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NOTES ON SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD

BY KENTARO YANO1}

§ 1. Introduction.

Many attempts have been done to generalize, to the case of hypersurfaces in
a Riemannian manifold, a famous theorem of Liebmann [8] and Suss [14]: The
only convex hypersurface with constant mean curvature is a sphere. See for ex-
ample, Hsiung [1], Katsurada [2], [3], Koyanagi [7], Otsuki [13], Tani [15], [21] and
the present author [16], [17], [21].

In these papers, the authors prove that, under certain conditions, a closed hyper-
surface with constant mean curvature is umbilical or pseudo-umbilical.

The present author [17] gave certain conditions under which a closed hyper-
surface with constant mean curvature be isometric to a sphere.

Also attempts have been recently started to generalize the theorem of Liebmann
and Suss to the case of submanifolds in a Riemannian manifold. See for example,
Katsurada [4], [5], [6], Kδjyδ [5], Nagai [6], [9], Okumura [11], [20], Tani [21] and
the present author [18], [20], [21].

Katsurada [4], [5], [6], Kδjyδ [5] and Nagai [6], [9] assume the existence of a
conformal Killing vector field in the ambient manifold and that this vector field is
contained in the linear space spanned by the mean curvature vector of the sub-
manifold and the tangent space to the submanifold.

The present author [18] recently weakened this assumption and obtained similar
results to those of Katsurada, Kδjyδ and Nagai.

The main purpose of the present paper is to generalize the methods and results
in [17] to the case of general submanifolds in a Riemannian manifold admitting a
scalar field v such that !7

jFiv=f(v)gji and give conditions for a submanifold to be
isometric to a sphere.

Similar attempt has been already done by Nagai [9], but he assumes that the
vector field vh = (Fzv)gih lies in the linear space spanned by the mean curvature
vector and the tangent plane of the submanifold. We study the problem under a
condition which is weaker than this.

§ 2. Preliminaries.

Let M be an m-dimensional orientable Riemannian manifold of differentiability
class C°° covered by a system of coordinate neighborhoods {U: ξh} and gji} {/*},
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Fι, Kkjί
h and Kju the metric tensor, the Christoffel symbols formed with gju the

operator of covariant differentiation with respect to the Christoffel symbols, the
curvature tensor and the Ricci tensor respectively, where and in the sequel the
indices h, i, j , k, ••• run over the range {1, 2, •••, m}.

Let N be an ^-dimensional compact and orientable manifold of differentiability
class C°° covered by a system of coordinate neighborhoods {V; ηa} and C°° differ-
entiably imbedded in M and let

(2. 1) ξh=ξ\va)

be the local parametric expression of TV, where and in the sequel the indices
a, b, c, d, e run over the range {1, 2, •••, n\ and l<n<m.

If we put

then, the Riemannian metric of N induced from that of M is given by

(2.2) qcb=QjiBc3Bf

and the Christoffel symbols formed with gcb by

(2.3) {c\}=(dcB

where

gha being the contravariant components of the metric tensor of N.
If we put

(2.4) VcBb

h=dcBh

h+{jhi}BciBbι-{c\}Ba\

then we see from (2. 3) that

(2.5) gji(FcBb*)Ba*=0,

which says that VcBb

h, as vectors of M, are orthogonal to the submanifold N. The
VcBb

h defined by (2. 4) is called the van der Waerden-Bortolotti covariant derivative
of Bb

h along the submanifold TV. Thus,

(2.6) Hh= — gcΨcBb

h

n

is an intrinsic vector field of M defined along N and is orthogonal to N. Hh is
called the mean curvature vector of N.

We assume that the mean curvature vector Hh of N never vanishes along N
and take the first unit normal Ch to N in the direction of Hh and put

(2.7) (FcBbi)Q=hcb,
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where d are the covariant components of Ch. The hcb are components of the
second fundamental tensor of N with respect to the mean curvature unit normal
Ch' We then have

(2.8) gcΨbBb

h=ha

aC\

where

hc

a=hcbg
ba.

If we denote by ku k2, --, kn the eigenvalues of hc

a, we then have

/ i Ra^rϊa
α=l

and

b<a 6

The scalars Hi and H2 defined by

(2.9) nH1=Σ
α=

and

(2. 10)

are called Â̂  yϊrs^ and the second mean curvatures of AT" with respect to Ch res-
pectively. We note here that

Ά*-H2=
 l (hfha* - —

n(n—l) \ n
(2.11)

and consequently, if

hahb
or hb

aha

then

that is,
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A submanifold for which k1—k2='-=kn or hcb=kgcb is said to be umbilical
with respect to the mean curvature unit normal Ch, or simply pseudo-umbilical.

We now take m—n mutually orthogonal unit normals Cx

h in such a way that
the first normal Cn+ih coincides with the mean curvature unit normal Ch and Bb

h,
Cx

h form the positive orientation of M, where and in the sequel the indices xy y, z
take the values n-\-l, n-\-2, •••, m. Then, since VcBb

h are orthogonal to the sub-
manifold N, they can be expressed as

(2.12) FcBb

h=hcbxCx\

which are equations of Gauss, where

To get the equations of Weingarten, we put

(2.13) FcCx

h=dcCx

h+{jh}Bc^Cx\

Then we have

(2.14) FcCx

h= -he\Bah+lCXyCy\

where

hc

a

x=hcbxg
ba

and

tcxy^^ 'cyx

is the third fundamental tensor with respect to the normals Cx

h and defines the
connection induced on the normal bundle.

In fact, a vector field Xh which is defined along N and is normal to N is
expressed as

Xh=XxCx

h

and consequently

Thus, if we put

where Cxi=Cx

jgju we get

(2.15) ΨeXx=deXs+leyxXy.

If FcX
h is tangent to N, that is, if ΨCXX=O, we say that Xh is parallel with
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respect to the induced connection 'V.
Now the equations of Gauss, those of Mainardi-Codazzi and those of Ricci-

Kuhne for N are respectively written as

(2.16)

(2.17)

and

KkjihBd

kBe>Cy%Cx

h

(2. 18)
==rd'cyx * cPdyxviίd yfϊcax Me ytϊdax I

From (2. 17), we have, by transvection with gcb,

(2.19) fKkhBd

kCx

h = Vdha\-Vahd

a

x+ldyxha

a

where

We notice here that rKμ is symmetric in j and i, because

'Kji=KjutB"=KnjtB»=KutjB
t*='K%j9

Bts being symmetric.

§3. Submanifold of a Riemannian manifold admitting a scalar field ι? such
that ΓjΓiV=f(v)gji.

We now assume that the Riemannian manifold M admits a scalar field v such
that

(3. 1) PjPiV=f(p)gju

or

(3.2) PjVi=f(v)gjif

where Vi=PiV. Substituting (3. 2) into the Ricci identity

PkPjΌi-PjPkVi= -Kkji

hvh,

we find

or

(3. 3) Kkjίhv
h= -f'(vXvkgji-Vjgkt),
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where vh=Vigih, from which

(3.4)

where ax=vkCx

k. We put

(3. 5) υh =

where

va=vbg
ba,

We also put

a

From

we find

or

(3. 6) VcVb=f(v)gch-\-hcbχtχx

and

or

(3. 7) Vcax= -hc

a

xVa+lcx

Now, substituting (3. 5) into (3. 4), we find

or
/KjίBa:>Cx

zva+'KjiCy'Cjay = - nf\ύ)ax,

or, using (2. 19),

that is,

(3.8)
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by virtue of (3. 6).

§4. Integral formulas for submanif old.

From (3. 6), we have

and consequently, integrating over N and applying Green's theorem [19], we find

(4.1) [ [nf(v)+ha

a*ax]dS=0,
J

dS being the surface element of N.
Also, integrating (3. 8) over N and applying Green's theorem, we find that if

Cx

ι are defined globaly on N, then

['KjiCy>Cx

%ay+nf'(v)ax
N

(4.2)

Now, from

FcBb

h=hcbxCχh and υh=Ba

we find

(4.3) (Γ e A < )» < =A e 6 s α,,

where

hcb,nn=hcb and α

that is,

(4. 4) (FcBb

i)Vi=hcba-\-hcb,n+2(Xn+2-{

In the sequel, we assume that

(4. 5) {FcBfiVi^ahcυ,

that is,

(4. 6) hcb,n±2(Xn+2-i \-hcb,mOCm = 0.

(See also Yano [18].)
Since vh is written as

vh=Ba

hva+Cha-\-Cn+2han+2+'~+Cm

ham,
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the projection of vh on the normal plane orthogonal to Ch is given by

For the covariant derivative of this, we have

Γc(Cn+2Λα»+2+ +Cm

ham)

+Cn+2hFcocn+2+ + C m

Λ F c α « .

Thus we see that the assumption (4. 5) or (4. 6) is equivalent to the fact that

Γc(C»+2Λα»+2+ +Cm

ham)

is normal to the submanifold.

As Katsurada, Kόjyδ and Nagai [5], [6], |9l assumed, if vh has the form

(4.7) vh=Ba

hυa+aCh,

that is, if vh is in the space spanned by Ba

h and Ch, then

(4. 8) an+2=" = am=0

and (4. 6) is satisfied.
If

(4.9) VcBb

h=hchC\

that is, if FcBb

h are in the direction of mean curvature vector, then

(4.10) hcb,n+2='~=hct>,m=0

and (4. 6) is satisfied.

Now, if (4. 5) or (4. 6) is satisfied, we have

(4.11)

and consequently

(4.12) haax<χχ=ah*a'.

Thus we have from (4.1)

(4.13) [ [nf(v)+ahaa]dS=0.

Putting x=n+l in (4. 2), we have
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ί ['Kji"υ*Ci+naf'(p)+ifiPdhaa

JN

(4.14)

+f(v)haa+ahb

ahab+ldyha%Vd-layhd

ayVd]dS=O,
where

"V3 = Cx

3ax, ldy=ldytn+l.

We moreover assume that the mean curvature vector

Hh= —gcψcBb

h= —ha

aCh

n n

is parallel with respect to the connection Ψ induced in the normal bundle, that is,

PcHh= — (Pchaa)Ch + ~haa(-hc

bBb

h-ίcyCy

h)

= - —haahc

bBb

h+ — (Vcha

a)Ch - — haalCyCyh

% Tl Tv

is tangent to the submanifold. Since /c,n+i=0, we see that this assumption is
equivalent to

(4.15) ha

a=const. ^ 0, lcy - 0.

In this case we have from (4.14)

(4.16) [ VKμ"v3σ+naf\υ)+f{v)h*«+ahb«h*h\dS=§.
JN

Thus forming (4.16)-(4.13)x(l/ή)ha

a, we find

(4. 17) [ \'Kji"viCi+naf\v)+aUb

ahah-~hh

hhJ\\dS=Q.

On the other hand, putting x=n-\-l in (3. 4), we have

(4. 18) 'Kji*C%+naf'(p)=0,

from which

(4.19) 'Kji"VC%+naf'(υ)=-'Kji'*C%,

where

Thus, from (4.17), we have

(4. 20) [ \'KJi
fv>Ci-(x(hb

ahab - ~-h b

bh a

a\]dS=0.
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then we have, from

(5. 3)

Since

'KH

(4.17) or (4.

L»( s r t

1

n

ί IN

'VC

'Kji

20),

b

ι ha
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if a=Ovi has fixed sign on S, then we have from (5. 3)

hb

aha

b-—hb

bha

a=O,
n

that is

and the submanifold N is pseudo-umbilical. Thus we have

THEOREM 5.1. Let M be an m-dimensional orientable differentiable Riemannian
manifold which admits a non-constant scalar field v such that VjViv=f{v)gjiif{v)
being a differ entiable function of vy and N an n-dimensional closed orientable sub-
manifold differentiably imbedded in M such that

( i ) {yeBtf)Vi — ahch or hcb,n+2(Xn+2-\ [-hcb,mam=0,

(ii) the mean curvature vector Hh^0 is parallel with respect to the connec-
tion induced on the normal bundle,

(iii) /Kji

//v^Cί-\-naf/(v)=0 or ' i ^ V C ^ O ,
(iv) a=CΨiV has fixed sign on S.
Then N is pseudo-umbilical.

This generalizes Theorem 1 in [17].
If vh has the form

that is, if
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(Xn+l = '"==OCm

 = 0,

then

and consequently (4.17) gives

(5.4)

from which we have

THEOREM 5. 2. Let M be a Riemannian manifold as in Theorem 5.1 and N
an n-dimensional closed orientable submanifold differentiably imbedded in M such
that

(ii) the mean curvature vector Hh^0 is parallel with respect to the connection
induced on the normal bundle,

(iv) a—OViV has fixed sign on N.
Then N is pseudo-umbilical.

This theorem has been obtained by Nagai [9]. But it seems to the author that
the condition ha

a=const, in his paper should be replaced by the condition (ii) above,
because the assumption ha

a=const, only gives no condition on the third fundamental
tensor.

If

that is, if

then we have, from (4.14),

(5. 5) [ [/Kji

//v^Cί+naf/(v)+vdFdhaa+f(v)haa+ahb

ahab]dS=Oi

by virtue of

/<Z, 71+1 = 0 .

Thus, if ha°'
:= const., then we have (4.16) and consequently (4. 20). Thus

THEOREM 5. 3. Let M be a Riemannian manifold as in Theorem 5.1 and N
an n-dimensional closed orientable submanifold differentiably imbedded in M such
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that
( ί ) hcb,n+2—'"=hct>,m = 0,

(ii) the mean curvature vector Hh^0 is parallel with respect to the connection
induced on the normal bundle,

(iii) 'iζ/iVC'^0,
(iv) a=CΨiV has fixed sign on N.
Then N is pseudo-umbilical.

Now, if the submanifold N satisfies the conditions in Theorem 5. 2 or Theorem
5. 3, then we have, from (3. 6),

and, from (3. 7)

Fca=—hc

ava.

But, N being pseudo-umbilical, we have

hcb = AQcb,

λ being a constant different from zero. Thus we have

(5.6) PcPbV=[f(v)+λa]gcb

and

(5.7) Fca=-λPcv,

from which

a=—λv+c,

c being a constant. Thus (5. 6) becomes

(5.8) FcFbv=[f(v)--λ2v+λc]gch

and consequently, if

f(p)=kv,

k being a constant, we have

(5.9) FcFbV=[-(λ2-k)v+λc]gCb,

and if
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we have

(5. 10) FcFbv=[-λ2v+k+λc]gcb.

Thus, if v^ constant on N, then as was shown in [16], we have, by a theorem
of Obata [10],

THEOREM 5.4. If f(v)=kv, or f(v)=k in Theorem 5.2 or Theorem 5.3, and

v^ constant on TV, then the submanifold N is isometric to a sphere.
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