A NOTE ON CERTAIN HYPERSURFACES OF SASAKIAN MANIFOLDS

By Toshio Takahashi

Introduction. Let $\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ be a Sasakian manifold and $M^{2 n}$ be a hypersurface of $\tilde{M}^{2 n+1}$. It is known that $M^{2 n}$ cannot be an invariant hypersurface (Goldberg-Yano [1]). On the other hand, if $M^{2 n}$ is a non-invariant hypersurface (or more generally, if ξ is never tangent to $M^{2 n}$), then $M^{2 n}$ admits a natural Kählerian structure (J, γ). This is a special case of the result of Goldberg-Yano [1]. Since the Kählerian structure is quite natural, one may conjecture that if the ambient Sasakian manifold is of constant ϕ-holomorphic sectional curvature, then $M^{2 n}(J, \gamma)$ is of constant holomorphic sectional curvature under some conditions. The answer is affirmative if $M^{2 n}$ is totally geodesic in $\tilde{M}^{2 n+1}$ (Theorem 3).

§ 1. Hypersurfaces of almost contact Riemannian manifolds.

Let $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ be an almost contact Riemannian manifold, and let $M=M^{2 n}$ be a hypersurface of \tilde{M}. Throughout this paper, we assume that ξ is never tangent to M. Then we have

$$
\begin{equation*}
\phi X=J X+\alpha(X) \xi \quad \text { for } \quad X \in \mathscr{X}(M), \tag{1}
\end{equation*}
$$

where $\mathscr{X}(M)$ is the set of all vector fields on M and $J X$ is the tangential part (with respect to ξ) of ϕX to M. We can see that $J: X \rightarrow J X$ and $\alpha: X \rightarrow \alpha(X)$ are tensor fields of type (1,1) and (0,1), respectively, on M. If $\alpha \neq 0$ on M, then M is called a non-invariant hypersurface. If $\alpha=0$ on M, then M is called an invariant hypersurface.

Applying ϕ to the relation (1), we get

$$
-X+\eta(X) \xi=J^{2} X+\alpha(J X) \xi
$$

which shows that

$$
\begin{align*}
J^{2} & =- \text { identity }, \tag{2}\\
C \alpha & =\eta \mid M
\end{align*}
$$

where $C \alpha(X)=\alpha(J X)$. Thus the tensor field J is an almost complex structure on M.
Let \tilde{V} be the Levi-Civita connection of the Riemannian metric \tilde{g}. For X, Y
Received September 8, 1969.
$\epsilon \mathscr{X}(M)$, we have

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \xi \tag{4}\\
\tilde{\nabla}_{x} \xi=-H X+\omega(X) \xi \tag{5}
\end{gather*}
$$

where $\nabla_{X} Y$ and $-H X$ are the tangential parts (with respect to ξ) of $\tilde{\nabla}_{X} Y$ and $\tilde{V}_{X} \xi$, respectively, to M. We can see that $\nabla:(X, Y) \rightarrow \nabla_{X} Y$ is a symmetric connection on $M, h:(X, Y) \rightarrow h(X, Y), H: X \rightarrow H X$ and $\omega: X \rightarrow \omega(X)$ are tensor fields of type $(0,2),(1,1)$ and $(0,1)$, respectively, on $M . \quad h$ is symmetric and is called the second fundamental form of M (with respect to ξ). If $h=0$ on M, then M is called to be totally geodesic.

Let g be the induced metric: $g=\tilde{g} \mid M$. In general, the connection ∇ is not the Levi-Civita connection of g. Using (3), (4) and (5), we get

$$
\left(\nabla_{X} g\right)(Y, Z)=h(X, Y) C \alpha(Z)+h(X, Z) C \alpha(Y)
$$

Hence ∇ is the Levi-Civita connection of g if and only if $h(X, Y) C \alpha(Z)+h(X, Z) C \alpha(Y)$ $=0$ for all vector fields X, Y and Z on M. In particular, if M is totally geodesic, then ∇ is the Levi-Civita connection of g. The converse is also true when \tilde{M} is Sasakian, which will be shown later.

§2. Hypersurfaces of Sasakian manifolds.

In this section, we assume that $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ is a Sasakian manifold; that is, the following holds good:

$$
\begin{equation*}
\left(\tilde{V}_{U} \phi\right) V=\eta(V) U-g(U, V) \xi, \quad U, V \in \mathscr{X}(\tilde{M}) \tag{6}
\end{equation*}
$$

where $\mathscr{X}(\tilde{M})$ is the set of all vector fields on \tilde{M}. It is known that (6) implies the followings:

$$
\begin{equation*}
\tilde{\nabla}_{U} \xi=\phi U \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
d \eta(U, V)=g(\phi U, V) \tag{8}
\end{equation*}
$$

(1), (5) and (7) imply

$$
\begin{equation*}
H=-J \quad \text { and } \quad \omega=\alpha \tag{9}
\end{equation*}
$$

Using (1), (4) and (6), we get

$$
\begin{equation*}
\tilde{\nabla}_{X} \phi Y=\left\{C \alpha(Y) X+J \nabla_{X} Y\right\}+\left\{\alpha\left(\nabla_{X} Y\right)-g(X, Y\} \xi\right. \tag{10}
\end{equation*}
$$

On the other hand, using (1) and (7), we get

$$
\begin{align*}
\tilde{\nabla}_{X} \phi Y= & \left(\nabla_{X} J\right) Y+J \nabla_{X} Y+\alpha(Y) J X \tag{11}\\
& +\left\{h(X, J Y)+\left(\nabla_{X} \alpha\right)(Y)+\alpha\left(\nabla_{X} Y\right)+\alpha(X) \alpha(Y)\right\} \xi .
\end{align*}
$$

Comparing (10) and (11), we obtain

$$
\begin{align*}
& \left(\nabla_{X} J\right) Y=\alpha(J Y) X-\alpha(Y) J X, \tag{12}\\
& \left(\nabla_{X} \alpha\right) Y=-g(X, Y)-h(X, J Y)-\alpha(X) \alpha(Y) \tag{13}
\end{align*}
$$

Now, we can calculate the Nijenhuis tensor of J :

$$
\begin{aligned}
N(X, Y) & =[J H, J Y]-J[J X, Y]-J[X, J Y]-[X, Y] \\
& =\left(\nabla_{J X} J\right) Y-\left(\nabla_{J Y} J\right) X-J\left(\nabla_{X} J\right) Y+J\left(\nabla_{Y} J\right) X .
\end{aligned}
$$

Substituting (12) in the above equation, we get

$$
\begin{aligned}
N(X, Y)= & \alpha(J Y) J X+\alpha(Y) X-\alpha(J X) J Y-\alpha(X) Y \\
& -\alpha(J Y) J X-\alpha(Y) X+\alpha(J X) J Y+\alpha(X) Y \\
= & 0
\end{aligned}
$$

Hence J is a complex structure on M.
We put
(14)

$$
\gamma=g-C \alpha \otimes C \alpha .
$$

Then, since ξ is not tangent to M at each point, γ is a Riemannian metric on M. Since we have

$$
\begin{aligned}
\gamma(J X, J Y) & =g(J X, J Y)-\alpha\left(J^{2} X\right) \alpha\left(J^{2} Y\right) \\
& =g(X, Y)-\eta(X) \eta(Y) \\
& =\gamma(X, Y),
\end{aligned}
$$

(J, γ) is a Hermitian structure on M.
We put

$$
\begin{array}{ll}
\Phi(U, V)=\tilde{g}(\phi U, V), & U, V \in \mathscr{X}(\tilde{M}) \\
\Omega(X, Y)=\gamma(J X, Y), & X, Y \in \mathscr{X}(M)
\end{array}
$$

Then we get $\Omega(X, Y)=\Phi(X, Y)$ for any vector fields X and Y on M. Hence, since $\Phi=d \eta$ is closed, Ω is closed. Consequently, $M=M^{2 n}(J, \gamma)$ is a Kählerian manifold. In particular, we have

$$
\begin{equation*}
\bar{\nabla} J=0, \tag{15}
\end{equation*}
$$

where $\bar{\nabla}$ is the Levi-Civita connection of γ.
Theorem 1 (Goldberg-Yano [1]). A hypersurface $M^{2 n}$ of a Sasakian manifold $\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ admits the Kählerian structure (J, γ) under the assumption that ξ is not tangent to $M^{2 n}$ at each point,

§ 3. The Levi-Civita connection of the Kählerian metric $\boldsymbol{\gamma}$.

In this section, we assume that $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ is a Sasakian manifold and the induced connection V is the Levi-Civita connection of the induced metric g.

We want to calculate the Levi-Civita connection $\bar{\nabla}$ of the Kählerian metric γ on M. Let A be the vector field on M defined by

$$
\alpha(X)=\gamma(A, X), \quad X \in \mathscr{X}(M)
$$

According to the definition of the Levi-Civita connection, we get

$$
\begin{equation*}
2 \gamma\left(\bar{\nabla}_{X} Y, Z\right)=2 g\left(\nabla_{X} Y, Z\right)-(*) \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
(*)= & X \cdot\{\alpha(J Y) \alpha(J Z)\}+Y \cdot\{\alpha(J X) \alpha(J Z)\}-Z \cdot\{\alpha(J X) \alpha(J Y)\} \\
& +\alpha(J[X, Y]) \alpha(J Z)+\alpha(J[Z, X]) \alpha(J Y)+\alpha(J[Z, Y]) \alpha(J X) .
\end{aligned}
$$

Using (12) and (13), we get

$$
\begin{aligned}
X \cdot\{\alpha(J Y) \alpha(J Z)\}= & \left\{h(X, Y)-g(X, J Y)-\alpha(J X) \alpha(Y)+\alpha\left(J \nabla_{X} Y\right)\right\} \alpha(J Z) \\
& +\left\{h(X, Z)-g(X, J Z)-\alpha(J X) \alpha(Z)+\alpha\left(J \nabla_{X} Z\right)\right\} \alpha(J Y) .
\end{aligned}
$$

On the other hand, (14) implies

$$
\begin{equation*}
g(X, J Y)+\alpha(J X) \alpha(Y)=\gamma(X, J Y) \tag{17}
\end{equation*}
$$

Hence we get

$$
\begin{aligned}
X \cdot\{\alpha(J Y) \alpha(J Z)\}= & \left\{h(X, Y)-\gamma(X, J Y)+\alpha\left(J \nabla_{X} Y\right)\right\} \alpha(J Z) \\
& +\left\{h(X, Z)-\gamma(X, J Z)+\alpha\left(J \nabla_{x} Z\right)\right\} \alpha(J Y) .
\end{aligned}
$$

Thus (*) becomes

$$
(*)=2\left\{h(X, Y) \alpha(J Z)+\alpha\left(J \nabla_{X} Y\right) \alpha(J Z)+\gamma(J X, Z) \alpha(J Y)+\gamma(J Y, Z) \alpha(J X)\right\}
$$

Consequently, (16) becomes

$$
\begin{aligned}
\gamma\left(\bar{\nabla}_{X} Y, Z\right)= & \gamma\left(\nabla_{X} Y, Z\right)+\alpha\left(J \nabla_{X} Y\right) \alpha(J Z)-h(X, Y) \alpha(J Z) \\
& -\alpha\left(J \nabla_{X} Y\right) \alpha(J Z)-\gamma(J X, Z) \alpha(J Y)-\gamma(J Y, Z) \alpha(J X) \\
= & \gamma\left(\nabla_{X} Y, Z\right)+h(X, Y) \gamma(J A, Z)-\alpha(J Y) \gamma(J X, Z)-\alpha(J X) \gamma(J Y, Z) .
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
\left.\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) J A-\alpha(J Y) J X-\alpha(J X) J Y\right) \tag{18}
\end{equation*}
$$

Since (12) implies

$$
\nabla_{X} J Y=\alpha(J Y) X-\alpha(Y) J X+J \nabla_{X} Y
$$

(18) implies

$$
\begin{equation*}
\bar{\nabla}_{X} J Y=\alpha(J Y) X+J \nabla_{X} Y+h(X, J Y) J A+\alpha(J X) Y \tag{19}
\end{equation*}
$$

On the other hand, (15) and (18) imply

$$
\begin{equation*}
\bar{\nabla}_{X} J Y=J \nabla_{X} Y-h(X, Y) A+\alpha(J Y) X+\alpha(J X) Y \tag{20}
\end{equation*}
$$

Comparing (19) and (20), we get

$$
\begin{equation*}
h(X, J Y) J A=-h(X, Y) A \tag{21}
\end{equation*}
$$

Theorem 2. A non-invariant hypersurface $M^{2 n}$ of a Sasakian manifold $\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ is totally geodesic if and only if the induced connection ∇ given by (4) is the Levi-Civita connection of the induced metric g under the assumption that ξ is never tangent to $M^{2 n}$.

Proof. Since the hypersurface is non-invariant, the vector fields A and $J A$ are linearly independent at each point. Hence (21) implies that $h(X, Y)=0$ for all vector fields X and Y, showing $M^{2 n}$ to be totally geodesic in $\tilde{M}^{2 n+1}$. Q.E.D.
§4. Hypersurfaces of Sasakian manifolds of constant ϕ-holomorphic sectional curvature.

In this section, we assume that $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ is a Sasakian manifold and that $M=M^{2 n}$ is a totally geodesic hypersurface of \tilde{M}. The purpose of this section is to show that if \tilde{M} is of constant ϕ-holomorphic sectional curvature k, then M is of constant holomorphic sectional curvature $k+3$.

As stated at the end of $\S 1, h=0$ implies that the induced connection V is the Levi-Civita connection of the induced metric, and hence we may use some results of $\S 3$. (4) and (18) imply

$$
\tilde{V}_{Y} Z=\bar{V}_{Y} Z+\alpha(J Z) J Y+\alpha(J Y) J Z
$$

Hence we get

$$
\begin{aligned}
\tilde{\nabla}_{X} \tilde{\nabla}_{Y} Z= & \bar{\nabla}_{X} \bar{\nabla}_{Y} Z+\alpha\left(J \bar{J}_{Y} Z\right) J X+\alpha(J X) J \bar{\nabla}_{Y} Z \\
& \left.+\left\{\bar{\nabla}_{X} \alpha\right)(J Z)+\alpha\left(J \bar{\nabla}_{X} Z\right)\right\} J Y+\left\{\left(\bar{\nabla}_{X} \alpha\right)(J Y)+\alpha\left(J \bar{\nabla}_{X} Y\right)\right\} J Z \\
& +\alpha(J Z)\left\{J \bar{\nabla}_{X} Y-\alpha(Y) J X-\alpha(J X) Y\right\}+\alpha(J Y)\left\{J \bar{\nabla}_{X} Z-\alpha(Z) J X-\alpha(J X) Z\right\} .
\end{aligned}
$$

Thus we get the following:

$$
\begin{aligned}
\tilde{R}(X, Y) Z= & \bar{R}(X, Y) Z+\left(\bar{V}_{X} \alpha\right)(J Z) J Y-\left(\bar{V}_{Y} \alpha\right)(J Z) J X \\
& +\left\{\left(\bar{\nabla}_{X} \alpha\right)(J Y)-\left(\bar{\nabla}_{Y} \alpha\right)(J X)\right\} J Z \\
& +\alpha(J Z)\{-\alpha(Y) J X-\alpha(J X) Y+\alpha(X) J Y+\alpha(J Y) X\} \\
& -\alpha(J Y) \alpha(Z) J X+\alpha(J X) \alpha(Z) J Y,
\end{aligned}
$$

where \tilde{R} and \bar{R} are curvature tensors of \tilde{g} and γ, respectively. Using (12) and (13), we get

$$
\begin{aligned}
X \cdot \alpha(J Z)= & \left(\nabla_{X} \alpha\right)(J Z)+\alpha\left(\left(\nabla_{X} J\right) Z\right)+\alpha\left(J \nabla_{X} Z\right) \\
= & -\alpha(X) \alpha(J Z)-g(X, J Z)+\alpha(X) \alpha(J Z)-\alpha(J X) \alpha(Z) \\
& +\alpha\left(J\left\{\bar{\nabla}_{X} Z+\alpha(J Z) J X+\alpha(J X) J Z\right\}\right) \\
& -\gamma(X, J Z)+\alpha\left(J \bar{\nabla}_{X} Z\right)-\alpha(X) \alpha(J Z)-\alpha(J X) \alpha(Z) .
\end{aligned}
$$

On the other hand, we have

$$
X \cdot \alpha(J Z)=\left(\bar{V}_{X} \alpha\right)(J Z)+\alpha\left(J \bar{V}_{X} Z\right) .
$$

Hence we get

$$
\left(\bar{\nabla}_{X} \alpha\right)(J Z)=-\gamma(X, J Z)-\alpha(X) \alpha(J Z)-\alpha(J X) \alpha(Z),
$$

and hence

$$
\left(\bar{\nabla}_{X} \alpha\right)(J Y)-\left(\bar{V}_{Y} \alpha\right)(J X)=2 \gamma(J X, Y)
$$

Consequently, we obtain

$$
\begin{align*}
\tilde{R}(X, Y) Z= & \bar{R}(X, Y) Z+\gamma(J X, Z) J Y-\gamma(J Y, Z) J X+2 \gamma(J X, Y) J Z \tag{22}\\
& +\alpha(J Z)\{\alpha(J Y) X-\alpha(J X) Y) .
\end{align*}
$$

Now, suppose \tilde{M} is of constant ϕ-holomorphic sectional curvature k (Ogiue [2]):

$$
\begin{aligned}
4 \tilde{R}(X, Y) Z= & (k+3)\{\tilde{g}(Y, Z) X-\tilde{g}(X, Z) Y\} \\
& +(k-1)\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+\tilde{g}(X, Z) \eta(Y) \xi \\
& -\tilde{g}(Y, Z) \eta(X) \xi+\tilde{g}(\phi Y, Z) \phi X+\tilde{g}) \phi Z, X) \phi Y-2 \tilde{g}(\phi X, Y) \phi Z\} .
\end{aligned}
$$

Then, since we have

$$
\begin{aligned}
\tilde{g}(\phi Y, Z) \phi X & =g(J Y+\alpha(Y) \xi, Z)(J X+\alpha(X) \xi) \\
& =\gamma(J Y, Z)(J X+\alpha(X) \xi)
\end{aligned}
$$

we get

$$
\begin{align*}
4 \tilde{R}(X, Y) Z= & (k+3)\{g(Y, Z) X-g(X, Z) Y\} \tag{23}\\
& +(k-1)\{\alpha(J X) \alpha(J Z) Y-\alpha(J Y) \alpha(J Z) X \\
& +\gamma(J Y, Z) J X+\gamma(J Z, X) J Y-2 \gamma(J X, Y) J Z\} \\
& +(k-1)\{g(X, Z) \alpha(J Y)-g(Y, Z) \alpha(J X) \\
& +\gamma(J Y, Z) \alpha(X)+\gamma(J Z, X) \alpha(Y)-2 \gamma(J X, Y) \alpha(Z)\} \xi .
\end{align*}
$$

Comparing (22) and (23), we get

$$
\begin{equation*}
(k-1)\{g(X, Z) \alpha(J Y)-g(Y, Z) \alpha(J X) \tag{24}
\end{equation*}
$$

$$
+\gamma(J Y, Z) \alpha(X)+\gamma(J Z, X) \alpha(Y)-2 \gamma(J X, Y) \alpha(Z)\}=0
$$

and

$$
\begin{align*}
4 \tilde{R}(X, Y) Z= & 4\{\gamma(J Y, Z) J X-\gamma(J X, Z) J Y-2 \gamma(J X, Y) J Z \\
& +\alpha(J Z)[\alpha(J X) Y-\alpha(J Y) X \mid\} \\
& +(k+3)\{g(Y, Z) X-g(X, Z) Y\} \tag{25}\\
& +(k-1)\{\alpha(J X) \alpha(J Z) Y-\alpha(J Y) \alpha(J Z) X \\
& +\gamma(J Y, Z) J X-\gamma(J X, Z) J Y-2 \gamma(J X, Y) J Z\} .
\end{align*}
$$

(25) becomes

$$
\begin{aligned}
4 \bar{R}(X, Y) Z= & (k+3)\{\gamma(J Y, Z) J X-\gamma(J X, Z) J Y-2 \gamma(J X, Y) J Z \\
& +\gamma(Y, Z) X-\gamma(X, Z) Y\} \\
= & (k+3)\{X \wedge Y+J X \wedge J Y-2 \gamma(J X, Y) J\} Z,
\end{aligned}
$$

where $X \wedge Y$ denotes the endomorphism $Z \rightarrow \gamma(Y, Z) X-\gamma(X, Z) Y$. Hence $M^{2 n}(J, \gamma)$ is of constant holomorphic sectional curvature $k+3$.

Theorem 3. Let $M^{2 n}$ be a hypersurface of a Sasakian manifold $\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ of constant ϕ-holomorphic sectional curvature k. Suppose ξ is not tangent to $M^{2 n}$ at each point and $M^{2 n}$ is totally geodesic in $\tilde{M}^{2 n+1}$. Then the Kählerian manifold $M^{2 n}(J, \gamma)$ is of constant holomorphic sectional curvature $k+3$.

References

[1] Goldberg, S. I., and K. Yano, Noninvariant hypersurfaces of almost contact manifolds. To appear.
[2] Ogive, K., On fiberings of almost contact manifolds. Kōdai Math. Sem. Rep. 17 (1965), 53-62.

Mathematical Institute,
Tôhoku University, Sendai.

