On the poles of the scattering matrix for two strictly convex obstacles

Dedicated to the memory of Prof. Hitoshi Kumano-go

By

Mitsuru Ikawa

(Communicated by Prof. Mizohata, Dec. 5, 1981)

§1. Introduction

Let \mathcal{O} be a bounded open set in \mathbb{R}^3 with sufficiently smooth boundary Γ . We set $\Omega = \mathbb{R}^3 - \overline{\mathcal{O}}$. Suppose that Ω is connected. Consider the following acoustic problem

(1.1)
$$\begin{cases} \Box u(x, t) = \frac{\partial^2 u}{\partial t^2} - \Delta u = 0 & \text{in } \Omega \times (-\infty, \infty) \\ u(x, t) = 0 & \text{on } \Gamma \times (-\infty, \infty) \end{cases}$$

where $\triangle = \sum_{j=1}^{3} \frac{\partial^2}{\partial x_j^2}$. Denote by $\mathscr{S}(\sigma)$ the scattering matrix for this problem. Concerning the definition of the scattering matrix see, for example, Lax and Phillips [8, page 9]. It is known that $\mathscr{S}(\sigma)$ is a unitary operator from $L^2(S^2)$ onto itself for all $\sigma \in \mathbf{R}$ and

Theorem 5.1 of Chapter V of [8]. $\mathscr{G}(\sigma)$ extends to an operator valued function $\mathscr{G}(z)$ analytic in Im $z \leq 0$ and meromorphic in the whole plane.

Concerning how the scattering matrix $\mathscr{S}(\sigma)$ is related to the geometric properties of obstacles

Theorem 5.6 of Chapter V of [8]. The scattering matrix determines the scattering.

About a question as to a concrete correspondance of geometric properties of \mathcal{O} to analytic properties of $\mathscr{S}(\sigma)$, Majda and Ralston [10], Petkov [14] and Petkov and Popov [15] made clear relationships between \mathcal{O} and the asymptotic behavior of the scattering phase of $\mathscr{S}(\sigma)$ for $\sigma \to \pm \infty$ when \mathcal{O} is non-trapping. But concerning relationships between \mathcal{O} and the poles of $\mathscr{S}(z)$ we know a few facts. The results we want to show in this paper are

Theorem 1. Let $\mathcal{O} = \mathcal{O}_1 \cup \mathcal{O}_2$, $\overline{\mathcal{O}}_1 \cap \overline{\mathcal{O}}_2 = \emptyset$. Suppose that \mathcal{O}_1 and \mathcal{O}_2 are strictly convex, that is, the Gaussian curvatures of the boundary Γ_j of \mathcal{O}_j , j=1, 2 never vanish. Then there exist positive constants c_0 and c_1 such that