KÖDAI MATH. SEM. REP. 21 (1969), 448-458

ISOMETRIC IMMERSIONS OF SASAKIAN MANIFOLDS IN SPHERES

By Shûkichi Tanno

Introduction. A Sasakian manifold M^m which is isometrically immersed in a Riemannian manifold $*M^{m+1}$ of constant curvature $C \neq 1$ is of constant curvature 1, as was shown by Takahashi [7]. The case where the constant curvature of $*M^{m+1}$ is 1 is in a very different situation. In this paper we study the case. The rank of the second fundamental form is called the type number of the immersion.

THEOREM. Let M^m be a Sasakian manifold which is isometrically immersed in a Riemannian manifold $*M^{m+1}$ of constant curvature 1. Then

(i) the type number $k \leq 2$, and

(ii) M^m is of constant curvature 1 if and only if the scalar curvature S is equal to m(m-1).

In an η -Einstein space for any point p the Ricci curvature $R_1(X, X)$ is constant for any unit vector X at p such that $\eta(X)=0$. In [7] it was also proved that an η -Einstein Sasakian manifold M^m ($m \ge 5$) which is isometrically immersed in a Riemannian manifold $*M^{m+1}$ of constant curvature 1 is of constant curvature 1. We generalize this in the following form.

THEOREM. Let M^m ($m \ge 5$) be a Sasakian manifold which is isometrically immersed in a Riemannian manifold $*M^{m+1}$ of constant curvature 1. Assume that at any point p of M^m we have a subspace F_p of the tangent space at p to M^m such that

(i) dim $F_p = m - 2$,

(ii) $\eta(X)=0$ for any $X \in F_p$,

(iii) $R_1(X, X) = constant for any unit X \in F_p$.

Then M^m is of constant curvature 1.

In §2 we study some properties of contact Riemannian manifolds which satisfy some conditions on the Ricci tensor or the Riemannian curvature tensor, for example, $R(X, Y) \cdot R = 0$ or $R(X, Y) \cdot R_1 = 0$.

In the last section, we consider invariant submanifolds of Sasakian manifolds. We see that they are minimal. As a special case, we have invariant submanifolds M^m of a unit sphere S^{2r+1} considered as a Sasakian manifold, which are shown to be unit spheres if and only if S=m(m-1).

Received June 19, 1969.