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GLOBAL EXISTENCE OF WAVE MAPS
IN 1 + 2 DIMENSIONS WITH FINITE ENERGY DATA

Stefan Müller — Michael Struwe

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

1. Main result

Let N be a smooth, compact, m-dimensional Riemannian manifold, isomet-
rically embedded in Rd. A smooth map u : R × R2 → N is called a wave map
if

(1) utt −∆u ⊥ TuN.

Let

(2) e(t, x) := 1
2 (|ut|2 + |∇u|2)

denote the energy density. Smooth wave maps satisfy the energy identity

(3) E(t) :=
∫
{t}×R2

e(t, x) dx = const.

In this note we show that the Cauchy problem for (1) admits a weak solution if
the initial data have finite energy. For notational convenience we suppose 0 ∈ N .
We write H1 for the Sobolev spaces H1,2(R2) or H1,2(R2; Rd).
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Theorem 1.1. Suppose that (u0, u1) ∈ H1 × L2 and u0(x) ∈ N , u1(x) ∈
Tu0(x)N a.e. Then there exists a global (forward) weak solution u : R+

0 ×R2 → N

of the Cauchy problem

utt −∆u ⊥ TuN in R+ × R2,

u(0, · ) = u0, ut(0, · ) = u1.

Moreover, u satisfies
E(t) ≤ E(0) ∀t ≥ 0

and
(∇u(t, · ), ut(t, · )) → (∇u0, u1) in L2 × L2, as t→ 0.

Here u is called a weak solution of (1) if u ∈ H1
loc(R+ × R2), u(t, x) ∈ N

L3-a.e. in R+ × R2, if∫
R+×R2

〈ut, ϕt〉 − 〈∇u,∇ϕ〉 dx dt = 0

for all ϕ ∈ H1(R+ × R2) with ϕ(z) ∈ Tu(z)N a.e. and compact support, and if

u(t, · ) ⇀ u0, ut(t, · ) ⇀ u1

in the sense of distributions (see Appendix A of [6] for the equivalence of various
notions of a weak solution).

Existence of weak solutions was first established by Shatah [14] if N = Sk.
His result was recently generalized by Freire [5] and Yi Zhou [15] to homogeneous
spaces as targets. Short time existence and uniqueness for smooth data can be
proved classically by energy methods. For a slightly modified problem that
captures the essential difficulties of problem (1) Klainerman and Machedon [9],
[10] established short time existence, uniqueness and continuous dependence for
initial data in H1+δ ×Hδ, δ > 0, through new Strichartz type estimates. This
exploits the fact that (1) may be written explicitly as a system of hyperbolic
differential equations with a particular null-form structure.

The key ingredient in our proof is a compactness result for wave maps under
weak convergence ([7], [6]). Given this result a serious technical problem is to
find suitable approximate problems for which existence is easy to prove. In this
note we follow Yi Zhou [15] and use the viscous approximation

(4) utt −∆u− ε∆ut ⊥ TuN.

Alternatively, one can use finite-difference approximations of (1) (see [12]).
To explain the compactness theorem it is useful to rewrite (1) as a first order

system for du and the connection form of TN . We assume for the remainder of
this section that N is parallelizable. Let (e1, . . . , em) be a smooth orthonormal
frame of TN . Then, for a map u : R+×R2 → N , the choice ei = ei ◦u yields an
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orthonormal frame (e1, . . . , em) of the pullback bundle u−1TN . Let θi := 〈du, ei〉
and let ωij denote the connection form given by ωij := 〈dei, ej〉, where 〈 , 〉 is
the scalar product in Rd. The Lorentzian codifferential δ and the Lorentzian
contraction act on 1-forms ϕ = ϕ0dt+ ϕ1dx

1 + ϕ2dx
2 = ϕαdx

α, ψ = ψαdx
α by

δϕ = ∂tϕ0 − ∂1ϕ1 − ∂2ϕ2, ϕ · ψ = −ϕ0ψ0 + ϕ1ψ1 + ϕ2ψ2. With this notation
equation (1) is equivalent to the system

(5) δθi + ωij · θj = 0, 1 ≤ i ≤ m.

This is a straightforward calculation for smooth map; for the equivalence of weak
solutions see Appendix A of [6].

Other frames ẽi of u−1TN can be obtained by the gauge transformation

ẽi(x) = Rij(x)ej(x), R(x) = (Rij(x)) ∈ SO(d).

This frame invariance can be exploited to (locally) choose a frame for which
δeuclωij = ∂αωij,α = 0. Using the identity dωij = dei ∧ dej , H1 estimates for
Jacobians ([3]), H1-BMO duality ([4]), and concentration compactness ([11]) one
then obtains the following compactness result ([6], Theorem 3.7).

For convenience we state this result in the periodic setting. The Campanato
space L2,1(T 3) with norm

‖f‖2L2,1 := sup
z∈T 3

sup
0<R<1

1
R

∫
B(z,R)

|f |2 dζ

consists of all f ∈ L2(T 3) that satisfy ‖f‖2,1 < ∞. The semiarrow ⇀ denotes
weak convergence.

Theorem 1.2. Let N be a parallelizable compact m-dimensional Riemann-
ian manifold and suppose that the maps vn : T 3 → N satisfy

vn ⇀ v in H1(T 3; Rd), ‖Dvn‖L2,1 ≤ C.

Then there exist orthonormal frames (ẽn
1 , . . . , ẽ

n
m) of (vn)−1TN such that ẽn

i ⇀

ẽi in H1(T 3,Rd), (ẽ1, . . . , ẽm) is an orthonormal frame of v−1TN and

(6) ωn
ij · θn

j ⇀ ωij · θj + νi

in the sense of distributions, where νi is a Radon measure that satisfies

(7) supp νi ⊂ {z ∈ T 3 : lim sup
R→0

lim sup
n→∞

‖χB(z,R)θ
n‖L2,1 > 0}.

We will see that in this form, the convergence result can be directly applied
to show weak convergence of solutions (uε) of the Cauchy problem for (4) to
(forward) weak solutions of (1), (2).
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2. Regularized wave maps

In this section we establish the global existence of solutions u : R+
0 ×R2 → N

to the Cauchy problem for the regularized equation

utt −∆u+ ε∆ut ⊥ TuN.

We do not assume that N is parallelizable. Throughout this section we suppose

0 < ε ≤ 1.

We first derive an expression for the normal component of utt −∆u+ ε∆ut for
an arbitrary (sufficiently smooth) map u : R+ × R2 → N . Let π denote the
nearest neighbour projection of a neighbourhood of N to N and let P = ∇π.
For u ∈ N , the linear map P (u) is the orthogonal projection Rd → TuN . Let
Q(u) = Id−P (u) denote the projection on the normal space. We have (with
summation over i ∈ {1, 2})

P (u)utt = (P (u)ut)t − P (u)tut

= utt −∇2π(u)(ut, ut),

P (u)∆u = ∆u−∇2π(u)(∂iu, ∂iu),

P (u)∆ut = (P (u)∆u)t − (P (u))t∆u

= ∆ut − (∇2π(u)(∂iu, ∂iu))t −∇2π(ut,∆u),

and thus the normal component is given by

(8) Q(u)(utt −∆u− ε∆ut) = ∇2π(u)(∂tu, ∂tu)−∇2π(u)(∂iu, ∂iu)

− ε(∇2π(u)(∂iu, ∂iu))t − ε∇2π(u)(ut,∆u) =: T (u).

In particular, for maps u with values in N equation (4) is equivalent to

(9) utt −∆u− ε∆ut = T (u).

We consider Cauchy initial data

(10) u(0, · ) = u0, ut(0, · ) = u1.

Lemma 2.1. Suppose that (u0, u1) ∈ H2 ×H1, u0(x) ∈ N , u1(x) ∈ Tu0(x)N

a.e. Then the initial value problem (9), (10) has a unique global solution u :
R+

0 × R2 → N in the class

X = H1
loc([0,∞);H2) ∩H1,∞

loc ([0,∞);H1) ∩H2
loc([0,∞);L2).

Moreover, the energy identity

E(t) + ε

∫ t

0

∫
R2
|∇ut|2 dx dt = E(0)

holds.
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Proof. This result appears already in Yi Zhou [15]. Since the proof of
global existence may not be obvious to non-experts we sketch a proof of Lemma
2.1.

Local existence is established by the usual fixed point argument. For conve-
nience we scale

v(t, x) = u(εt, εx)

to achieve ε = 1. To simplify the notation in the following we again write u
for v. Consider the spaces

Xt,u0,u1 := {u ∈ H1(0, t;H2) ∩H1,∞(0, t;H1) ∩H2(0, t;L2) :

u(0, · ) = u0, ut(0, · ) = u1},
Yt := L2(0, t;L2)

with norms

‖u‖2Xt
:=

∫ t

0

[‖u‖2H2(s) + ‖ut‖2H2(s) + ‖utt‖2L2(s)] ds

+ ess sup
s∈(0,t)

[‖u‖2H2(s) + ‖ut‖2H1(s)],

‖f‖2Yt
:=

∫ t

0

‖f‖2L2(s) ds.

Here ‖u‖H2(s), . . . denote the spatial norms at fixed times and we will abbreviate
‖u‖2(s) := ‖u‖L2(s), etc. and will suppress s when no confusion can occur.

For f ∈ Yt the linear equation

(11) utt −∆u−∆ut = f

has a unique solution in Xt. Testing with ∆ut we obtain the estimate

(12)
d

dt
(‖∇ut‖22 + ‖∆u‖22)(s) + ‖∆ut‖22(s) ≤ ‖f‖22(s) for a.e. s ∈ (0, t).

It follows that

(13)
ess sup
s∈(0,t)

(‖∇ut‖22 + ‖∆u‖22)(s) ≤ ‖f‖2Yt
+ ‖u1‖2H1 + ‖u0‖2H2 ,

‖∆ut‖2Yt
≤ ‖f‖2Yt

+ ‖u1‖2H1 + ‖u0‖2H2 .

In view of the identity ‖utt‖Y = ‖∆u+ ε∆ut + f‖Y , the Sobolev estimates (for
s ∈ (0, t)),

‖ut(s, · )− u1‖2 ≤ Ct1/2‖utt‖Yt
,(14)

‖∇u(s, · )−∇u0‖2 ≤ Ct ess sup
s∈(0,t)

‖∇ut‖2,(15)

‖u(s, · )− u0‖2 ≤ Ct ess sup
s∈(0,t)

‖ut‖2,(16)
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and the identity ‖∇2u‖2 = ‖∆u‖2 we deduce that, for t ∈ (0, 1),

(17) ‖u‖Xt
≤ C(1 + t3/2)(‖f‖Yt

+ ‖u0‖H2 + ‖u1‖H1).

To proceed, we globally extend the map π—and hence the operator T in (9) to
an arbitrary, sufficiently smooth map u : R+ × R2 → Rd—as follows.

Let 2δ > 0 be the radius of a tubular neighbourhood U2δ(N) of N such that
the above projection π is smooth and uniquely defined as a map π : U2δ(N) → N .

Let χ ∈ C∞(R) denote a function such that χ(s) = s for s ≤ δ2, χ(s) = 3
2δ

2

for s ≥ 2δ2, and χ′(s) ≥ 0 for all s. The map % given by

%(u) = χ

(
dist2(u,N)

2

)
for u ∈ U2δ(N)

then extends to a smooth map on Rd with gradient

∇%(u) = u− π(u) for u ∈ Uδ(N).

Defining
π(u) = u−∇%(u), u ∈ Rd,

we thus obtain the desired smooth extension of the nearest neighbour projection
π to a map π : Rd → Rd. In the following, we again write π for π. Observe that

π(u) = u for u 6∈ U2δ(N);

hence
|∇kπ(u)| ≤ Ck = Ck(N) for all u ∈ Rd, k ≥ 1.

To establish short time existence of solutions of (9), (10) it suffices to show that
the map T : u→ T (u) has the following properties:

T maps bounded subsets of Xt,u0,u1 to bounded subsets of Yt;(18)

‖T (u)− T (v)‖Yt ≤ C(R)t1/4‖u− v‖Xt for t ≤ 1,(19)

where R = max(‖u‖Xt , ‖v‖Xt).
To show boundedness of T note that

(20) |T (u)| ≤ C(|ut|2 + |∇u|2 + |ut| · |∇u|2 + |∇u| · |∇ut|+ |ut| · |∆u|).

By Ladyzhenskaya’s inequality and the identity ‖∇2u‖2 = ‖∆u‖2 we have, at
fixed time,

‖u2
t‖22 ≤ ‖ut‖44 ≤ C‖ut‖22‖∇ut‖22,(21)

‖|∇u|2‖22 ≤ ‖∇u‖44 ≤ C‖∇u‖22‖∆u‖22,(22)

‖|ut| · |∇u|2 + |ut∆u|‖22 ≤ C‖ut‖2∞(1 + ‖∇u‖22)‖∆u‖22,(23)

‖|∇u| · |∇ut|‖22 ≤ ‖∇u‖24‖∇ut‖24 ≤ C‖∇u‖2‖∆u‖2‖∇ut‖2‖∆ut‖2,(24)
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and hence

(25) ‖ |∇u| · |∇ut| ‖22 ≤
C

δ
‖∇u‖22‖∇ut‖22‖∆u‖22 + δ‖∆ut‖22.

In view of the estimate (see (31) below for a refinement)

‖ut‖2∞ ≤ C‖ut‖H1‖ut‖H2 ≤ C

δ
‖ut‖2H1 + δ‖∆ut‖2

it follows (with the choice δ = 1 above and in (25)) that

(26) ‖T (u)‖2Yt
≤ C(1 + ‖u‖6Xt

) for t ≤ 1.

For future references we also note the finer estimate

‖T (u)‖2Yt
≤ C(δ)t(1 + [sup

s
(‖u‖H2 + ‖ut‖H1)(s)]6)(27)

+ δ‖∆ut‖2Yt
(1 + sup

s
‖u‖4H2) for all t ∈ R+

0 .

The proof of the Lipschitz estimate (19) is similar with the following modi-
fications. First, instead of the quadratic and cubic expressions in (21)–(24) one
has to estimate similar expressions in u and w := v − u. Application of the
Sobolev estimates in time (14)–(16) to w yields the additional small factor of
t1/4 since w0 = w1 = 0. Second, an additional term that can be estimated by

C|w|(|ut|2 + |∇u|2 + |ut| · |∇u|2 + |∇u| · |∇ut|+ |ut| · |∆u|),

plus a similar term with u replaced by v, arises.
In view of (20)–(24) and the estimate

(28) ‖w‖∞(s) ≤ C‖∆w‖2(s) ≤ t1/2‖w‖1/2
Xt

this term poses no additional difficulty.
Hence (18) and (19) hold, and (9), (10) has a solution u : [0, t̃ ) × R2 → Rd

up to a time t̃ = t̃(u0, u1) > 0. To see that u takes values in N observe that for
short times u is uniformly close to N in view of the embedding H1(0, t;H2) ↪→
C0(0, t;C0). Hence the projection v := π ◦ u takes values in N . Moreover,

vt = ∇π(u)ut,

vtt = ∇π(u)utt +∇2π(u)(ut, ut),

∆v = ∇π(u)∆u+∇2π(u)(∂iu, ∂iu),

∆vt = ∇π(u)∆ut +∇2π(u)(ut,∆u) + (∇2π(u)(∂iu, ∂iu))t.

Using (9) we deduce that w = v − u satisfies

wtt −∆w − ε∆wt = (∇π ◦ u)T (u)

= [(∇π ◦ u)− (∇π ◦ v)]T (u)

+ (∇π ◦ v)(T (u)− T (v)) + (∇π ◦ v)T (v).
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Since v takes values in N it follows from (8) that (∇π ◦ v)T (v) = 0. Now
w0 = w1 = 0 and thus by (17), (19) and (26),

‖w‖Xt
≤ C[(sup

(0,t)

‖w‖∞)‖T (u)‖Yt
+ ‖T (u)− T (v)‖Yt

]

≤ C(R)(t1/2 + t1/4)‖w‖Xt
for t ≤ 1,

where R = max(‖u‖Xt
, ‖v‖Xt

) ≤ C‖u‖Xt
. Hence w ≡ 0 on (0, t̂ ) for sufficiently

small t̂. Thus for each u0, u1 as in Lemma 2.1 there exists a solution u : (0, t̂ )×
R2 → N for some t̂(u0, u1) > 0. By the usual continuation argument this solution
can be extended to a maximal time interval (0, t∗) and we will see that t∗ = ∞
unless

(29) lim sup
t↗t∗

‖u‖H2(t) + ‖ut‖H1(t) = ∞.

Indeed, if ‖u‖H2(t)+‖ut‖H1(t) remains bounded by C0 as t↗ t∗ then (13), (27)
(with δ = 1/(2(1 + C4

0 ))) and (17) imply that ‖∆ut‖Yt
and ‖u‖Xt

also remain
bounded as t↗ t∗. Hence u(t, ·) → u0 inH2 and ut(t, · ) → u1 in L2 (and weakly
in H1) as t ↗ t∗ and thus u0 takes values in N and u1 ∈ Tu0N . Therefore one
can solve locally with initial data u0, u1 and thus extend the solution beyond
(0, t∗).

To establish global existence we use a Gronwall type estimate to show that
(29) cannot hold for t∗ <∞.

Testing (9) with ut ∈ TuN we obtain the energy identity

(30)
1
2
(‖ut‖22 + ‖∇u‖22)(t) + ε

∫ t

0

‖∇ut‖22 = E0.

We now return to the estimates (20)–(23) and use the Brezis–Waigner inequality
for ut:

(31) ‖ut‖∞ ≤ C‖ut‖H1

[
1 + ln1/2

(
1 +

‖ut‖H2

‖ut‖H1

)]
.

In view of the estimate ab ≤ ea +b ln b (for b > 0) we deduce that (for 0 < δ ≤ 1)

‖ut‖2∞‖∆u‖22 ≤ C‖ut‖2H1

[
1 + ln

(
1 +

‖ut‖H2

‖ut‖H1

)]
‖∆u‖22(32)

≤ C‖ut‖2H1

[(
1 +

‖ut‖H2

‖ut‖H1

)
+ ‖∆u‖22 ln ‖∆u‖22

]
≤ C‖ut‖2H1 + C‖ut‖H1(‖ut‖H1 + ‖∆ut‖2)

+ C‖ut‖2H1‖∆u‖22 ln ‖∆u‖22.

≤
(
δ‖∆ut‖22 +

C

δ
‖ut‖2H1

)
+ C‖ut‖2H1‖∆u‖22 ln ‖∆u‖22.

If we let
h(t) := 1

2 (‖∇ut‖22 + ‖∆u‖22), g(t) := ‖∇ut‖22,
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take δ = 1/4 in (32) as well as in (25) and denote by C constants that only
depend on E0 we deduce from (20)–(25), (30), (32), (12) and (9) that

h′ ≤ C(g + C)(h(ln+ h+ 1) + C).

Since
∫∞
2

ds
1+s+s ln s = ∞ and

∫ t∗

0
g dt ≤ E0 it follows that h(t) remains bounded

as t↗ t∗. This contradicts (29). Thus t∗ = ∞, proving global existence. �

To characterize the singular set supp νi in Theorem 1.2 we will use the local
energy inequality in Lemma 2.2 below. Due to the regularizing term we cannot
expect finite speed of propagation but we show that the influence of points
outside the backward light cone becomes exponentially small as ε→ 0.

Let

ψ(s) =

{
exp(s) if s ≤ 0,

2− exp(−s) if s > 0,
and for t ≤ t0 let

ϕε(t, x) = ψ([(1 +
√
ε)(t0 − t)− |x− x0|]/

√
ε).

Lemma 2.2. Let u be the solution of (9), (10) in Lemma 2.1. Then, for
0 < s < t < t0,

(33)
∫
{t}×R2

ϕεe dx ≤
∫
{s}×R2

ϕεe dx.

Moreover, for all balls B(z0, r) ⊂ B(z0, R) ⊂ R+ × R2,

(34)
1
r

∫
B(z0,r)

e dz ≤ C

R

∫
B(z0,R)

e dz + C exp
(
− R

2
√
ε

)
E0.

Proof. We have, for a.e. t, in the sense of distributions in R2,

et = 〈utt −∆u, ut〉+ div〈∇u, ut〉
= 〈ε∆ut, ut〉+ div〈∇u, ut〉
= −ε|∇ut|2 + div(ε〈∇ut, ut〉+ 〈∇u, ut〉)

and thus, abbreviating ϕ = ϕε,

d

dt

∫
R2
ϕe =

∫
R2

(ϕet + eϕt) dx

≤
∫

R2
(−ε|∇ut|2ϕ+ ε|∇ut| · |ut| · |∇ϕ|+ |∇u| · |ut| · |∇ϕ|+ eϕt) dx

≤
∫

R2

(
− ε|∇ut|2ϕ+

ε3/2

2
|∇ut|2|∇ϕ|+

ε1/2

2
u2

t |∇ϕ|+ e(|∇ϕ|+ ϕt)
)
dx

≤
∫

R2
[ε|∇ut|2(

√
ε|∇ϕ| − ϕ) + e((1 +

√
ε)|∇ϕ|+ ϕt)] dx

≤ 0 for a.e. t.
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Since t →
∫

R2 ϕe is absolutely continuous (in fact in H1
loc(t, t0)) this proves the

first inequality. To establish the second estimate, note that we may assume
r ≤ R/16 and that at the expense of increasing the constants we may replace
balls by cylinders C(z0, r) = [t0 − r, t0 + r]×B(x0, r). It follows from (33) that,
for s ∈ [t+ r −R/4, t],∫

{t}×B(x0,r)

e dx ≤
∫
{s}×R2

eψ([(1 +
√
ε)(t− s) + r − |x− x0|]/

√
ε) dx

≤
∫
{s}×B(x0,R)

2e dx+
∫
{s}×(R2\B(x0,R))

exp
(
− R

2
√
ε

)
e dx

≤
∫
{s}×B(x0,R)

2e dx+ exp
(
− R

2
√
ε

)
E0.

Integration over t ∈ [t0 − r, t0 + r] and over s ∈
[
t0 − 1

8R, t0 −
1
16R0

]
yields the

desired estimate for cylinders. �

3. Existence of wave maps

Proof of Theorem 1.1. By a construction of Schoen and Uhlenbeck ([13],
Section 4) there exist u0ε ∈ C∞0 (R2, N) and ũ1ε ∈ C∞0 (R2,Rd) such that

(35) u0ε → u in H1, ũ1ε → u1 in L2.

Then P (u0ε) → P (u) boundedly a.e. and thus

(36) u1ε := P (u0ε)ũ1ε → u1 in L2.

By Lemma 2.1 there exists a global solution uε : R+
0 × R2 → N of the Cauchy

problem

(37)
uεtt −∆uε − ε∆uεt ⊥ Tuε

N,

uε(0, · ) = u0ε, uεt(0, · ) = u1ε.

In view of the energy identity (30) there exists a sequence εn → 0 such that
un := uεn

satisfies

un → u in L2
loc(R

+
0 ; R2),(38)

Dun ∗
⇀ Du in L∞(R+

0 ;L2),(39)

ε∇un
t → 0 in L2(R+

0 × R).(40)

We claim that u is a weak wave map in R+ × R2. It suffices to check the
assertion for every cube Q′ = Q(z0, r) = z0 + (−r, r)3 and we may assume
Q(z0, 2r) ⊂ R+×R2. Fix such a cube. We assume for convenience that r = 1/4,
the general case follows by scaling. By reflection across the planes zα−zα

0 = ±1/4
and periodic extension we obtain maps vn : T 3 → N that satisfy
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vn
|Q′ = un, ‖Dvn‖L2({t}×T 2) ≤ 2‖Dun‖L2({t}×Q(x0,1/4)) ≤ C.

The last estimate implies that Dvn is bounded in L2,1(T 3).
To proceed, we first make the additional assumption that N is paralleliz-

able. Let (ẽn
1 , . . . , ẽ

n
m) be the frames of (vn)−1TN whose existence is asserted

in Theorem 1.2 and let θn
i = 〈dvn, ẽn

i 〉, ωn
ij = 〈dẽn

i , ẽ
n
j 〉. Testing (22) with ηẽn

i

for η ∈ C∞0 (Q′) we obtain (cf. Section 1)

(41) δθn
i + ωn

ij · θn
j = div〈ε∇uεt, ẽ

n
i 〉 − 〈ε∇uεt,∇ẽn

i 〉

in the sense of distributions in Q′. It follows from (38)–(40) and Theorem 1.2
that

(42) δθi + ωij · θj = νi,

in the sense of distributions in Q′, where

supp νi ⊂ S := {z ∈ Q′ : lim sup
R→0

lim sup
n→∞

‖χB(z,R)Du
n‖L2,1 > 0}.

To finish the argument we show that S has vanishing H1,2 capacity and thus
νi = 0 since the left hand side of (42) is in H−1 +L1 (cf. [6] for further details).
Indeed, passing to a further subsequence we may assume that

(43) |Dun|2 ∗
⇀ µ in M(Q′).

Since εn → 0 it then follows from the “monotonicity formula” (34) that

lim sup
n→∞

‖χB(z,R)Du
n‖L2,1 ≤ CR−1µ(B(z, 2R))

and hence that

S ⊂
{
z ∈ Q′ : lim sup

R→0

1
R
µ(B(z,R)) > 0

}
;

see [6] for the details.
Now the set on the right hand side is a countable union of sets of finite one-

dimensional Hausdorff measure and hence has vanishing H1 capacity. Therefore

(44) δθi + ωij · θj = 0

as distributions in Q′ and thus u is a weak wave map in R+ × R2.
If N is not parallelizable we use the fact that by [2] or [8], N is a totally

geodesic submanifold of a compact parallelizable Riemannian manifold Ñ , which
in turn we may assume to be isometrically embedded in Rd. Let U ⊂ R+

0 ×R2 be
open. Since the second fundamental forms of N and Ñ agree on TN × TN , we
have, for all v ∈ H1(U ;N) and all ψ ∈ H1(U ; v−1TÑ) with ψ(v(x)) ⊥ Tv(x)N ,

(45) 〈∂iv, ∂iψ〉 = 0, 〈∂tv, ∂tψ〉 = 0.
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(It suffices to approximate ∂iv by (PN ◦ v)(%ε ∗ ∂iv), the projection to Tv(x)N of
the standard mollification.) Let Π(p) denote the orthogonal projection TpÑ →
TpN and extend Π(p) as the identity on (TpÑ)⊥. Then

(46) ‖∂i[(Π ◦ v)ϕ]‖2 ≤ C(‖ϕ‖∞ + ‖∇ϕ‖2), ∀ϕ ∈ (H1 ∩ L∞)(U ; Rd).

Now let vn : T 3 → N ↪→ Ñ as above and apply Theorem 1.2 with N replaced by
Ñ . Let (ẽn

1 , . . . , ẽ
n
m′) be the corresponding frame of Ñ and let θn

i = 〈dvn, ẽn
i 〉,

ωn
ij = 〈dẽn

i , ẽ
n
j 〉. As above we obtain, for η ∈ C∞0 (Q′),

〈δθn
i + ωn

ij · θn
j , η〉 =

∫
Q′
〈dvn, d(ηẽn

i )〉,

and application of (45) and (46) with ϕn = ηẽn
i and Πn = Π ◦ vn yields∫

Q′
〈dvn, dϕn〉 =

∫
Q′
〈dvn, d(Πnϕn)〉 =

∫
Q′
〈vn

tt −∆vn,Πnϕn〉

=
∫

Q′
〈εn∆vn

t ,Π
nϕn〉 ≤ ‖εn∇vn

t ‖2‖∇(Πnϕn)‖2

≤ Cεn‖∇vn
t ‖2 → 0

as n→∞. Hence
δθn

i + ωn
ij · θn

j ⇀ 0

in the sense of distributions, and as before we conclude that v is a weak wave
map (with values in Ñ). Since vn → v in L2

loc the limit v is a weak wave map
with values in N .

While (44) was derived through the use of special frames the equation is
frame-invariant (see [6], Appendix A for the weak setting) and hence holds in
particular if θ and ω are defined with respect to the frame given by ei = ei . u,
where (ei) is a fixed frame of N . From now on we will work in this frame.

It remains to show that u attains the correct initial values. We know that

un is bounded in L∞loc(R
+
0 ;H1),

un
t is bounded in L∞(R+

0 ;L2).

Thus

(47) ‖un(t, · )− un
0‖2 ≤ Ct

and, by (39) and the Aubin–Lions lemma,

un(t, · ) ⇀ u(t, · ) in H1, for all t ≥ 0.

Letting n → ∞ and t → 0 in (47) and taking into account (38), (39) and (35)
we deduce

u(t, · ) → u0 in L2, u(t, · ) ⇀ u0 in H1.
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To establish convergence of ut recall that the normal component of un
tt is given

by

(Id− P (un))un
tt = (∇2π)(un)(un

t , u
n
t ).

To estimate the tangential components note that by (45),

〈un
tt, e

n
i 〉 − 〈un

tt,Π
nen

i 〉 = ∂t〈un
t , e

n
i −Πen

i 〉 = 0,

〈∆un, en
i 〉 − 〈∆un,Πnen

i 〉 = 0,

and thus

〈un
tt, e

n
i 〉 = div〈∇un + ε∇un

t ,Π
nen

i 〉 − 〈∇un + ε∇un
t ,∇(Πnen

i )〉.

In combination with (39) and (40) it follows that

un
t is bounded in L∞(R+

0 ;L2),

un
tt is bounded in (L2 + L∞)(R+

0 ; (L∞ ∩H1)∗).

Thus

(48) ‖un
t (t, · )− un

t (s, · )‖2 ≤ C(|s− t|1/2 + |s− t|)

and by (38) and the Aubin–Lions lemma

un
t (t, · ) ⇀ ut(t, · ) in L2, for all t ≥ 0.

Letting n → ∞ and t → 0 in (48) and taking into account (36) we obtain
ut(t, · ) → u1 in (L∞ ∩H1)∗loc and therefore ut(t, · ) ⇀ u1 in L2, as t→ 0. Thus

(49) Du(t, · ) ⇀ (∇u0, u1) in L2, as t→ 0,

and, for every t ≥ 0,

(50) Dun(t, · ) ⇀ Du(t, · ) in L2, as n→∞.

The energy identity (30) yields

2E(t) = ‖Du(t, · )‖22 ≤ lim inf
n→∞

‖Dun(t, · )‖22(51)

≤ lim sup
n→∞

‖(∇un
0 , u

n
1 )‖22 = ‖(∇u0, u1)‖22 = 2E(0).

Thus

lim sup
t→0

‖Du(t, · )‖22 ≤ ‖(∇u0, u1)‖22

and hence strong convergence holds in (49). The proof of Theorem 1.1 is finished.
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4. Concluding remarks

A major open problem is the uniqueness of wave maps with finite energy in
1 + 2 dimensions. Uniqueness in the class of all weak solutions would imply the
energy identity E(t) = E(0) for all t ≥ 0, since otherwise time reversal would
yield a weak solution for which the energy increases and which would thus be
different from the solution constructed above. From the energy identity and (50),
(51) one easily deduces that Dun → Du in L2 for the above approximations
(this implies the local energy inequality for u) as well as continuity of the map
R+

0 → L2 given by t 7→ Du(t, · ). In particular, concentration of energy would
be impossible. It is, however, widely believed that such a phenomenon may
occur, as it does, for instance, for the harmonic heat flow ut − ∆u ⊥ TuN in
1 + 2 dimensions (see [1]). Hence, uniqueness is only expected to hold in a more
restricted class, defined by conditions such as monotonicity of the energy or local
energy inequalitites.

Existence of solutions that enjoy such additional properties remains an open
problem. On the other hand, the solutions constructed here still enjoy the com-
pactness property originally established only for smooth solutions ([7], [6]). The
main point is that in view of (34) the solutions constructed above satisfy, for
B(z0, r) ⊂ B(z0, R) ⊂ R+ × R2,

1
r

∫
B(z0,r)

|Du|2 ≤ C

R
µ(B(z0, R)),

where µ is the Radon measure in (43). If {ul} is a sequence of such solutions
with uniformly bounded energy and ul → u in L2

loc(R+×R2) then, after passage
to a subsequence, we may assume µl ∗

⇀ µ̃ and

lim sup
l→∞

‖χB(z0,r)Du
l‖L2,1 ≤ C

R
µ̃(B(z0, 3R)).

It now follows from Theorem 1.2 as above that u is a weak wave map.
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