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Introduction

Let $z,$ $w$ be complex numbers.
$z$ is positive. Set

We assume that imaginary part of

$\xi(s, w, z)=\sum_{m,n}’|m+nz+w|^{-2\iota}$ ,

where summation with respect to $m,$ $n$ ranges over all pairs of integers
such that $m+nz+w\neq 0$ .

Put

$\eta(z)=e[z/24]\prod_{n=1}^{\infty}(1-e[nz])$ ,

$\theta_{1}(w, z)=2e[z/12](\sin\pi w)\eta(z)\prod_{n=1}^{\infty}(1-e[w+nz])(1-e[-w+nz])$ ,

. where we write $e[z]=\exp(2\pi iz)$ . Furthermore, we set $\xi=d\xi/ds$ . A
version of the classical Kronecker limit formula is given as follows (see
$e.g.,$ $[9]$).

If $w\not\in Z+Zz$ ,

$\xi^{\prime}(0, w, z)=-\log|\frac{\theta_{1}(w,z)}{\eta(z)}\exp\frac{\pi iw(w-\overline{w})}{z-\overline{z}}|^{2}$

If $w\in Z+Zz$ ,

$\xi(0, w, z)=-\log\{4\pi^{2}|\eta(z)|^{4}\}$ .
For the proofs of the Kronecker limit formula, we refer to [4] and
papers quoted there. In this note we present a proof of the formula
which makes use of the theory of the double gamma function. The
author takes this opportunity to make an addendum of the reference to
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