can prove easily Lemma 13 by elementary calculations.
See also the appendix 2 of [9]. g.e.d.

Lemma 14. Let X be a variety on which G acts regularly and
let v be a valuation ring of k(X) and let © be the G-twisted valu-
ation ring of v. Then we have that

1) rational rank ©< rational rank v, rank ©< rank v.

2) dimv<dim 3 <dimv+dim G.

3) rational rank v+dims> rational rank v+dimv.

Proof. Let v’ be the valuation ring (K(G)®@v)ic)@m, ©f Q(k(G)
®k(X). Then v’ is an extension of v in Qk(G)Rk(X)) and o=
;*"(v’)). Therefore rational rank v’ = rational rank v, {"ank v'= rank v
and dimv’ =dim G+dimv. Hence 1) and 3) are obvious and dimo<
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dimv+dim G by virtue of Lemma 13. Furthermore, dim{—dimv>
rational rank v— rational rank >0 by 1) and 3). Hence, dim ¢ >dim .
q.e.d.

Remark 4. Let X be a variety on which a connected algebraic
group G acts regularly and let ZR(X) be the Zariski-Riemann space
of X, i.e. ZR(X)={v| valuation ring v of k(X) which dominates a point
of X}. Then it is well-known that ZR(X) is a quasi-compact topo-
logical space. Lemma 11 implies that a valuation ring v of k(X) is
an element of ZR(X) if and only if the G-twisted valuation ring o of
v is an element of ZR(X). Lemma 10 implies that if v is an element
of ZR(X), then ¥ is G(k)-stable and is contained in the closure of the
orbit G(k)(v) of v in ZR(X) and that if v, and v, are valuation rings
of k(X) such that v,=v§ for an element g of G(k), then v, =0v,.
Conversely, if o, =0, for two elements v,, v, of ZR(X), what can
we say about v, and v,? Finally we shall make the following remark.

Let ¢:G(k)xZR(X)> (g, v)»>v*=ZR(X) be the operation. Is
this ¢ continuous under the product topology on G(k)xZR(X)?
The answer is no. There is a following easy counter example.

{( g1 dy2 g3 >} .

Example. Let G=<{| a,; a,; a,; be a parabolic subgroup of
0 a33

GL(3, k) and let X be P2?(projective space of 2-dimension) on which
G acts canonically. Let u=k[%, %]%k[%% in k(%, -§—>=k(P2).
Then v is an element of ZR(X). We shall assume that ¢ is continu-
ous at (e, v) where e is the unit element of G(k). Therefore, for any
open neighbourhood V of v, there is an open subset U on G(k) such
that v? is contained in V for every element g of U. However, this
contradicts with the following.

Let f=% and let V={veZR(X)|v>f}. Then f9'=

G117 Q12 Q13
a11X+a12X+al3Z=a11 . X +a12 . Y +a13 Where g= a21 022 a23 .
assZ azs Z a3y Z  azj 0 dys

Hence f¢ ' is contained in v if and only if a,,=0. This contradicts
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our assumption.

5. Main Theorem.

Let X be a normal algebraic variety on which a linear algraic
group G (not necessarily connected) acts regularly. In this section,
we shall prove that there is a G-completion (or egivariant completion)
X of X, i.e. X is embeded as a G-stable open subset of a complete
variety X on which G acts regularly. In [4, 5] Nagata proved that
there is a completion X of X for any variety X. His method is
effective in our case, too. Therefore, with above preparations on
G-twisted valuation rings, we shall follow it in order to prove our main
theorem. We note here that crucial algebraic sets which show up in
the process of the proof are G(k)-stable.

At first, we shall recall several notations which were used in [4, 5].

Notations.

1) Let f: X—>X' be a birational map. Then the set of points of
X at which f is regular is denoted by Dy . and the set of points
at which f is biregular is denoted by XN X'.

2) Let X be a variety and let f;: X,—> X(i=2,...,n) be a bira-
tional map over X, i.e. for every X,(i=1, 2,..., n), there is a canonical
morphism p;: X;—»X which satisfies p,=p;f;, Then we shall denote
the closure of {(x, f(x),.... f(X))xeX, N X,Nn---NX,} in X1§XZ
xxX, by Jy(X;, X,,..., X,) and we shall call it the join of {X,,
Xz,..)f, X,} over X. If X is a point, then we shall simply denote it
by J(X,, X5,..., X,) and we shall call it the join of {X,, X,,..., X,}.

3) Let X and X’ be birational varieties and let x and x' be
points of X and X' respectively. If (x, x’) is contained in the join
J(X, X’) of {X, X'}, then we shall say that x and x’ correspond to
each other and we shall denote it by x~x’. It is easily seen that
x and x’ correspond to each other if and only if there is a valuation
ring v of k(X) such that v dominates x and x’, i.e. v=0,5x and v>
O, x. Let f be the birational map between X and X'. If f is
regular at every point x of X which corresponds to a point of X',
we shall say that X is quasi-dominant over X'.
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4) Let X and X’ be birational varieties and let Y’ be a subset
of X’. We shall denote the set of all points x of X such that x
corresponds to a point of Y’ by Ty x(Y").

From now on, we shall frequently consider varieties on which a
connected linear algebraic group G acts regularly. Hence, for simpli-
city, we shall call such varieties G-varieties.

Lemma 15. Let G be a connected linear algebraic group and
let X and X' be G-birational G-varieties and let v be an element
of ZR(J(X, X’)). Then there is a G-variety X" such that

1) X" is G-projective and G-birational over X.

2) XnX'cXx”.

3) If x' and x" are points of X' and X" which are dominated
by v, then x" dominates x', i.e. O x»>0, x.

Proof. Let f: X—X' be the G-birational map and let # be the
G-twisted valuation ring of » and let (x,x') and (X, X’) be the
points of J(X, X’) which are dominated by v and © respectively.
If Lemma 15 is true for #, then Lemma 15 is also true for v. In
fact, let X” be the G-variety which satisfies the conditions 1), 2) and
3) for . Let f: X”"—>X be the G-projective and G-birational map and
let x” be the point of X” which is dominated by #. Then, by 3)
Oz x»>05 x-. Therefore, fof is a G-birational map from X” to X’
and is regular at Xx”. By virtue of Lemma 10, x” is a generic
point of the orbit G(x”) of x”, hence Xx”"=g.x” where g is a
generic point of G over k(x”). Since fof is G-birational, fof is regular
at x” and x” dominates x’. Therefore, X” is a desired one.
Since 7 is G(k)-stable, we may assume that v is G(k)-stable. We shall
prove Lemma 15 by induction on rank v. If rank v=0, ie. v=k(X)
or x dominate x’, then we may take X” =X. Hence we may assume
that rank v>1 and x does not dominate x’. Since v is G(k)-stable,
every prime ideal of v is also G(k)-stable. Let m, be the maximal
ideal of v and let p be the prime ideal of v which is the next prime
ideal of m, with respect to inclusion. By the induction hypothesis,
we may assume that 0, x>0, y. where y and )’ are points of
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X and X’ which are dominated by v,. Let U be an affine open neigh-
bourhood of x’ in X' and let B=k[b,,...,b,] be the coordinate
ring of U. Since 0, x is a quotient ring of B and 0, x <0, y,
every b(1<i<n) is contained in 0, . If every b(1<i<n) is con-
tained in O,y then 0, y <O0,y. Therefore, b; ¢0,, for some
io and there is an element s of m, such that s¢ pn0,y and s b,

0, x(1<¥i<n). Put a,= 3 (svN0,x). Then a, is a G(k)-
geG(k)

stable ideal, because v and 0,y are G(k)-stable. Furthermore, a,
is m,-primary ideal. Let i:Spec(0,x)—»>X be the embedding and let
0: 0x—i,(0,x) be the canonical sheaf homomorphism. Put I=0"!
(ix(ay)). Then I is a G(k)-stable quasi-coherent ideal of 0y and the
closed subset of X defined by I is contained in X—(XnX’). Let
X" be the blowing up of X with center I. Then X” is a G-projec-
tive, G-birational over X, and X” is a desired one. In fact, let
{a;, ay,...,a,} (a,=s) be a generator of (svNO0,y) as 0, x-module.
Then, for every element g of G(k), {a4,..., a?} is a generator of s%vN
0,x. Since 0,y is noetherian, there are finitely many elements
{g1--s 9m}(@:€G(k)) such that a?i(1<i<r, 1<j<m) is a generator
of a, as 0, x-module. Without loss of generality, we may assume

95
that o(s9')= min {v(s?)}. Put r=s9" and C=0x,x[a; :|(1£i£r,
1<i<m

1<j<m). Then C is contained in v. If we shall put g=Cnm, then
v>C,>0,x. Since the coordinate ring k[b]',..., b31] of U9 which
is an affine open neighbourhood of x'“* is contained in C, C,>
Oya,,x =04 x. On the other hand, C,=0,s y». q.e.d.

Lemma 16. Let X and X' be G-birational G-varieties. Then
there is a G-variety X" such that

1) X" is G-projective and G-birational over X.

2) XnX'cXx’

3) X" is quasi-dominant over X'.

Proof. For every element v of ZR(J(X, X')), there is a G-variety
X, which satisfies the conditions 1), 2) and 3) of Lemma 15. Let
frx.,.x),x, be the restriction on J(X,, X’) of the first projection
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map (X,x X')—X,. Then f;x,x)x, is a G-birational morphism
between J(X,, X’) and X,. Put U,={v€ZR(J(X, X'))|v' dominates
a point of f7&. x)x,(Dx, x)}. Then U, is an open neighbourhood
of v in ZR(J(X, X')). Since ZR(J(X, X')) is quasi-compact, there
are finitely many elements {v,,...,v,} of ZR(J(X, X)) such that ZR
J(X, X’))=‘Ln/U,,‘. Here, we shall put X”"=Jy(X,,,..., X,,). Then
X" is a G-lv=a1riety which is G-projective and G-birational over X and
XNnX'cX”. X" is a desired one. In fact, let (x”,x’) be a point
of J(X”,X') and let v be an element of ZR(J(X”, X')) such that
v dominates (x”, x’). If x is the point of X which is the image of
x” by the G-projective morphism from X” to X, then v>0,y and
v is contained in ZR(J(X, X')). Therefore there is some open subset
U, which contains v. If we shall denote the point by x; which is
dominated by v in X,, then 0, x,, >0, x. On the other hand,
Oy, x7 20,4, x,,, Hence 0y x>0, x. q.e.d.

The next Lemma 17 is one of key lemmas to prove the existence
of G-completion.

Lemma 17. Let X be a normal G-variety and let v be a valu-
ation ring of k(X). Then there is a G-variety X' such that

1) X is a G-stable open subset of X'.

2) v dominates a point of X'.

Proof. Let ©# be the G-twisted valuation ring of v. If Lemma
17 is true for ¥, then Lemma 17 is true for v by virtue of Lemma 11.
Hence we may assume that v is G(k)-stable. We shall prove Lemma
17 by induction on rank v. If rank v=0 or v dominates a point of
X, then we may take X’'=X. Therefore, we may assume that rank
v>1 and that v does not dominate any point of X. Let p be the
next prime ideal of m, with respect to inclusion. By the induction
hypothesis, we may assume that v, dominates a point x of X. By
virtue of Lemma 8, there is a G-stable quasi-projective open neighbour-
hood U of x and by virtue of Theorem 1, there is a G-completion
U of U. Applying Lemma 16 to U and X, we have a complete
G-variety X* such that X* is G-birational to X, UnXcX* and X*
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is quasi-dominant over X. Since X* is complete, v dominates a point
x* of X* Let p:J(X, X*)>X* be the second projection and let
Z*=p(J(X, X*))—XNX* and let Z* be the closure of Z* in X*.
Then Z* is a G-stable closed subset of X*.

Case 1. x*¢Z*, X*—Z* is a G-stable open subset of X* which
containes X N X* and X*—Z>x* Let X' be the G pre-variety which
is obtained by patching X and X*—Z* along XNnX*. Then X' is
a desired one. It is enough to prove that X’ is separated. Let v’
be a valuation ring of k(X) such that v’ dominates points y and y*
of X and X*—Z* respectively. We shall prove that 0, . =0, x.
Since y~y* and y*eX*—Z* y* is contained in XN X* Hence
0, x =0,. x because X NX* is separated.

Case 2. x*Z*. Since x is contained in XN X* Z* does not
contain x. Therefore, there is an element s of 0, y. such that
x¢pn0, x« and s is contained in the ideal defined by Z*n Spec
(Oys,x«) in Spec(0pu x4). Put a,.= %}k (%N 04 x«). Then a,. is a
G(k)-stable ideal and an mx*,x,-pil?m(a;y ideal. Let i: Spec (0, xs)—
X* be the injection map and let 0:04.—iy(0,. x.) be the canonical
sheaf homomorphism. Put [I=0"!(i,(a,)). Then [ is a G(k)-stable
quasi-coherent ideal of Oy.. Let X** be the blowing up of X*
with center [. X** is a G-variety which is G-projective and G-
birational over X*. Let {x*} be the closure of x* in X*
Then Z*n{x*}=¢. In fact, if y* is an element of Z*N{x*}, then
there are a point y of X and a valuation ring v of k(X) such that
>0,y and v >0, y. Since X* is quasi-dominant over X,
0,.x» dominates 0,,. Let g be the prime ideal defined by {x*}
in Spec(0,.,x.) and let r=gnO0,y. Then we have that 0. y.=
(04, x:)4=(0,,%),=0,, x where x' is a point of X. Since v domi-
nates 0O, ., v dominates O, . This contradicts with our first
assumption that » does not dominate any point of X. Thus, Z*n
{x*}=¢. Therefore, the blowing up of X* with center I does not
have any effect upon Z* and XN X*=Xn X** Let Z** be the subset
of X** which is obtained by the same method as the construction of
Z*. Then Z*=Z** because X* is quasi-dominant over X, Let x**
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be the point of X** which is dominated by v. Then x** is not
contained in Z**. In fact, if x** is contained in Z**, then is there
a generalization z** of x** in Z**. If z* is the image of z**, then
z* is a generalization of x*. Let g be the ideal defined by Z*n Spec
(Ogn x+) and let {a,=s, a,,...,a,} be a generator of svN O, xu
Since 0,. y. is noetherian, there are finite number of elements {g,,
coes Imp(g;€ G(k)) such that afi(1<i<r, 1<j<m) is a generator of a,..
Without loss of generality, we may assume that ov(af!)= 11212 {v(a%)}
We shall put t=a9'. Then t is contained in ¢, because qj_"ils G(k)-
stable. Since a,. is an m,. y.-primary ideal, there is some element
a’so which is not contained in g. On the other hand, Oy xe=

aQJ QQJ' . .
Ox*,x.[ t' —J , where W=0x*,x*[ t' }nmv(l <i<r, 1 <j<m). Therefore,

for every i and j, a¥i/t €0 xos €0 es xex =0,4 x«= (0,4, x+),. In particular,
afio[t=clu for some u¢q and ce€0,. y». wuafjo=tc gives a contra
diction, because uafjo is not contained in g and tc is contained in gq.

Therefore, the situation is reduced to case I. q.e.d.

Let X be a G-variety and let X* be a G-projective variety and
let f: X—>X* be a generically surjective G-rational map from X to X*.
We assume that the action of G on X* is linear, ie. if B=k[t,, ...,
t,] is the homogeneous coordinate ring of X*, then V=.Z" t;Q is a
rational projective G-module. For every point x of X, wel=s(t)1all define
the ideal a, of 0,y in the following way. Let A, be the subset of
all elements f of k(X) such that for some i(0<i<n) and every
J(O<j<n), f-1;/1; is contained in O,y and let a, be the ideal of O,
which is generated by f-1;/1,(0<Yj<n, Yf€A,). We shall define a=
(a).x- Then a is a quasi-coherent ideal of Oy.

Lemma 18. a is G(k)-stable.

Proof. Let f be an element of A,, i.e. for some i(0<i<n) and
every j(0<j<n), fi;/t; is contained in O,x. We have only to prove
that for every element g of G(k), f9-¢%/t? is contained in a,.
By the assumption, f¢.29/¢4(0<j<n) is contained in Oy Let «
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and B be any integer (0<a<n,0<B<n). Then [fo-t5/t,=f%- }ia,,
Y

t9 [34
(9)13] Tauy( @)= 1 Lapg) 7| Dayy(g) 27 where (ay(g)) 0<as
? i i
n,0<y<n) is a regular matrix. Therefore, (Zaay(g)fg.i_zt,,/ta is con-
Y

g
i

tained in O,. Put h,=2a,(g9)f? t5/t! for every a(0<a<n). Then
Y

h
matrix,  f9.29/t{(0<Yy<n) is contained in a,. q.e.d.

. is an element of a,. Since (a,,(9)) (0<a<n, 0<y<n) is a regular

Let Y be the closed subset of X defined by a and let X’ be the
blowing up of X with center a. It is easily seen that Y is the G-
stable set of all points x of X at which X does not dominate any
point of X* and that every point of X’ dominates a point of X¥*.

The next complicated Lemma 19 is another one of key lemmas
to prove the existence of G-completion.

Lemma 19. Let X, and X, be G-varieties such that X, is G-
birational to X, and let X=X,NX,. Assume that X,—X is con-
tained as a G-stable subvariety (not necessarily closed) in a G-pro-
jective variety X* which is G-birational to X, and that the action
of G on X* is linear. Then there is a G-variety X5 such that

1) X5 contains X as G-stable open subset

2) ZR(X3)=ZR(X,)UZR(X)).

Proof. We may assume that X, is quasi-dominant over X, by
virtue of Lemma 16. Let Y=X—(X*NX) and let Y*=X*—(X*n X,).
Then Y and Y* are G-stable closed subset in X and X* respectively.

a) Y=Ty, x(Y*). In fact, let x be a point of Ty x(Y*).
Then there is a point x* of Y* such that x~x* If x is contained
in X*NnX, then 0, y.=0y. y» because x and x* are points of X*.
Since Y*N(XNX*)=¢, this does not occur. Hence Ty. x(Y*)CY.
Conversely, let x be a point of Y. Since X* is complete, there is a
point x* of X* such that x~x*. If x* is contained in X*N X, then
0., x,=0. x,. This is a contradiction because YN (X*n X,)=¢.
Hence Y Ty, x(Y*).
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b) If we shall define Z=X,— Ty, x,(X,), ie. the set of all points
of X, which does not correspond to any point of X,. Then ZUY=
Txs,x,(Y*¥). By a) YC Ty x,(Y*). Let x be a point of Z. Since
X* is complete, there is a point x* of X* such that x~x* By the
definition of Z, x* is contained in Y*. ~Hence ZCTy. x,(Y*).
Therefore, Z UYCS Tys x,(Y*). Conversely, let x be a point of Ty. x,
(Y*) and let x* be the point of Y* such that x~x*. If x is contained
in X, then x is a point of Y by a). Therefore we assume that x is
not contained in X. If x is not contained in Z, then there is a point
x,; of X, such that x~x,. Since X, is quasi-dominant over X,, x;~
x*.  Hence 0,, x+=0,. y» because X,—Xc X* This is a contra-
diction because Y*NX,=¢. Therefore Ty. x,(Y¥)=ZUY.

c) Let p,:J(X* X,)-»X* be the first projection and let p,: J(X*,
X,)— X, be the second projection. Then Ty. x,(Y*)=p,(p7'(Y*))
and it is a closed subset of X, because p, is a proper morphism.
Hence ZUY is a G-stable closed subset of X,. Let Y, be the closure
of Y in X,. Then Y, is a G-stable closed subset of X, and we have
that (+)Y,—YCZ.

d) Let W,=Ty. x,(X;,—X) and let W, =Ty, x (W,), ie. the set
of all points x of X, such that x corresponds to a point of X,
and x does not dominate the point. Now we change the situation.
We may assume that X, is quasi-dominant over X,. In fact, let J
be a G(k)-stable quasi-coherent ideal of Oy, whose support is con-
tained in the closure W, of W, in X, and let J*=0"1(i,(J|X, N X*))
where (i, ): X, N X*->X* is the injection. Then J* is a G(k)-stable
quasi-coherent ideal of Oy.. Let X/ (resp. X*') be the blowing up
of X, (resp. X*) with the center J (resp. J*) and let = (resp. n*) be
the cannoical projective morphism from X; to X, (resp. from X*
to X*). If we shall define similarly X', Y’, Y* and Z’ with respect
to X{,X, and X* as X,Y,Y* and Z, then X' DX, Ty, x(Y*)=
Y'=Y,Z'=Z and the relation (+) is held. Furthermore, X;—X’
is embedded in X* as a G-stable subvariety and the action on X*
of G is linear. Therefore, iterating the above blowing up, we may

assume that X, is quasi-dominant over X, by Lemma 15 and Lemma
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16. Next we may assume that X* is quasi-dominant over X,. In
fact, let J be a G(k)-stable quasi-coherent ideal of Oy. whose support
is contained in Y*N(X*—(X*N X,)) and let X* be the blowing up of
X* with the center J. If we shall define X', Y’, Y* and Z’ with
respect to X,, X, and X* similarly, then X'=X,Z'=Z Y'CY and
Y'—Y'cZ because Y’ is closed in X,i.e. the relation (+) is held.
Therefore, we may assume that X* is quasi-dominant over X,.

e) Let W, be the closure of W, in X,. Then Y,N W,CZ because
YNW,=¢ and the relation (+). Hence Y, and W, do not have the
same irreducible components.

If Y,nW,#¢, then we shall denote the ideals defined by Y,
and W, by I and I’ respectively. Then, I and I’ are G(k)-stable
ideals of Oy,. Let X5 be the blowing up of X, with the center I+1I
and let ¢: X3,—>X, be the canonical projective morphism. Then the

proper transform of Y,, ¢~ !(Y,—Y,NW,;) and the proper transform

of W,, o~ (W,—Y,NnW,) do not meet with each other. Therefore,
we may assume that Y,NW,=¢. Let a be the ideal defined in
Lemma 18 for X, and X* and let P be the G-stable closed subset
defined by a. For every point x of X,, let a,=q,Nn--Ng, be
the irredundant decomposition of a, by primary ideals and let {q;}
(1<k<s) be all those of primary ideals ¢{1<i<m) such that the
closed subset V(q;)(cSpec(O,y,) is contained in Z—ZNY,—ZNW,.
Then we shall define b, by b,=g; Nn---Ng;, and b=(b),ex,. D
is a G(k)-stable quasi-coherent ideal of Oy, because a and Z-ZNY,
—ZN W, are G(k)-stable. b has the following properties;

1) The closed subset Q defined b is G-stable and is contained in
Z.

2) b,=aqa, for every point x of Z—ZNY,—ZnW,.

3) Q=PN(Z—-2ZNnY,—ZnW,).

f) Let X% be the blowing up of X, with the center b and let
f: X% - X, be the canonical G-projective morphism. Let X;=X,UJ(X%
—Y3,X*)U(X%—-W%) where Y4=f"1(Y,) and W%=f"1(W,). Then X,
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is a desired one. Since X, is a G-prevariety satisfying the condition 1)
of Lemma 19, it is enough to prove that ZR(X;)=ZR(X,)UZR(X,).
In order to prove this, it is sufficient to show that every v in ZR(X,)U
ZR(X,) has one and only one center on X;. Let x;, x* x; and x,
be the centers of v on X,, J(X3—Y% X*), X35— W% and X, res-
pectively if they exist.

Case 1. When x; exists. If x, is contained in X, then x, is
contained in X%— W% and therefore O,, x,=0,,x,=0,,x, since X%
is separated. If x* exists, then x, is not contained in Y. Hence,
Oy, x; =04, x,=0,, x,. If x, is contained in X,—X, then x; does
not exist in this case. If x* exists, then x, is contained in W,—Y,.
Since Wo,NnQ=¢ and X* is quasi-dominant over X,, O, x,=0. x,.

Case 2. When x; does not exist. In this case, x, exists and x,
is contained in Z. Since YinWi=¢, X35=(X5—-Y%) U(X5— W3).
Therefore, either x* or x; exists. Thus is it sufficient to prove that
Oys,x,=0,,,x, if both x* and x; exist. Since x, is contained in X,—
(Y,UW,), x; dominates a point of X* Hence x;eJ(X5—Y%, X*)
and O, x,=0,, x,- q.e.d.

Theorem 3. Let X be a normal variety on which a linear al-
gebraic group G (not necessarily connected) acts regularly. Then

there exists a G-completion (or equivariant completion) X of X.

Proof. At first, we shall assume that G is connected. Let X*
be a projective model of X. For every v in ZR(X*), there is a normal
G-variety X, such that X is a G-stable open subset of X, and v has
a center x, in X,,.‘ Let U, be the G-stable quasi-projective open neigh-
bourhood of x,. Then XUU, is a G-variety and plays the same roll
as X,. Hence, considering XUU, instead of X, if necessary, we
may assume that X,—X is contained in a quasi-projective variety on
which G acts linearly. Since ZR(X,) is open in ZR(X*), there are
finitely many G-varieties {X,,..., X,} such that

1) ZR(X*)= \=J1 ZR(X))

2) For every i(1<i<n), X is a G-stable open subset of X; and
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X;—X is a G-subvariety of a quasi-projective variety on which G
acts linearly.

We prove the Theorem 3 by induction on n. If n=1, then we
have nothing to prove. If n>1, then, applying Lemma 19 to {X,_,,
X,}, we see that there is a G-variety X* , such that X*  2X,_,n
X,2X and ZR(X}.,)=ZR(X,-;)UZR(X,). Therefore we complete
the proof by our induction assumption. We shall now consider the
general case. Let G, be the connected component of G which con-
tains the unit element ¢ of G and let G=0,Gy+0,Go++ +0,Gg
where o, =e, 0,€G(k)(1<i<n). By the above argument in the con-
nected case, there is a Gy-completion of X and we shall denote it by
X'. Let X be the closure of the set {(g,x,...,0,(x)[x€X} in X'x--x
X'. Then X is a desired G-completion of X. In fact, let ¢: X 2x—
(0,x,...,6,x)€X. Then ¢ is an open immersion from X to X.
Here we shall define an action of G on X in following way. Let
0,6;=0y;,9:, (1<i, j<n) where I(i, j) is an integer (1<I(i, j)<n) and
g(i, j) is an element of Gy(k). Then, for every point (y,...,y,) of
X, every g (1<j<n) and every element g of G,, we define,

ajg(yl"'w y,.)=(21,..., Zn)

where z;=0,; ,9i./9% i) Vi (1<Y¥i<n). We can see easily that
this is a regular action of G on X and ¢(g;9x)=0,g¢(x) for every
g; (1<j<n), g(€Gy) and x(€X). Therefore, X is a G-completion of
X. q.e.d.

Problem. Is Theorem 3 true, without assuming X is not normal?
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