On the poles of the scattering matrix for two strictly convex obstacles

Dedicated to the memory of Prof. Hitoshi Kumano-go

By

Mitsuru Ikawa
(Communicated by Prof. Mizohata, Dec. 5, 1981)

§ 1. Introduction

Let \mathcal{O} be a bounded open set in \boldsymbol{R}^{3} with sufficiently smooth boundary Γ. We set $\Omega=\boldsymbol{R}^{3}-\overline{\mathcal{O}}$. Suppose that Ω is connected. Consider the following acoustic problem

$$
\begin{cases}\square u(x, t)=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0 & \text { in } \quad \Omega \times(-\infty, \infty) \tag{1.1}\\ u(x, t)=0 & \text { on } \Gamma \times(-\infty, \infty)\end{cases}
$$

where $\triangle=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}}$. Denote by $\mathscr{S}(\sigma)$ the scattering matrix for this problem. Concerning the definition of the scattering matrix see, for example, Lax and Phillips [8, page 9]. It is known that $\mathscr{S}(\sigma)$ is a unitary operator from $L^{2}\left(S^{2}\right)$ onto itself for all $\sigma \in R$ and

Theorem 5.1 of Chapter V of [8]. $\mathscr{S}(\sigma)$ extends to an operator valued function $\mathscr{S}(z)$ analytic in $\operatorname{Im} z \leq 0$ and meromorphic in the whole plane.

Concerning how the scattering matrix $\mathscr{S}(\sigma)$ is related to the geometric properties of obstacles

Theorem 5.6 of Chapter V of [8]. The scattering matrix determines the scattering.

About a question as to a concrete correspondance of geometric properties of \mathcal{O} to analytic properties of $\mathscr{S}(\sigma)$, Majda and Ralston [10], Petkov [14] and Petkov and Popov [15] made clear relationships between \mathcal{O} and the asymptotic behavior of the scattering phase of $\mathscr{S}(\sigma)$ for $\sigma \rightarrow \pm \infty$ when \mathcal{O} is non-trapping. But concerning relationships between \mathcal{O} and the poles of $\mathscr{S}(z)$ we know a few facts. The results we want to show in this paper are

Theorem 1. Let $\mathcal{O}=\mathcal{O}_{1} \cup \mathcal{O}_{2}, \overline{\mathcal{O}}_{1} \cap \overline{\mathcal{O}}_{2}=\varnothing$. Suppose that \mathcal{O}_{1} and \mathcal{O}_{2} are strictly convex, that is, the Gaussian curvatures of the boundary Γ_{j} of $\mathcal{O}_{j}, j=1,2$ never vanish. Then there exist positive constants c_{0} and c_{1} such that

