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Completeness Theorems for Two

Propositionαl Logics in Which

Identity Diverges from

Mutual Entailment

PHILIP HUGLY and CHARLES SAYWARD

1 Introduction In [1] Anderson and Belnap devise a model theory for
entailment, on which propositional coentailment equals propositional identity.
This feature can be reasonably questioned. Here we devise two extensions of
Anderson and Belnap's model theory. Both systems, S and Γ, preserve Anderson
and Belnap's results for entailment, but distinguish coentailment from identity.

The system S is the strongest, satisfying the following plausible principle
for propositional substitution: If compound sentences express the same
proposition and differ only with respect to the interchange of component
sentences A and B, then A and B also express the same proposition. We present
a model theory for S and prove soundness and completeness. T results from S
by adding just an associativity axiom. The principle for propositional substitu-
tion cited above does not hold in T. The model theory for S is extended to T,
with soundness and completeness again established.

2 Preliminaries We consider the formal language Eβe formulated in [ 1 ],
Chapter III. The set of purely truth functional formulas (ptfs) consists of
propositional variables plus ~A, (A & B), (A v B) where A and B are ptfs. The
set of formulas consists of ptfs plus (A -* B) where A and B are ptfs.

In the following, L ranges over intensional lattices ([ 1 ], p. 193); Λ, v, and -
denote respectively the meet, join, and complementation operations on L\
<Ξ denotes the partial ordering relation on L A, B, C . . . range over ptfs.

Q is a model for Eβe iff Q = (L, s), where s assigns elements of L to each
of the variables. If Q is a model for Eβe then VOIQ assigns elements of L to ptfs
as follows:
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if A is a variable, VάlpjA) = s(A)
if A is ~B, ValQ(A) = ValQ(B)
if A is (B & C), ValQ(A) = ValQ(B) Λ Kα/β(C)
if A is (i? v C), ValQ(A) = F<i/β(5) v Fα/β(C).

(A -* 5) is true in Q iff Kα/βG4) < ValQ{E). Finally, (4 ->£) is valid in Efde iff
04 -+ B) is true in all models Q.

This list of postulates is given ([ 1 ], p. 158):

Entailment:
Rule from A -> £ and £ -* C to infer Λ -> C

Axiom 04 & 5) -• i4
Axiom {A8LB)-+B

Rule from ^ -• B and ^ -> C to infer A-*(B &C)

Disjunction:
Axiom A-+(A\ι B)
Axiom B^(AvB)
Rule from A -» C and 5 -> C to infer (i4 v β) -^ C

Axiom ^ & (β v C) -> U & B) v C

Axiom A -+ ~~A
Axiom ^ ^ ^ -+ A
Rule from 4̂ -* 5 to infer ~B^»~A.

The theorems generated by this list are shown to be the same as the valid
entailments.

The elements of L are thought of as propositions; Λ, V, - are thought of as
propositional conjunction, disjunction, and negation, respectively; and < is
thought of as entailment between propositions. Note that when {A -> B) and
(B -+ A) are both true in Q, Valg(A) = VCIIQ(B). SO, on this model theory,
coentailment and propositional identity are the same.

The symbol for disjunction in Eβe is dispensible, since DeMorgan's laws
hold for intensional lattices. We will find it convenient to dispense with it. Let
Efde be the same as Eβe except that all occurrences of {A v B) are replaced by
~(~A & ~B). The symbols of 5 and T are the symbols of E'fde plus .'='. The
formulas of S and T are as follows: The ptfs of both systems consist of
propositional variables plus ~A and {A & B) where A and B are ptfs. The
formulas are ptfs plus (A -> B) and (A = B) where A and B are ptfs.

3 The postulates and semantics of system S The postulates of S are deter-
mined by these nine items:

Axioms for 5
I. Every axiom of Eβe is an axiom of 5

II. A=A
III. A = —A
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IV. A=(A&A)
V. (A&B) = (B&A)

Rules of inference for S

VI. Every rule of inference of Eβe is a rule of inference of S
VII. from A = B to infer 5 = A

VIII. from ^ = B, B = C to infer ,4 = C
IX. from 4̂ = B to infer C = Cjj where C^ differs from C only in that one

occurrence of A in C has been replaced by B.

A formula {A = i?) or (A ~+ B) is a theorem of 5 iff it is an axiom of S or
follows from theorems of S by a rule of inference of S.

A model for S is a quadruple <<2, D, p, /> satisfying the conditions
(Q)(D)(p)(f) below:

(Q) Q- (L, s) is a model of Eβe.

(D) D = U\D0, . . ., D(, . . .!, where these conditions are satisfied:

(1) D0 = L.
(2) x e Z)rt iff x e Dn-X\ or

x = \y, ~\ where >> eDn-1 and - is the intensional com-
plement operation defined on Z; or
x = {y, z, Λ! where y and z are distinct elements of
Dn-i and Λ is the meet operation defined on L.

(p) p is a function defined on ptfs as follows:

(1) p(υ) = s(υ) where y is a propositional variable.

(Ί\ ( Λ\ - \ x tip(A) = {x, ~\ where x e D,
U) P ( ^ ) i ίpW),-! otherwise.

(3) D(A&B)= \ p { Λ ) ifP(A) = P(B),
(3) p{A &.B) \ { p ( A ) ) p ( B l A ] otherwise.

(f) /is a function defined on Z) as follows:

( x ifxeZ,,

f(y) if x = {y,-\ and f(y)eL,
f(y) Λ f(z) ifx = {y,z,ri and /(j;), f(z) e L,
x otherwise.

Intuitively, D is to be thought of as a set of propositions. Construe {x, -}
as a negative proposition, and {x, y, Λ| as a conjunctive proposition. The func-
tion p assigns propositions to the ptfs. The peculiarities of its construction are
motivated by the double negation axiom A = — A , the reduction axiom
A = (A & A) and the commutation axiom (A & B) = (B & A). The function/
maps propositions into lattice elements. Its construction is motivated by our
desire that valid entailments in Eβe remain valid.

We take the semantics of Efde a s developed within a framework whose set
theory satisfies the axiom of regularity; in particular, every intensional lattice
satisfies that axiom. We further note that every intensional lattice is non-
degenerate (i.e., has at least two numbers). This being so we have the following
theorem:
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Tl For any model (Q, D, p, f) ofS: -, Λ i D.

Proof: We let x range over elements of D. Case 1. x e L. Note that

(a) - = {(a, b): a, b e L and b = αi;

and that

(b) Λ = \(a, b, c): a, b, c e L and c = a r^b\.

It follows from (a) and (b) plus the axiom of regularity that xΦ~ and x Φ Λ.

Case 2. x- [y, -\. Since L has at least two members, Λ has at least four mem-
bers. Hence Λ φ {y, -}. And by the axiom of regularity {y, -\ Φ -.
Case 3. x = {y, z, Λ j where y Φ z. By the axiom of regularity \y, z, Λ} Φ Λ. NOW
if \y, z, Λ) = - then Λ e -. But, since L has at least two members, Λ is more than
two-membered. But every element in - is two-membered. So Λ^ -.

Before proceeding to the definitions of truth and validity, we establish
that p(A) is always in D and note that /(x), for x e D, is always in L.

T2 For any model ofS(Q, D, p, f) and x e D: f(x) e L

Proof: By an obvious induction on the construction of D.

T3 For any model <Q, D, p, f) ofS, p{C) e D.

Proof: As hypothesis of the induction we have, for any C, if /(C) < n then
p(C) e D where /(C) = the number occurrences of ~ and & in C. Case 1. C is a
variable υ. Then p(υ) e L. Case 2. C is ~A. Subcase 1. p(A) = {x, -\ for some
xeD. But then p(~A) = x. Hence p(~A) e D. Subcase 2. p(~A) = ip(A), -}. By
hypothesis of the induction p(A) e D. Hence, for some positive integer i,
p(A) e Di-V Hence \p(A), -} e A . Hence {p(A)9 -\ eD. Case 3. Cis (A &B), is
dealt with similarly.

T3 establishes a fundamental condition of the adequacy of the definition
of a model. Its use in subsequent developments is pervasive, although sometimes
implicit.

We now define truth in a model of S and validity in S. (A -*B) is true in a
model (β, D, p,f) of S iff f(p(A)) < f(p(B)). (A = B) is true in a model
(Q, D, p, f) of S iff p(A) = p(B). (A -• B) is valid in S iff (A -+B) is true in all
models of S. (A = B) is valid in S iff (A = B) is true in all models of S.

4 The soundness ofS We establish: (i) (A -+ B) is a theorem of S only if it
is valid in S, and (ii) (A = B) is a theorem of S only if it is valid in S.

Item (i). Fundamental to establishing item (i) is this carryover result:
(A -> 5) is valid in S iff it is valid in Eβe To get this result we need:

T4 For any model (Q, D, f p) ofS, f(p(C)) = ValQ(C).

Proof: The hypothesis of induction is: if 1{A) < n then/(pG4)) = VOIQ(A), for
all ptfs A. If C is a variable then T4 is easily shown to hold. Consider the case
where C is ~A. Subcase 1. p(A) = \x, - ! , for some x eD. Then we have:

(a) p(rA) = x.
(b) /(pO4))=/(*).
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From (b) and the hypothesis of induction we have:

(c) W)=ValQ(A).

And from (c) we get/(x) = ValρiA), which yields:

(d) f(x)=ValQ(A)=ValQ(~A),

since, by T2, f(x) e L and since, for all a e L, a = a. But (a) yields:

(e) f(p(~A))=f(x).

And, from (d) and (e), we get f(p(~A)) = ValQ{~A). Subcase 2. p{A)Φ\x, -}
for any x e D. Then p{~A) = fpO4), -}. So /(p(~i4)) = f(p(A)) = ValQ(A) =
Valg(~A). The same methods show T4 holds where C is (A &B).

T5 04 -• B) is valid in S iff it is valid in E'fde.

Proof: Suppose {A -> B) is valid in Efde. Now consider any model M -
{Q, D, p, f) of S. Since ValQ(A) < ValQ(B), it follows byT4 that {A -+B) is true
in M. Since 7k/ is an arbitrarily chosen model of S it follows that {A ~+B) is
valid in S. Suppose {A -> i?) is valid in S. Now consider any model Q of £/#e
(A -* ̂ ) is true in <Q, A P, />. That is, f(p(A)) <f(p(B)). So it follows by T4
that (A -+B) is true in Q. Since β is arbitrarily chosen it follows that (A ->5) is
valid in Efde.

Two more theorems yield item (i) of soundness.

T6 (A ->B) is a theorem ofEβe iff it is a theorem of S.

Proof: The implication from left to right follows from the fact that all postu-
lates of Eβe are postulates of S. The implication from right to left follows from
the fact that none of the postulates of S that contain '=' enter into a derivation
of 04 -»5).

T7 (A -> B) is a theorem of S iff it is valid in S.

Proof: (A -+B) is valid in Eβe iff {A -* B) is a theorem of Eβe. It follows from
this that, for all ptfs of Ejde A and B, (A -> B) is valid in E'fde iff (A -*S) is a
theorem of Ejye. T7 follows from this fact plus T6 and T5.

Item (ii). As a first step in establishing the second part of soundness, we
note:

T8 //<Q, D, p, f) is a model ofS, each of these hold trivially:

(1) p(A) = p(A)
(2) p(A) = p(A&A)
(3) p(A &B) = p(B &A)
(4) ifp(A) = p(B),thenp(B) = p(A)
(5) ifp(A) = p(B) and p(β) = p(C), /Ae/i pU) = p(C).

More difficult to show are:

(6) p(A) = p(—A)
(7) pO4) = p(B) only ifp(C) = p(Cjj), where A, B, C are as stated in Rule IX.

To these we now turn.
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T9 For any model (Q, Dy p, f) ofS, p(A) = p(B) only ifp(C) = p(φ.

Proof: If C is a variable, T9 holds trivially. Suppose C is a negation ~£.
Subcase 1. p(E) = \x, - ! . By hypothesis of induction p(Eβ) = {x, -I. Hence,
p ( ~ £ ) = x = p(~E%). Subcase 2. p(E) Φ {x, -}, for al lxeD.By hypothesis of
induction p(Eβ) Φ \x, -}, for all x e D. So we have: p(~E) = ίp(£), ~! and
p(~Eβ) = \p(Eβ), -}. So, by hypothesis of induction, T9 holds in this case. In
the case where C is (£ & F), (E & F ) | is ( £ j & F), or it is (E&Fjj). The proof
that T9 holds in each instance is straightforward, using the same methods as in
the negation case.

This leaves the double negation axiom. To establish its validity we need
two preliminary theorems.

T10 For any model (Q,D,p,f) of S, {p(A),p(B),ri Φix,-\ίfp(A)Φp(B).

Proof: By Tl Λ is not in D. By T3 p(A) and p(B) are in D. So if p(A) and p(B)
are distinct then \p(A), p(B), Λι} is three-membered, while [x, -\ is at most two-
membered.

Tl 1 For any model (Q, D, py f) ofS andaeL,aΦ \x, -}.

Proof: Tl 1 follows from the fact that - = ί. . . (a, a). . .! plus the axiom of
regularity.

T12 For any model <Q, D, p, f) ofS, p{A) = p(r*~A).

Proof: Case 1. A is a variable, υ. Then, for some a e L, p(υ) = a. Now, by Tl 1,
a Φ {x, -} for all x e D\ so pi^υ) = \a, -}. Thus p(~~υ) - a. Case 2. A is ^B.
One subcase is p(B) = {x, -}, for some x e D. Here p(~B) = x. Now, by the
hypothesis of induction, p(—B) = p(B) = {x, -\. But then p(~~~B) = x =
p(~B). The other subcase is p(B) Φ {x, -}, for all x e D. Using this plus the
hypothesis of induction we get

(a) p(~B) = {p(B),-\

(b) p(~~B)Φ{x,-l

Using (a) and (b) plus the hypothesis of induction again we get

(c) p(<™*) = \p(r~B), -1 = pirB).

The proof that T12 holds in the conjunction case employs the same general
idea.

From Theorems T7, T8, T9 and T12 we get soundness:

Tl 3 A formula {A -• B) is a theorem ofS only if it is valid in S. A formula
(A = B) is a theorem of S only if it is valid in S.

5 The completeness of S We now want to show (A = B) is valid only if it
is a theorem, i.e., h(A = B) only if \~(A = B). We first define a predicate R on
ptfs (to be read: 'is reduced'). Then we show: (i) if RAf RB, and \\~(A = B) then
\-(A = B)\ (ii) if not RA there is a B such that RB and K4 = B. Completeness
follows from (i) and (ii). Accordingly, we divide this section into two parts,
corresponding to (i) and (ii), respectively.



COMPLETENESS THEOREMS 275

5.7 Say that A is part of B iff either A is B or A is a proper part of B. We
say A is double negation free (dnf) iff, for all/?, ~ ~J? is not part of A We say
4̂ is stammering free (sf) iff, for all B, (B & B) is not part of A. We note the

following lemma for later reference.

LI (1) ~A is dnf only if A is dnf
(2) ~A is sf iff A issf
(3) {A & B) is dnf iff A is dnf and B is dnf
(4) (A & B) is sfiffA is not B and A is sf and B is sf
(5) (~A & ~B) is sf iff (A & B) is sf
(6) -A is dnf and ~B is dnf only if {A & B) is dnf

Definition 1 \A\ = U\(A)°, . . ., (A)*, . . .}, where:

(1) (A)° = {A\,

(2) x e (A)n iίΐx=B ίβ&pί for some B e (AY1'1.

Definition 2 RA iff (i) A is dnf and (ii) every element in \A I is sf.

To establish the result of this part of the completeness proof we need
some additional lemmas. (We omit proofs unless they seem called for.)

L2 IfAe\X\soisA^8®y

L3 Ae\X\iff~Ae\~X\.
L4 (U&V)e \(A &B)\ iff (i) U e \A I and V e \B\ or (ii) U e \B\ and
Ve \A\.

Proof of L4: The left-right implication is by induction on 104 &B)\. The right
to left implication we show here. We show if U e \A\ and V e \B\ then
(U & V) e \A & 51. (Parallel reasoning will show U e \B\ and V e \A\ implies
(U&V)e\(A &B)\).) This is our hypothesis of induction:

i f z + / < « then Ue (AY and Ve (By implies (ί/& V)e\(A &B)\.

Case 1. n = 0. Then U e (A)0 and V e (B)°. Then (U & V) is (A & B). But
(A &B) e \(A & B)\. Case 2. n>0. Subcase 1. i > 0 and = 0. Then for some
Ze(AT\

(P&Q)
U (Q&P)

holds for the commutation of some hth occurrence of (P & Q) in Z. Since

( / - I ) + / < / + / ,

(Z&V)e(A&B)k

holds for some k. And, thus,

holds for the hth occurrence of (P & Q) in Z. Thus, we have

(£/& F)e \{A &B)\.
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Analogous reasoning applies in the other two subcases.

Using L1-L4 we get the following additional lemmas:

L5 (~U&~V)e \(~A &~B)\iff(U & V)e \(A &B)\. (ByL3, L4.)

L6 IfR-AthenRA. (By Ll(l), Ll(2), L3.)
L7 IfRiA &B) then RA and RB. (By LI(3), LI(4), L4.)
L8 IfR(~A &~B)thenR(A &B). (By Ll(3), Ll(5), Ll(6), L5.)
L9 // RA and RB and some element in I (A & B)\ is not sf, then for some
X, (X&X)e\(A &B)\. (By L4.)
L10 If X e \A\ Π ICl and Y e \B\ Π \E\, then ((X & Y) & (X & Y)) e
I ((A &B)&(C& E))\. (By repeated uses of L4.)
LI 1 For any model <Q, D, p, f) ofS and xeD,p(A)Φ {{x, - ! , -}.

Proof of LI 1: The axiom of regularity shows LI 1 holds if A is a variable. The
hypothesis of induction and T12 shows it holds if 4̂ is a negation. The same
hypothesis plus T10 shows it holds if A is a conjunction.

LI2 For any model (Q, D, p, f) of S, p(~A) = p(~B) only ifp(A) = p(B).

Proof: LI 1 shows the following conjunction is impossible, given p(~A) =
p{~B): There is an x e D such that p(A) = \x, -I and there is no y e D such that
p{B) - \y,-\. The impossibility of this case leaves just two possibilities to
consider: (i) There is an x e D such that p{A) = {x, -}, and a y e D such that
p(B) = \y, - ! . Then p(~A) = p(~B) only if x = y, in which case p(A) = p{B).
(ii) There is no x e D such that p(A) = ίx, -}, and no y e D such that p{B) =
\y, - ! . Then p(r>A) = lp(A), -I and p(r*B) = ip(fl), -I. Thus, p(-A) = p{~B)
only if p(A)=p(B).

LI-LI 2 prove instrumental in establishing the following key theorem.

T14 Let (Q, D, p*t f) be any model of S such that p* assigns distinct
elements of D to distinct variables of S. Then if RA, RB, R(A & B) then
p*(A)Φp*(B).

Proof: Our hypothesis of induction, (#), is: if 1{A) + 1{B) < n and RA, RB,
R{A & B) then p*(A) Φ p*(B). There are six cases. Case 1. A and B are
variables. Then p*(A) Φp*(B) by stipulation on p*. Case 2. A is a variable and
B is a negation ~C. This divides up into two subcases. If C is a variable, then
Tl 1 can be used to show T14 holds. If C is a conjunction, then L6, L7, (H),
T10, and Tl 1 can be used to show T14 holds. Case 3. A is a variable and B is a
conjunction. Then L7, (#), and the axiom of regularity suffice. Case 4. A is a
negation and B is a negation. L6, L8, (//), and LI2 suffice. Case 5. A is a nega-
tion and ̂  is a conjunction. L6, L7, (//), T i l , T10 suffice. Case 6. A is a
conjunction, (X & F); i? is a conjunction, (Z & W). We detail the proof in this
case:

(1) R(X & Y) and R(Z & W), given.
(2) RX, RY, RZ, RW, from (1) using L7.
(3) p*(X)Φp*(Y), from (1) and (2) using (//).

(4) p*(X &Y) = lp*(X), p*(Y), ΛJ, from (3).
(5) £>*(Z & V) = 1 p*(Z), p*(W0, Λ!, using analogous reasoning.
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(6) Suppose p*(X) = p*(Z) and p*(Y) = p*(W).
(7) Not R(X & Z) and not R(Y & W\ from (6) and (1) using (//)•
(8) R((X &Y)8c(Z& W)), given.
(9) Some member of I (X & Z)\ is not sf, from (7), (2) using LI.

(10) For some C, (C & C) e \(X & Z)l, from (9) using L9.
(11) C e \X\ andCe IZI, from (10) using L4.
(12) For some E, E e\Y\ and E e \W\,by reasoning analogous to (7)-(l 1).
(13) ((C &E) & (C&E)) e \(X & Y) & (Z & W/)l, from (11) and (12)

using L10.
(14) So (6) is false since (13) contradicts (8).
(15) By reasoning analogous to (6)-(14) it follows that the following

conjunction also is false: p*(X) = p*(W) and p*(Y) = p*(Z).
(16) p*(X & Y) Φp*(Z & W)9 from (4), (5), (14), (15).

The main result of this part of the completeness proof is gotten from T14
plus the following lemma, which is obtained from the construction of 1.41 plus
the postulates of S:

L13 ForallX, Ye \A\: h(Λ> Y).
T15 RA, RB, HA =5) imply Y~{A =B).

Proof of T15: Using T14 not R(A & B) follows from the hypotheses of Tl 5. It
further follows that, for some C, (C & C) e \(A & 5)1, (LI and L9); whence it
follows that C e \A\ and C e \B\, (L4). Hence, by LI3, both of these proposi-
tions follow:

HA = C)
h(C = 5).

So, by postulate VIII,

HA=B)

follows.

5.2 The idea is now to show that for every nonreduced A there is a reduced
B such that \~{A = B). We begin with some definitions.

Definition 3 A is the result of deleting each occurrence of ~ ~ in A.

Definition 4 ,4s = U\AS

O, . . ., A], . . .} where

(1) i4s

0 = UJ

(2) X e As

n iff for some F e A'n-X and C, X C e \Y I

Definition 5 5 maximally simplifies ,4 iff B e As and, for all X if X e As

then/(X) >/(£).

We use the following lemmas to prove the main theorem.

LI4 IfEe\G\αndFe\G\ then l(E) = l(F).
LI 5 IfZeA'then \~{A = Z).

h(̂ 4 = -4), /raw the definition of A and the postulates ofS. \~{A =Z)ifZe A\
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from the construction ofAs and the postulates of S. Thus also, \~{A = Z), from
Postulate VIII.

T16 If not RA there exists a B such that RB and \~(A = B).

Proof: For any A there exists a B such thatB maximally simplifies^. By LI5
we have \~A = B. So what has to be shown is that RB\ that is: (i) that B isjnf,
and (ii) every element in \B\ is sf. It is easily seen that every element in As is
dnf. So item (i) is trivial. We turn to item (ii).

(1) Suppose, for some Z and C, Z e \B\ and (C & C) is part of Z.
c & c

(2) Let the occurrence of (C & C) in Z and C in Z ^ be so chosen

, u , ~. ~ c & c c
that Z is Z —77— n o Γ-

c c&c
(3) 5 e A^_l5 for some n, since B e As.

(4) Z^-^-^^e\B\ since Ze\B\.

(5) Z £ | r £ e A'n, from (3) and (4), and so Z ( C ^ C ) e ,4s.

(6) ,(Z£££>)*Z(Z).
(7) /(Z) = /(£), by L14 since ZelΛl.
(8) (6) and (7) contradict the assumption that B maximally specifies ,4.

So, on this assumption, (1) is false.

Using T15 and T16 the following theorem is easy to prove:

T17 If not RA and not RB and h(A = B) then \~{A = B).

Thus also,

T18 IfnotRA and RB and h(A = B) then \~(A =£).
(Just note that \\~{A = B) implies \\~{A = — 5 ) and that not R ~ ~ B.)

From T15, T17, T18, we get:
Tl 9 // Ih(i4 = B) then Y~{A = B).
6 The system T The semantics of 5 validates the following principle:

(1) from ci = C to infer A = B.

Intuitively, this says that if two sentences express the same proposition and
differ only in the interchange of component sentences A and B, then A and B
also express the same proposition. E.g., if (~A = ~B) then {A = B); if (A & B) =
(A & C) then (B = C). This principle of proposition substitution is very
plausible.

But this principle is also plausible:

(2) A&(B&C) = (A&B)&C,

and it turns out that, given that a system contains S, the system cannot contain
both (1) and (2). For, using (2) plus the postulates of S, one can derive:
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(3) {(q&r)&s) = ((q&r)&(r&s)).

Using (1),

(4) s = (r&s)

is derivable.1 But (4) is not a theorem of £; nor should it be a theorem of any
reasonable system of propositional identity. So (1) and (2) are incompatible in
this sense: Given that one accepts the postulates of S, one has to choose
between (1) and (2).

Some will find (2) to be more plausible on intuitive grounds than (1).
Thus it is worthwhile investigating the system which results from adding (2) to
S. We call such a system T. Our first goal is to devise an appropriate semantics
for T; we then focus on the main theorems needed to carry over results from S
so as to get soundness and completeness for T.

A model for T is a quintuple (Q, E, g, q, h) satisfying conditions (Q), (E),
(g),(q),(h) below:

(Q) Q = <L, 5> is a model for E'fde.
(E) E = U\E0, . . .,£ z , . . .! where

(1) E0 = L
(2) x e En iff xeEn-ι;oτ

x = {y,~\ where y e En^ and - is the intensional com-
plement operation defined on L or

x = \yι> .,y/c> Λ ! where yl9 . . ., yk e En-X and Λ is the
meet operation defined on L.

(g) g is a function defined on E as follows:

1 {χ\ if x e L orx = {y, -},

\yu - - ->yk\ if x = {̂ 1? . . .9yk, Λ|j.

(q) q is a function defined on the ptfs as follows:

(1) Where A is a variable or a negation, q(A) is defined in the same
way asp(yl).
(2) \ΪA is (B &C),

ίq(B) if q(B) = q(C),
q(B &C) = \

\g(q(A)) Ug(q(B)) U {Λ} otherwise.

(h) h is a function defined on E as follows:

x if teZ,,
h(y) if x = {y, -\ and h(y) e L,

h{x) =< ΛIAOΊ), . . ., h(yk)\ if x = {yu . . ., n , Λ}

andAί^!), . . ., h(yk) e L,
x otherwise.

The definitions of truth in a model for T and validity in T parallel
corresponding definitions for S.
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The soundness and completeness of T can be established along the same
lines provided for S. The most difficult thing to prove in carrying over results
is this:

T20 // (Q, E, g,q,h) is a model of T and A is any ptf of T, then
h(q(A))=ValQ(A).

In the case where A is a variable or a negation the reasoning given to show
that T20 holds of A is the same as was given in the proof of T4; this is also
true where A is a conjunction {B & C) and q(B) = q(C). So we only consider
the case where A is (B & C) and q(B) Φ q(C). To show T20 holds in this case
we need the following lemma:

L16 h(q(A)) =A{h(x): x e g(q(A))\.

Proof of L16: Case 1. q(A) = a, for some a e L; whence we obtain:

(a) h(q(A)) = a=Ma\,

(b) g(q(A)) = ia\.

From (b) we get \h(x): x e g(q(A))\ = \h(a)\. It follows from this and (a) that
LI6 holds in this case. Case 2. q(A) = ίy,-\, for some y e E. From this we get:

(a) Λ(?(i4)) = A(p)=ΛίΛO0l

using the T analogue of T2. We also get

(b) g(q(A))=i\y,-\\;

whence we obtain

(c) IA(JC): x eg(q(A))\ = {*(*): x e \\y, -\\ = \h(y)\.

From (a) and (c) it follows that LI6 holds in this case. Case 3. q(A) =

\yi, - - ,yjc> Λi> f° r some^j, . . .9y/ζ e E. Using the T analogue of T2

(a) h(q(A))=/\\h(yιl...,h(yk)\

follows; we also obtain

(b) g(q(A)) = lyl9...,yk\.

From (b)

(c) \h(x): xeg(q(A))} = \h(x): x e {yl9 . . .,yk\\ =

\h(yi),...,h(yk)\

follows. And from (a) and (c) LI6 holds in this case.

Proof of T20: We just consider the case where A is {B & C) and where q(B) Φ
q(C). From this we get: q(B & C) = g(q(B)) U g(q(C)) U {Λ}. Hence,
g(q(B & O ) = g(q(B)) Ug(q(C)). From L16 we get: h(q(B & C)) = /\\A{h(x):
x e s(?(2O)!,ΛlA0c): x e g(q(C))\\. Using L16 again we get: h(q(B & C)) =
/\{h(q(B), q(C)\ = h(q(B)) Λ h(q(C)). Using the hypothesis of induction we then
get: h(q(B & C)) = ValQ(B) Λ ValQ(C) = ValφB & C).

We conclude with this theorem which establishes the validity of the
association axiom:
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T21 // <β, E, G,q,h) is a model of T and A, B, C are any ptfs of T then
q((A &B)&C) = q(A &(B& C)).

Proof of T21: The trick here is to see what cases to work with. T21 can be
readily shown to hold in each of these cases: Case 1. q{A) = q{B) = q(C).
Case 2. q(A) = q(B) and q(A) Φ q(C). Case 3. q(A) = q(C) and q(B) Φ q{C\
Case 4. q(B) = q(C) and q(B) Φ q(A). Case 5. q{A) Φ q(B), q(C) Φ q(A) and
q(B)Φq(C).

7 Concluding remarks For a nonindexical langauge, reasonable criteria for
sentences having the same propositional content fall somewhere between the
sufficient condition of syntactic identity and the necessary condition of materi-
al equivalence. Each such criterion partitions the class of sentences into equiva-
lence classes the members of which coincide in propositional content by the
criterion. The equivalence classes thus produced by different criteria can be
roughly ordered with respect to the degree of syntactical homogeneity of their
members.

On one philosophical view, sentences informationally the same are also the
same in propositional content and only sentences logically equivalent convey
the same information. The sentences thus classed together are syntactically very
dissimilar.

On another philosophical view only logically equivalent sentences in a
certain sense "relevant" to one another coincide in propositional content. For
Efde this "relevance connection" is coentailment. The sentences thus classed
together are syntactically more homogeneous than those classed together by
the criterion of logical equivalence.

But further criteria, which tune propositional identity more finely to
syntactical structure, can also be philosophically supported. For example, it is
plausible to assert that, in many cases, one can grasp the content of A without
grasping that of B, but cannot grasp the content of (Ay(A & B)) without
grasping that of B. Yet, with respect to Eβe coentailment holds between A and
(Av(A & B)) for any ptfs A and B.

A natural "lower limit" for a system in the notation of Eβe would be
given by so extending the model theory for Eβe as to verify the law that C§ = C
if and only if A = B. This is our system S, which allows for ide/ntity despite
syntactic differences by reduction, double negation, and commutation, but no
more. A - B holds in S only if A and B are coentailing in Eβe, but not con-
versely. In particular, conjunction is associative for coentailment, but not for
propositional identity in S. S yields T by adding an association axiom and
adjusting the model theory, but only at the cost of falsifying the law cited
above. T is less finely tuned to syntactic structure than is 5, but remains more
so than is Efde. In particular, distribution of conjunction over disjunction holds
for coentailment, but not for propositional identity in T. It is a plausible
conjecture that adding an axiom for distribution of conjunction over disjunc-
tion to T regains Eβe in the sense that in the resulting system (call it W)
propositional identity and coentailment again coincide. By a similar conjecture,
adding the "identity element" axiom (~G4 & ~A) & B) = B to W yields a
system in which propositional identity coincides with logical equivalence.2
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NOTES

1. We owe examples (3) and (4) to Peter Geach.

2. These two conjectures were suggested to us by an anonymous referee of this journal.
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