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NOTES ON SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD
By KENTARO YANOP

§1. Introduction.

Many attempts have been done to generalize, to the case of hypersurfaces in
a Riemannian manifold, a famous theorem of Liebmann [8] and Siiss [14]: The
only convex hypersurface with constant mean curvature is a sphere. See for ex-
ample, Hsiung [1], Katsurada [2], [3], Koyanagi [7], Otsuki [13], Tani [15], [21] and
the present author [16], [17], [21].

In these papers, the authors prove that, under certain conditions, a closed hyper-
surface with constant mean curvature is umbilical or pseudo-umbilical.

The present author [17] gave certain conditions under which a closed hyper-
surface with constant mean curvature be isometric to a sphere.

Also attempts have been recently started to generalize the theorem of Liebmann
and Siiss to the case of submanifolds in a Riemannian manifold. See for example,
Katsurada [4], [5], [6], KOjy0 [5], Nagai [6], [9], Okumura [11], [20], Tani [21] and
the present author [18], [20], [21].

Katsurada [4], [5], [6], K6jy6 [5] and Nagai [6], [9] assume the existence of a
conformal Killing vector field in the ambient manifold and that this vector field is
contained in the linear space spanned by the mean curvature vector of the sub-
manifold and the tangent space to the submanifold.

The present author [18] recently weakened this assumption and obtained similar
results to those of Katsurada, K6jy6 and Nagai.

The main purpose of the present paper is to generalize the methods and results
in [17] to the case of general submanifolds in a Riemannian manifold admitting a
scalar field » such that VF/,w=f(v)g;; and give conditions for a submanifold to be
isometric to a sphere.

Similar attempt has been already done by Nagai [9], but he assumes that the
vector field #*=(F,v)g* lies in the linear space spanned by the mean curvature
vector and the tangent plane of the submanifold. We study the problem under a
condition which is weaker than this.

§2. Preliminaries.
Let M be an m-dimensional orientable Riemannian manifold of differentiability
class C= covered by a system of coordinate neighborhoods {U: &} and g;;, {/},
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V., Kiji* and Kj;, the metric tensor, the Christoffel symbols formed with g¢j;, the
operator of covariant differentiation with respect to the Christoffel symbols, the
curvature tensor and the Ricci tensor respectively, where and in the sequel the
indices 4, i, j, k, --- run over the range {1, 2, ---, m}.

Let N be an n-dimensional compact and orientable manifold of differentiability
class C= covered by a system of coordinate neighborhoods {V; 7% and C* differ-
entiably imbedded in M and let

@1 gh=E"(n")

be the local parametric expression of N, where and in the sequel the indices
a, b, ¢, d, e run over the range {1, 2, ---, #} and 1<n<m.
If we put

By =08,8", 0p=20/07,
then, the Riemannian metric of N induced from that of M is given by
(2.2 gev=0ji B! By
and the Christoffel symbols formed with g, by
2.3 {"o}=0cBy" +{;"s} B/ Bv)* B"1,
where
B%,= Byg®*qin,

¢"® being the contravariant components of the metric tensor of N.
If we put

2. 4) Ve By"=0.By"+{;":} B’ By*—{:"} Ba",
then we see from (2. 3) that
(2.5) iV« B?) Ba*=0,

which says that F.By*, as vectors of M, are orthogonal to the submanifold N. The
V.By* defined by (2. 4) is called the van der Waerden-Bortolotti covariant derivative
of By along the submanifold N. Thus,

(2. 6) Hh= %— 9% By

is an intrinsic vector field of M defined along N and is orthogonal to N. H" is
called the mean curvature vector of N.

We assume that the mean curvature vector H* of N never vanishes along N
and take the first unit normal C* to N in the direction of H* and put

@.7 (Ve By")C,=ha,
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where C; are the covariant components of C» The Ags are components of the
second fundamental tensor of N with respect to the mean curvature unit normal
Cn. We then have

2.8) 9°V s By =ha"C",
where
hc‘z = hcbgba-

If we denote by ki, ks, ---, ks the eigenvalues of 4.2 we then have

i: ka=haa
a=1
and
Jen 1
23 kvka= —— (h®ha®— o®ha?).
b<a 2

The scalars H; and H, defined by

. 9) nEi= 3" ha=ha
a=1
and
1
(2 10) ( " )[{2= Z kbka: i (}lbb}laa—}lba’}lab)
2 b<a 2

are called the first and the second mean curvatures of N with respect to C* res-
pectively. We note here that

1 1
2__ —_ b___— pbhoa
10— Hom s (e — — - ht
(2.11)
— e 32 (ko)
= =1y &5

and consequently, if
H*—H,=0 or Fo®ha® — % hsPha®=0,

then

that is,
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A submanifold for which ki=k,=--=k, or hp=Fkge is said to be umbilical
with respect to the mean curvature unit normal C*, or simply pseudo-umbilical.

We now take m—»n mutually orthogonal unit normals C,* in such a way that
the first normal C,,,* coincides with the mean curvature unit normal C* and B:*,
C;* form the positive orientation of M, where and in the sequel the indices x, v, z
take the values n-+1, #-+2, ---, m. Then, since V.By* are orthogonal to the sub-
manifold N, they can be expressed as

(2.12) VeBy"=hepsCs",
which are equations of Gauss, where
Do, ne1="Hep.

To get the equations of Weingarten, we put
(2.13) VCy=0:Co + {3} B/ Cy"

Then we have
(2. 14) VCol=—hes Ba"+lezyCy™,
where

hely= hcbxgba
and

lc:l:z/= —lcyz

is the third fundamental tensor with respect to the normals C,* and defines the
connection induced on the normal bundle.

In fact, a vector field X* which is defined along N and is normal to N is
expressed as

Xh=X,Cs"
and consequently
V X" =(0X5)Co" + Xo(— Iz Ba" + ey Cy)
= e XaBa + (0 Xa+1eya Xy)Co"
Thus, if we put
Ve Xa=FcX)Car,

where C,;=C,%g;;, we get
(2. 15) " o X =0:Xo+Lys X,

If /. X" is tangent to N, that is, if 'V, X,=0, we say that X* is parallel with
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respect to the induced connection 7.
Now the equations of Gauss, those of Mainardi-Codazzi and those of Ricci-
Kiihne for N are respectively written as

(2. 16) Ky jinBd*Be By Bo* = Kycva— (Raaahcos— Peazhass),
2.17) KijinBi* B By'Cy* =V ahevo—V chava~+layahery—leyshany,
and

KijinBi* Bl Cy'Ca"
(2.18)

=V dleys—V dayot+ha®yheas—he*yhaoe—layedess+Leydasa
From (2.17), we have, by transvection with g¢¢,
2.19) 'KinBa*Cs" =V aha®s—V aha® s+ laysha®y—layzha®y,
where
! Kin =K jin B, Bit= B By'g®.
We notice here that 'Kj; is symmetric in j and ¢, because
'Kji=Kjisi B =Ko j B*=Kis1;B* ="K,

B% being symmetric.

§3. Submanifold of a Riemannian manifold admitting a scalar field v such
that p;p.v=Ff(v)g;.

We now assume that the Riemannian manifold M admits a scalar field » such
that

8.1 ViVo=fgj,
or
(3.2) Vjwi=F1 0)g;i,

where v;=F . Substituting (3. 2) into the Ricci identity

V,chvi—Vijvi= —Kkﬂ"vh,
we find
J@rgji—S ' (091 = — Kz js"0n,
or

3.3 Kijind"= —F"(0)(0xgji—0;00),
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where v*=uvp;g**, from which
Kkjithkaiv"= —nf’(v)ax,
3.4 'K’ Crt=—nf'(V)as,

where a,=v;C,*. We put

(3. 5) V"= By"v*+Cyla,
where
V2 =0,0%, Byw;=0p0.
We also put
App1=a.
From

Vvi=1(©)g,

we find

Bc]BbiVjvi=f(v)Bc]Bbzgji:
or
3. 6) Vevs=f (0)geo+hcvatts
and

BICoV jvi=f (0)BSCs'g,i,

or
(3 7) Vcaa:: —hcawva+lcxyay-

Now, substituting (3. 5) into (3. 4), we find

'Ki(Ba’v® ‘I'Cy]a’y)cavz =—nf'(V)az,
or
,KjiBa]C.zlva + /Kjicyjczla'y = nf /(D)a'a:;

or, using (2. 19),
VoV aha®s— Va(hdazvd) +hg%V 0? +ldyxvd/’laa'y - laya:hdayvd + IKjiCy]Cxla'y = nf/(v)a'x;
that is,

’KjiCy]Cz’ay - nf/(v)ax =+ Udthaa’x — Va(hd%vd)
3. 8)
+f(l))]la,a'x + hbaxhabyay + ldyzhaayvd - la,yxhda'yvd = 0,

501
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by virtue of (3. 6).

§4. Integral formulas for submanifold.

From (3. 6), we have
9% oo =nf (0)+ho 20z,

and consequently, integrating over N and applying Green’s theorem [19], we find
4. 1) S [ @)+hets1as=0,

dS being the surface element of N.
Also, integrating (3. 8) over N and applying Green’s theorem, we find that if
C,* are defined globaly on N, then

S ['K;:CyCalay+nf'(@)az++0W shes
N

4. 2)
+f O ha® s+ hs*shalyay+laysha® 0 —laysha®w*1dS=0.
Now, from
VBt =hepzCs* and v*=Ba"v*+Cilas,
we find
“4.3) Ve B )03 =hep 20t
where
heoon 1 =Heo and  anp=a,
that is,
“4. 4 Ve Bo"Yvi=hesa+ ey, ni2@niz -+ 4 FAcs, m0tm.

In the sequel, we assume that

4. 5) (V By yvi=cthey,
that is,
(4. 6) hcb,nazan+2+’"‘+hcb.m0(m=0-

(See also Yano [18].)
Since »* is written as

V= Bahv“-}—C"a-i—sz”aMz +e- +Cmn0’m;



SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD 503

the projection of »* on the normal plane orthogonal to C* is given by
Cris"aniet - +Crlan.
For the covariant derivative of this, we have
V(Crieltanizt-+Canlam)
= —(he®ns20n ot AP mom) Ba®
+le,nre, o@niat -+ +le,m, 2Qm)Ca
+Cri2™ cttnizt +CoV cttm.
Thus we see that the assumption (4.5) or (4. 6) is equivalent to the fact that
Vo(Crrotanszt-+Cplatm)

is normal to the submanifold.
As Katsurada, Ko6jyé and Nagai [5], [6], [9] assumed, if »* has the form

4.7 vh=B"v*+aC?,

that is, if »* is in the space spanned by B, and C”, then

(4. 8) an+2:...:am=0
and (4. 6) is satisfied.

If
4. 9) V By = heyC",

that is, if V.By* are in the direction of mean curvature vector, then
(4. 10) Rev,nie="""=hep,n=0

and (4. 6) is satisfied.
Now, if (4.5) or (4.6) is satisfied, we have

(4. 11) hepotts=athen,
and consequently
(4. 12) haaxaz = aha,a'.

Thus we have from (4. 1)

. 13) SN [f @) +aha®]dS=0.

Putting x=#»+1 in (4. 2), we have
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j [ K" 0t naf ! @)+ aha®
N

4. 14)

+f (0Vha®+als®ha® +Layha® 0t —layhd®w?dS =0,
where

”1)1=C.1;‘70-':c; ldy=ldy.n+1-

We moreover assume that the mean curvature vector
1
Hh= _gcbycBbh= -l--hg,“ch
n 7
is parallel with respect to the connection ’V induced in the normal bundle, that is,

P Hn = -}7 7 ha®)C -+ %ha“(—hc”Bbh—lcyCy")

—— L B PO — L pattCy
n n n

is tangent to the submanifold. Since /,,,1=0, we see that this assumption is
equivalent to

(4. 15) he*=const.x0, ley=D0.

In this case we have from (4. 14)

4.16) SN ['K;i"v’Ci+-naf' (0)+f 0)h*~-ahs®ha’1dS=0.
Thus forming (4. 16)—(4. 13) X (1/n)k,*, we find

4.17) SN['Kﬁ”foi—f—naf’(v) +a<hb“ha” — lzbbka“>]dS=O.

On the other hand, putting x=#+1 in (3. 4), we have

(4. 18) 'K’ C*+naf’(v)=0,
from which
4.19) 'Ki"vC'+-naf’(v)=—"K;;'v'C",
where
"v) = BJv°.

Thus, from (4. 17), we have

. 20) S ['K,/vf(:f—a@bahab _ % h,,bhaa)]ds= 0.
N
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§5. Theorems.

If
6.1 "K' v'C+naf’(v)=0
or
(5. 2) 'Kji'v'Ci=0),

then we have, from (4. 17) or (4. 20),

5.3) S a(h,,a/zab-—ihbbhaa>dszo.
N n
Since
I — o hytha® = —— 5 (hy— ko) =0
a n a n & a. =V

if a=C'; has fixed sign on S, then we have from (5. 3)
Iuhat — L jthas=0,
n

that is
ki=ky="-=ky,

and the submanifold N is pseudo-umbilical. Thus we have

THEOREM 5. 1. Let M be an m-dimensional orientable differentiable Riemannian
manifold which admits a non-constant scalar field v such that ViV w=f(0)g;, f@®)
being a differentiable function of v, and N an n-dimensional closed orientable sub-
manifold differentiably imbedded in M such that

( 1) (VcBbi)vi:ahcb or hcb,n+zan+2+"'+hcb.mam=0,

(ii) the mean curvature vector H"x0 is parallel with respect to the connec-
tion induced on the normal bundle,

(iii) 'K;"v’Ci+naf’(v)=0 or 'K;;/v'C*=0,

(iv) a=CWw has fixed sign on S.

Then N is pseudo-umbilical.

This generalizes Theorem 1 in |17].
If »* has the form

v"= B,/v%+aC",
that is, if
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App1=""" =a’m=0y
then
"ph=qCh,
and consequently (4. 17) gives
(5. 4) S a[(’ Kji+nf'(0)g;:)C'Ci+ (}lb“hab — “;17 hbbha,a) ]dS =0,
N

from which we have

THEOREM 5. 2. Let M be a Riemannian manifold as in Theorem 5.1 and N
an n-dimensional closed orientable submanifold differentiably imbedded in M such

that

(i) anie=+-=an=0,

(ii) the mean curvature vector H"=0 is parallel with respect to the connection
induced on the normal bundle,

(i) (Kju+nf(©)g:)CC=0,

(iv) a=CWw has fixed sign on N.

Then N is pseudo-umbilical.

This theorem has been obtained by Nagai [9]. But it seems to the author that
the condition %.*=const. in his paper should be replaced by the condition (ii) above,
because the assumption /%,*=const. only gives no condition on the third fundamental

tensor.
If

VeBy"=haC",
that is, if

hcb.n+2="'=hcb.m=0,

then we have, from (4. 14),
(5. 5) S UK;"vICHnaf ' (0)+ 0V sha®+f (0)ha®+ aly®ha"1dS=0,
N
by virtue of
ld.n+1=0-
Thus, if 4,*=const.,, then we have (4. 16) and consequently (4. 20). Thus

THEOREM 5.3. Let M be a Riemannian manifold as in Theorem 5.1 and N
an n-dimensional closed orientable submanifold differentiably imbedded in M such
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that

( i ) hcb.n+2="‘=hcb.m=0,

(ii) the mean curvature vector H"x0 is parallel with respect to the connection
induced on the normal bundle,

(lll) ’Kﬁ’fo" = 0,

iv) a=CiV,w has fixed sign on N.

Then N is pseudo-umbilical.

Now, if the submanifold N satisfies the conditions in Theorem 5. 2 or Theorem
5. 3, then we have, from (3. 6),

VoV so=1(0)ger+athes
and, from (3. 7)
Vea=—hvq.
But, N being pseudo-umbilical, we have
hes=2gcs,

2 being a constant different from zero. Thus we have

(5. 6) VoV so=[f(0)+2alger
and
6.7 Vea=—2V .,
from which

a=—Av+c,

¢ being a constant. Thus (5. 6) becomes
(5.8 Vel w=|f(v)— v+ Aclgen,

and consequently, if

f@)=Fko,

k being a constant, we have
(5.9 VoV o =[—(2*—k)o+2clges,s

and if

f(0)=k,
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we have

(5. 10)

Vo Vw=[—220+Ek~+2c]lges.

Thus, if v=constant on N, then as was shown in [16], we have, by a theorem
of Obata [10],

THEOREM 5. 4. If f(v)=kv, or f(v)=Fk in Theorem 5.2 or Theorem 5.3, and
vacconstant on N, then the submanifold N is isometric to a sphere.
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