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Careful Choices—A Last Word

on Borel Selectors

To the memory of C. D. Papakyriakopoulos

JOHN P. BURGESS

Selector theory as surveyed in [13] and [14] deals with the following
problem (instances of which arise in control theory, probability, mathematical
economics, operator theory, etc.): We are given a multifunction F between
reasonable spaces T and X (a map assigning each t e T a nonempty F{t) C X)
and seek an ordinary function / from T to X with acceptable measurability
properties constituting a selector for F (satisfying f(t) e F(t) for all t). Of
course, the Axiom of Choice says that a selector exists; but to get a measurable
one, we need to impose hypotheses on F and choose "carefully". The past few
years have seen much progress (cf. [ 10], [11], [ 14]) on the Borel case of the
selector problem. In this case we assume X is a Polish topological space (one
admitting a countable basis and a complete metric) and T at least a Suslin space
(homeomorph of an analytic subspace of a Polish space). Our goal is to find
weak hypotheses on F guaranteeing the existence of a Borel-measurable selector
/ (one for which f'1[U] is Borel in T whenever U is open in X).

The present paper* shows that substantial improvements of existing results
on the Borel selector problem can be achieved through application of ideas
developed by Vaught in his prize-winning studies [12] on the model theory of
infinitary logic. The precise statement of the result obtained is given in
Section 3 below. Thanks to certain counterexamples, we can say that this
result is in many ways "best possible". Selector theory is thus a relatively
down-to-earth area of mathematics where methods from modern logical re-
search can be fruitfully applied.

*The author is indebted to Dan Mauldin, Douglas Miller, Shashi Srivastava, and Daniel
Wagner for many helpful discussions.
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1 Tools We assemble here useful facts from the literature.

Set Theory: ω will denote the set (0, 1, 2, . . .! of natural numbers. For
m, n e ω, {m, ή) denotes 2m(2n + 1) - 1. ω<ω is the set of finite sequences
from ω, including the empty one φ\ while ωω is the set of infinite sequences, or
in other words of functions from ω to itself. ωω can be made a Polish space by
giving it the topology having as basis the sets Ws = ί£: £ extends s\ for s e ω<ω.
For ξ e ωω and n e ω, ξ\n denotes (ξ(0), £(1), . . ., ξ(n - 1)), while ((•)„ denotes
the element of ωω given by (ξ)n(m) = £(<ra, n)). Ω is the least uncountable
ordinal.

Operation 01/\ For information on the classical fusion operation .01/ of
M. Suslin, and for topology in general, see [6]. Operation tf/, it will be recalled,
acts on a family M(s) of sets indexed by elements s e ω<ω, and produces the
set:

(*(&)= U Πpiπ).

We will require three facts from the classical theory of CO.
First ( [6] , Section 39 II), the analytic subsets of a Polish space may be

characterized as those obtainable by fl/ from Borel sets. We take "obtainable
by 01/ from Borel sets" as defining "analytic" for non-Polish spaces.

Second ([6] , Section 3 XIV), 01/ possesses an inductive analysis. For a
given family M and for a < Ω we define inductively:

M 0 ( k u . . . , k n ) = n M ( k u . . . , k m )

Mβ+ι(ku . . . , * „ ) = I ! 4fc(*i, , *«, k)
keω

Ma{ku . . . , * „ ) = Π Mβ(kh . . ., kn) at limits.
β<Oc

Then Os(M)=Mn(φ).
Third, a Borel subset of a Polish space can be represented in the form

01/{M) with each M(s) closed and each MΩ(s) Borel. For the class of sets so

representable trivially contains the closed sets, and can be shown to be stable

under countable union and intersection. Indeed, if for each / e ω we have such

a representation A[ = 0l/(Ml), then by taking M(ί, kXi . . ., kn) = Mι{kλ, . . ., kn)

we obtain such a representation for LM/; while by takingM(ξ\n) = I I/M((^)/I/)

where/ is greatest with </, /) < n, we obtain such a representation for I \Aj.

Operation Jb: The theory of the closed-game-operation Jb was developed by
Moschovakis in a series of papers culminating in [9]. Jb acts on families N
indexed by elements of ω<ω of even length. Jb, like fl/, admits an inductive
analysis, which for present purposes will be taken as its definition:

N0(ku . . ., kn) =N(ku...,kn)

Nβ+1(ku . . ., kn) = Π .U #<ι(*i, , kn, i, j) n Nβ(kh . . ., kn)
leu) feoj
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Na(ku . . . , * „ ) = Π # „ ( * „ • , K) at limits
β<a

One further fact will be required:

1.1 Theorem (Moschovakis) Let Zbe a Polish space, E C Z an analytic set,
N a suitably indexed family of Borel sets. If E is disjoint from £(N), then E is
disjoint from Na(Φ) f°r some α < Ω.

Topologizing the Collection of Closed Subsets of a Polish Space: Let Z be a
Polish space, K(Z) the collection of its nonempty closed subsets. For open
ί / C Z , let U+ = \L e K(Z): L Π U Φ φl The local topology on K(Z) is that
having as subbasis the sets U* for open U C Z. 2Z denotes K(Z) equipped with
this topology. 2 Z is not Polish, but such theorems as 1.1 above still apply to it
in virtue of the following result of E. G. Effros (for which see [2]):

1.2 Theorem (Effros) There exists a Polish topology on the collection of
nonempty closed subsets of a Polish space having the same Borel σ-field as the
local topology. (Indeed, if V/ is a countable basis for the Polish space, the
topology having as subbasis the U+ and their complements for U e Vs is one
such.)

Category Transforms: We use the modern terminology "meager, nonmeager,
comeager" in place of " 1 s t category, 2 n d category, residual". A subsets of our
Polish space Z has the Baire property if for some meager H and open U we have
{A - U) U (U - A) C H. And A will be called regular if A Π L has the Baire
property with respect to the subspace topology on L for all L e K{Z). The
regular sets form a σ-field which, by a classical theorem ([6], Section 11 Vll),
contains the analytic sets. Below we tacitly assume all sets mentioned are
regular. For such sets A and for open U we define two transforms (omitting to
write U when U - Z):

A#U = \L e U+: A Π U Π L is nonmeager in U Π L\
A*U=\Le U+:A Π U Π L is comeager in U (Ml

Vaught [12] has studied transforms so similar to our # and * that his
proofs apply to our situation without essential modification. Before summariz-
ing his results, we need some machinery. Fix a countable basis V/ and a com-
plete metric p for Z, with φ 4 V/ and p-diam(Z) < 1. Let Z(</>) = Z, and if
s e ω<ω and Z(s) is defined, let the Z(s, m) for m e ω enumerate all U e %o such
that: (1) closure U C Z(s), and (2) p-diam(£/) < \ p-diam(ZC?)). Thus for any
£ e ωω the intersection of the Z(ξ\n) is a singleton. Denoting complementation
in Z and K{Z) by - we have:

1.3 Theorem (Vaught)

(a) A#Z(s)= U A*Z(s,m)
meω

(b) A e K(Z) -+ A *Z(s) = -(Z(j) - Af

(c) (n AS *Z{S) = n (An*z(S))
\neω J neω
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( d ) ( U An) *Z(s) = Z(syn Π \-Z(s, 0* u U U (An*Z(s, i, / ) ) ]
\neω / ieω L neω jeω J

(e) (^(M))*Z(s) = JbQf) where A ^ , </lf kx), . . ., /„, </„, *„» =
-Z(s, iu ; 1 } . . ., /„_!, / π ) + U ΛfoίΛj, . . ., kn)*Z(s, ih j u . . ., /„, /„)

( 0 A Borel inZ-+A*,A* Borel in 2Z

(g) A analytic in Z-+ A#, A* analytic in 2Z.

As Vaught remarks, a result like 1.3(0 was obtained in classical times by
P. S. Novikov. A result like 1.3(g) was obtained independently of Vaught by
Kechris[5].

2 Key lemmas We retain the notation of the preceding section.

2.1 Proposition Let C C Z be co-analytic and E C 2Z analytic. If E C C#,
f/zerc £ C £ # / o r some £OAΈ?/ £ C C.

Proof: Let yl = Z - C, and fix a representation^ = ̂ (M) of A as obtained by
^ from Borel sets. Apply 1.3(e) with s = φ to obtain a representation A* =
^ ( ^ ) . We claim that for α < Ω, Mα(<^)* = Nα(£), and indeed more generally:

#*0Ί> </i, ki>> - - , ί/i, </«> ^«» n ^OΊ, / Ί , . . ., in, jnf =
Ma(ku . . .,kn)*Z(iu . . .,/„).

This identity (alluded to in [12], p. 276) is readily established by induction,
using the definition of N for α = 0, 1.3(d) for a = β + 1, and 1.3(c) at a a limit.

Now our assumption is that fr(N) = A* = -C # i s disjoint from the analytic
set E. By 1.1 it follows E is disjoinΓfrom some Na(φ) = MJ.Φ)* = -(-ϋ/α(£))#,
α < Ω. It suffices to set B = i j ί α (0).

2.2 Proposition Let B C Z be Borel. There exists a Borel-measurable
h:B#->B satisfying h(L) e L for all L e B#.

Proof: Fix a representation B = d/{M) with each M(s) closed and each MΩ(s)
Borel. Think of ω and ω<ω as countable discrete (and hence Polish) spaces.
Then by 1.3(0 in the nice space 2 Z X ω<ω X ω<ω the set C = \(L, s, t):
L e Ma(s)*Z(t)\ is Borel. As auxiliaries to the definition of h we define func-
tions/, g:C -> ω. Let / ( I , s, t) be the least / with L e Z(t, ι)+, and let g(L, s, t)
be the least (j, k) with (L, (s, k), (ί, /, /)) e C. (Such exists by 1.3(d) since

Mn(s) ~ Ujt U/ΩC*> ^) ) Both/andg are Borel-measurable by 1.3(0-
Now given L e B#, let m be least with L e B*Z(m). (Such exists by 1.3(a).)

Set s0 = Φ,to = (m). lfsn, tn have been defined, let in+1 = / ( ! , sn, tn), </«+i, kn+ι) =
g(I, sΛ, /Λ) and set sn+ί = (jΛ, kn+ι), tn+ί = (rn, ιΛ+1, ; Λ + 1 ) . Finally, let /z(I) be the
unique element of the intersection of the Z(tn). The function h:B# -> Z is
Borel-measurable since / and g are. Moreover, reviewing the construction we
see that for each sn = (kl9 . . ., kn) and ίΛ = (m, /υ / l 5 . . ., /„, /w) we have
L e Mn(sn)*Z(tn) C ^f(jΛ)*Z(ίΛ). Then by 1.3(b) we conclude that φΦL Π
Z(ίM) C M(s«). It follows that A(I) e Z, and Λ(L) e [\nM(sn) C ^ ( M ) = J5, as
required to complete the proof.

The case B = Z (B# = 2Z) of 2.2 seems to be due to Christensen [2] its
utility for selector theory was pointed out by Dellacherie [3] . The utility of
"Vaught Thought" was demonstrated by Sarbardhikari [10] and Miller [8].
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3 The theorem Let F be a multifunction from a Suslin space T to a Polish
space X. In order to obtain a Borel-measurable selector for F there are three
sorts of hypotheses we might impose:

1. Values. We might require each value F{t) of F to be a set of some
special kind: closed, Kσ(= σ-compact), Fσ-and-Gδ, Gδ, nonmeager, or relatively
nonmeager. Here A C X is relatively nonmeager (relatively comeager) if it is
nonmeager (comeager) in the subspace topology on its closure. Gδ sets are
relatively comeager by elementary topology.

2. Measurability. We might require F to be %'-measurable for some σ-field
W of subsets of T. This means that for each open U C X, the set F"[ί/] =
l ί e Γ : F(t) n U Φ φ\ belongs to W. In the cases where % is !Γ, 0}, the Borel
σ-field of T, or the σ-field generated by the analytic sets, we speak of trivial,
Borel, and analytic measurability.

3. Graph. We might require the graph Gr(F) = {(t, x ) e Γ X I : x e F(ί)} of
F to be, say, Borel or co-analytic inTX X.

3.1 Theorem Lei F be a multifunction from the Suslin space T to the
Polish space X and assume that: (a) each value of F is relatively nonmeager,
(b) F is Borel-measurable, and (c) the graph of F is co-analytic. Then F admits a
Borel-measurable selector.

Proof: Fix a Polish space Y having T as an analytic subspace. By (c) there is a
co-analytic CCYXX with Gr(F) = C Π (T X X).

Define G:Γ -> 2Yxχ by G(ί) = U! X closure F(t), and let E = range G. It
follows from (b) that G is Borel-measurable, and hence E analytic.

Unpacking the definitions, we see from (a) that E C C#.
Apply 2.1 to obtain a Borel B C C with E C i?#, and 2.2 to obtain a Borel-

measurable h:B#^B satisfying h(L) e L. Unpacking the definitions we see that
for each t e T, h(G(t)) is an element of Gr(F) of form (t, x). Letting/(ί) be this
x, we obtain a Borel-measurable selector.

The following answers a question of D. H. Wagner:

3.2 Corollary Let F be a multifunction from the Suslin space T to the
Polish space X and assume that: (a ;) each value of F is relatively comeager,
(b) F is Borel-measurable, and (c) the graph of F is co-analytic. Then there
exist Borel-measurable selectors fn, n e ω, for F such that for each t e T the set
\fn(tY- n e ω\ is dense in F(t).

Proof: Fix a countable basis £//, / e ω, for X. Since each F~[Uj] is Borel, we
can define a Borel-measurable g: ω X T -* ω by g(n, t) = the nth i e ω with
t e F"[£//]. For each / the multifunction Ft from F~[ί//] to AT given by F, (ί) =
F(t) Π £// satisfies the hypotheses of 3.1 and so admits a Borel-measurable
selector h\. It suffices to set/n(ί) = hg(nt)(t).

The table compares Theorem 3.1 above, which we shall call (0), with other
selection results. (0) was immediately inspired by: (1) an unpublished result
of G. Debs (reported in [14], Section 6), and (2) Srivastava's Theorem 4.2 in
[11], and Sarbardhikari's Theorem 2 in [10]. Since writing the bulk of this
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Table

Value Measurability Graph
Theorem Hypothesis Hypothesis Hypothesis

(0) relatively Borel co-analytic
nonmeager

(1) Fσ-and-Gδ Borel co-analytic
(2) Gδ Borel Borel
(3) nonmeager co-analytic
(4) closed Borel
(5) Kσ Borel

Counterexample

(6) open trivial analytic
(7) closed closed
(8) Fσ trivial Fσ

(9) countable trivial co-analytic

paper the author came to learn of (3), a strengthening of Sarbardhikari's result
due to D. Cenzer and R. D. Mauldin [1] . Whereas (1) and (2) are immediate
from (0), the derivation of (3) requires a little work, and is given as Corollary
3.3 below. Also included for comparison is (4), the special case for Borel sets of
the very general Fundamental Selection Theorem of K. Kuratowski and
C. Ryll-Nardzewski/Ch. Castaing (cf. [13]). Note that though no graph
hypothesis is made in (4), it follows almost trivially from the other hypotheses
that the graph is in fact Borel. So (0) succeeds in unifying (l)-(4). The most
important Borel selector result not subsumed under (0) an unpublished result
of Srivastava, strengthening (5) an older theorem of Shchegolkov. Very recently
A. Maitra (unpublished) has produced an "effective" result unifying (0) and the
old P. G. Hinman/S. K. Thomason result that a nonmeager Π} lightface set of
reals has a hyperarithmetic element. (For the latter result, see {5].)

3.3 Corollary (Cenzer and Mauldin) Let F be a multifunction from the
Suslin space T to the Polish space X and assume that: (a) each value of F is
nonmeager, and (b) the graph of F is co-analytic. Then F admits a Borel-
measurable selector f

Proof: Fix a Polish space Y having T as an analytic subspace, and a co-analytic

CCYXX with Gr(F) = C Π (T X X). Fix a countable basis Uit i e ω, for X. Let

Po = Y - T, Pi+1 = It e T: \x e Uii (ί, JC) e C\ is comeager in £//}. By Vaught's

work [12] (cf. 1.3(g)), the />• are all co-analytic. Moreover, ( J , Λ = γ S o bY

the classical Reduction Principle (see [6]) there exist pairwise disjoint Borel

sets Bi with Bt C P{ and U/ Bt = Y. Let Ft be the multifunction from T Π Bi+1

to £// given by F/(ί) = F{t) Π ί/z . Fz is comeager-valued, hence trivially mea-
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surable, and so falls under 3.1 and admits a Borel-measurable selector /}. The
required/can be obtained by combining the//.

The Table also indicates the properties of several counterexamples,
multifunctions from T = X = ωω to itself admitting no Borel-measurable
selectors. (6) is due to V. V. Srivatsa (reported in [14], Section 6); (7) to
Maitra [7] (8) to Kallman and Mauldin [4]. (9) is our 3.4 below. Srivastava has
an example (reported in [14], Section 6) to show that the conclusion of 3.2
above does not follow from the hypotheses of 3.1 above.

3.4 Example: There exists a multifunction F from ωω to itself each of whose
values is a countable dense set, and whose graph is co-analytic, but which does
not admit a Borel-measurable selector.

Construction: We give a bare outline, leaving details to the interested reader.
Let P be a universal co-analytic set. So P C ωω X ωω is co-analytic and for
every co-analytic E C ωω there is an x with E = \y: (x, y) e P\. Let Pι =
\(x, y)' (00/, y) e P\, C = ix: MyMn Ίi((x)n, y) e JP'Ί. By the Reduction Principle
there exist pairwise disjoint co-analytic Qι C Pi with U Qi - U/*1'. Define
g:C X ωω -* ωω by letting (g(x, y))(n) = i iff ((*)„, y) e Qf. For any Borel-
measurable /: ωω -> ωω there is an x with/=g(x, •)• Express the complement
of the co-analytic set C as the projection of a closed B C ωω X ω ω , and for
x i C, let A (A:) be the lexicographically least j^ with (x, y) e B. Let fix) = g(x, x)
for x e C, and = A(x) for x ^ C. Let F(x) be the set of all elements of ωω of
form (i0,. . ., in.u 0, (f(x))(n + 1) + 1, (/(JC))(Λ + 2) + 1, (/(*))(/! + 3) + 1, . . .)
for (/0, . . ., in-γ) e ω < ω . Tedious but routine computations establish that Gr(F)
is co-analytic. But for any Borel-measurable e there is an x e C with e(x) =
g(x,x)4F(x).

The many papers we have cited contain more positive and negative results
than have been quoted here. The present paper is the author's last word on the
subject, but not the last word!
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