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CLASSIFYING DYNAMICAL SYSTEMS
BY THEIR RECURRENCE PROPERTIES

Eli Glasner

Abstract. In his seminal paper of 1967 on disjointness in topological dy-

namics and ergodic theory H. Furstenberg started a systematic study of
transitive dynamical systems. In recent years this work served as a basis

for a broad classification of dynamical systems by their recurrence prop-

erties. In this paper I describe some aspects of this new theory and its
connections with combinatorics, harmonic analysis and the theory of topo-

logical groups.

1. Introduction

At the conference in honor of Hillel Furstenberg, held during two weeks in
June 2003, at Jerusalem and Beer–Sheva, I gave a talk sharing the title with the
present paper. In fact this paper is an elaboration of that talk and it is mostly
a review article.

In his seminal paper of 1967 on disjointness in topological dynamics and
ergodic theory [8], Furstenberg started a systematic study of transitive dynamical
systems, and the theory was further developed in Furstenberg and Weiss [10]
and Furstenberg, [9]. In recent years these works served as a basis for a broad
classification of dynamical systems by their recurrence properties. In this paper I
describe some aspects of the new theory and its connections with combinatorics,
harmonic analysis and the theory of topological groups. Works by Glasner and
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Weiss (1993) [GW1], Akin, Auslander and Berg (1997) [AAB], Blanchard, Host
and Maass (2000) [BHM], Weiss (2000) [W], Akin and Glasner (2001) [AG] and
Huang and Ye (2002) [HY], [HY1], [HY2] are reviewed.

2. Furstenberg’s theorem

A dynamical system for us is a pair (X, T ) where X is a metrizable compact
space and T :X → X a self homeomorphism. We set, for two non-empty open
sets U, V ⊂ X and a point x ∈ X

N(U, V ) = {n ∈ Z : TnU ∩ V 6= ∅}, and

N(x, V ) = {n ∈ Z : Tnx ∈ V }.

We say that (X, T ) is topologically transitive (or just transitive) if N(U, V ) is
nonempty whenever U, V ⊂ X are two non-empty open sets. Using Baire’s
category theorem it is easy to see that (X, T ) is topologically transitive if and
only if there exists a dense Gδ subset X0 ⊂ X such that O(x) = X for every
x ∈ X. Here OT (x) = {Tnx : n ∈ Z} is the orbit of the point x and O(x) is
the closure in X of O(x). The system (X, T ) is minimal if OT (x) = X for every
x ∈ X. It is weakly mixing if the product system (X×X, T ×T ) is topologically
transitive.

Theorem 2.1 (Furstenberg). The dynamical system (X, T ) is weakly mixing
if and only if the collection

F = {N(U, V ) : U, V ⊂ X are non-empty open subsets}

is a filter base.

Proof. It is easy to see that, for nontrivial (X, T ), both conditions imply
that X has no isolated points. Assuming that F is a filter base we have

N(U1 × U2, V1 × V2) = N(U1, V1) ∩N(U2, V2) ∈ F

for every U1, U2, V1, V2 ⊂ X nonempty open subsets. In particular N(U1 ×
U2, V1 × V2) is nonempty. This clearly implies that (X, T ) is weakly mixing.

Conversely suppose (X, T ) is weakly mixing and let N(U1, V1), N(U2, V2) ∈ F
be given. Choose m ∈ N(U1, U2)∩N(V1, V2), which is nonempty by weak mixing,
and set A = TmU1 ∩ U2, B = TmV1 ∩ V2. For any k ∈ N(A,B)

T kA ∩B = T k(TmU1 ∩ U2) ∩ (TmV1 ∩ V2) = Tm(T kU1 ∩ V1) ∩ (T kU2 ∩ V2) 6= ∅

implies
T kU1 ∩ V1 6= ∅ and T kU2 ∩ V2 6= ∅,

i.e. N(A,B) ⊂ N(U1, V1) ∩N(U2, V2), so that F is a filter base. �

We say that a subset A ⊂ Z is thick if it contains arbitrarily long intervals.
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Corollary 2.2. If (X, T ) is weakly mixing then every N(U, V ) is thick.

Proof. Given N(U, V ) and k ∈ N, the set
⋂ k

j=0 N(U, T−jV ) is nonempty
by Theorem 2.1 and

m ∈
k⋂

j=0

N(U, T−jV ) ⇒ TmU ∩ T−jV 6= ∅ for all j, 0 ≤ j ≤ k

⇒ Tm+jU∩V 6= ∅ for all j, 0 ≤ j ≤ k ⇒ {m, . . . ,m+k} ⊂ N(U, V ). �

With just a little more effort one can show that in fact these classes coincide
(see e.g. [3], [13, Theorem 1.11]).

Theorem 2.3. A compact dynamical system (X, T ) is weakly mixing if and
only if for every pair of nonempty open subsets U, V ⊂ X the set N(U, V ) ⊂ Z
is thick.

3. The standard families

We say that a collection F of nonempty subsets of Z is a family if it is
hereditary upward and proper (i.e. A ⊂ B and A ∈ F implies B ∈ F , and F is
neither empty nor all of 2Z).

With a family F of nonempty subsets of Z we associate the dual family

kF = {E : E ∩ F 6= ∅, for all F ∈ F}.

It is easily verified that kF is indeed a family. Also, for families, if F1 ⊂ F2 then
kF1 ⊃ kF2, and kkF = F .

We say that a family F is translation invariant if for every F ∈ F and j ∈ Z
also F + j ∈ F . Define the family τF by proclaiming F ∈ τF if and only if

(F + i1) ∩ . . . ∩ (F + ik) ∈ F , for all i1, . . . , ik ∈ Z.

We say that the family F is thick if τF = F . One can easily see that τF is a
thick family; i.e. ττF = τF . And, that τF is the largest thick family contained
in F .

Examples 3.1 (The standard families).

• B = infinite subsets of Z.
• kB = co-finite sets; i.e. subsets whose complement is finite.
• τB = thick sets.
• kτB = syndetic subsets. (F is syndetic if there exist K, for all m,

F ∩ [m,m + K] 6= ∅.)
• τkτB = thick-syndetic subsets. (F is thick-syndetic if for every M ,

there exists K, {m : [m,m + M ] ⊂ F} is K-syndetic.)
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• kτkτB = piecewise syndetic subsets. (F is piecewise syndetic if there
exists K such that for every N there exists n, [n, n + N ] ∩ F} is K-
syndetic.)

For the family F = B we provide the following dictionary:

B kB τB kτB τkτB kτkτB
infinite cofinite thick syndetic thickly syndetic piecewise syndetic

Table 1. The standard families

4. F transitivity

For any family F let TRS(F) be the class of dynamical systems (X, T )
such that N(U, V ) ∈ F for every nonempty open U, V ⊂ X. E.g. in this
notation the class of topologically mixing systems is TRS(cofinite). We write
RT = TRS(infinite) for the class of recurrent transitive dynamical systems. It
is not hard to see that when X has no isolated points (X, T ) is topologically
transitive if and only if it is recurrent transitive. From this we then deduce
that a weakly mixing system is necessarily recurrent transitive. We denote
by WM, MIN, and E the classes of weakly mixing, minimal and E-systems,
respectively. Recall that (X, T ) is an E-system if there exists a T -invariant
probability measure µ whose support is all of X. By Theorem 2.3 we have
WM = TRS(τB) = TRS(thick). We set TE = TRS(kτB) = TRS(syndetic), and
say that the dynamical systems in this class are topologically ergodic.

Theorem 4.1 (Glasner–Weiss). MIN,E ⊂ TE.

Proof. (1) The claim for MIN is immediate by the well known characteri-
zation of minimal systems: (X, T ) is minimal if and only if N(x, U) is syndetic
for every x ∈ X and nonempty open U ⊂ X.

(2) Given two non-empty open sets U , V in X, choose k ∈ Z with T kU ∩
V 6= ∅. Next set U0 = T−kV ∩ U , and observe that k + N(U0, U0) ⊂ N(U, V ).
Thus it is enough to show that N(U,U) is syndetic for every non-empty open U .
We have to show that N(U,U) meets every thick subset B ⊂ Z. By Poincaré’s
recurrence theorem, N(U,U) meets every set of the form A − A = {n − m :
n, m ∈ A} with A infinite. It is an easy exercise to show that every thick set B

contains some D+(A) = {an − am : n > m} for an infinite sequence A = {an}.
Thus ∅ 6= N(U,U) ∩ ±D+(A) ⊂ N(U,U) ∩ ±B. Since N(U,U) is symmetric,
this completes the proof. �

We remark that most of the claims in this survey about the class MIN (in-
cluding Theorem 4.1) are valid for the larger class of M -systems. These are the
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transitive systems (X, T ) with the property that the union of the minimal sets
is dense in X (see [16]).

5. Disjointness and weak disjointness

The systematic study of transitive dynamical systems originated in H. Furs-
tenberg’s seminal paper [8]. The basic definitions and ideas are there, as well as
an outline of many a future development.

Two dynamical systems (X, T ) and (Y, T ) are disjoint if every closed T ×T -
invariant subset of X × Y whose projections on X and Y are full, is necessarily
the entire space X×Y . It follows easily that when (X, T ) and (Y, T ) are disjoint,
at least one of them must be minimal. If both (X, T ) and (Y, T ) are minimal
then they are disjoint if and only if the product system is minimal. We say that
(X, T ) and (Y, T ) are weakly disjoint when the product system (X×Y, T ×T ) is
transitive. This is indeed a very weak sense of disjointness as there are systems
which are weakly disjoint from themselves. In fact, by definition a dynamical
system is weakly mixing if and only if it is weakly disjoint from itself.

If P is a class of transitive dynamical systems (a property) we let Pf be the
class of dynamical systems which are weakly disjoint from every member of P.
We clearly have P ⊂ Q ⇒ Pf ⊃ Qf and Pfff = Pf. As a direct consequence
of Furstenberg’s Theorem 2.1 we get the following theorem.

Theorem 5.1. TRS(syndetic)× TRS(thick) = TE×WM ⊂ RT, whence

TE ⊂ WMf and WM ⊂ TEf.

The question whether in the last two inclusions we actually have equality
naturally presents itself.

Questions 5.2.

(a) TE ⊂ WMf, is there an equality?
(b) WM ⊂ TEf, are they equal?

6. The complexity function and scattering

Before addressing these questions let us introduce some new definitions (due
to Blanchard, Host and Maass [6]).

Let (X, T ) be a dynamical system, U a finite cover. We let r(U) denote the
minimal cardinality of a subcover of U and set c(n) = c(U , n) := r(Un

0 ) where,
as usual Un

0 = U ∨ T−1U ∨ . . . ∨ T−nU . We call c( · ,U) the complexity function
of the cover U .

Lemma 6.1 (Blanchard–Host–Maass). Let (X, T ) be a dynamical system.
The following conditions are equivalent.

(a) (X, T ) is equicontinuous.



26 E. Glasner

(b) For every open cover U , c(U , n) is bounded.

Proof. (a)⇒ (b). Let ε be a Lebesgue number for U . By the equicontinuity
there exists an η > 0 satisfying d(x, x′) < η ⇒ d(Tnx, Tnx′) < ε, for all n ∈ Z.
Choose {x1, . . . , xk} such that X =

⋃ k
i=1 Bη(xi). Then

∀i, ∀j, ∃Uij ∈ U such that T jBη(xi) ⊂ Uij

∴ Bη(xi) ⊂
n⋂

j=0

T−jUij

∴ ∀n, c(n) = r(Un
0 ) ≤ k.

(b) ⇒ (a). Assume (b) and suppose to the contrary that {Tn : n ∈ Z} is not
equicontinuous. Then there exist y0 ∈ X and ε > 0 such that

∀δ > 0, ∃y ∈ Bδ(y0) and n such that d(Tny0, T
ny) ≥ ε.

Let U = {Bε/4(xi) : i = 1, . . . , k} be a cover of X and set Û = {Bε/4(xi) = Ai :
i = 1, . . . , k}. We have Û ≺ U and by assumption the complexity of the cover U
is bounded, say c(U , n) ≤ c(Û , n) ≤ M for every n ∈ Z.

Introduce the auxiliary space Ω = {1, . . . , k}N and for each ω ∈ Ω set

J(ω) = {x ∈ X : T jx ∈ Aω(j), for all j ∈ N} =
⋂
j∈N

T−jAω(j).

I claim that there exist M “names” (ω1, . . . , ωM ) ∈ ΩM such that

(6.1) X =
M⋃
i=1

J(ωi).

To see this, let for each n ∈ N

Jn(ω) = {x ∈ X : T jx ∈ Aω(j), for all j ∈ [0, n]} =
⋂

j∈[0,n]

T−jAω(j).

Our assumption c(Û , n) ≤ M implies that for every n ∈ N there are M “names”
(ω1, . . . , ωM ) ∈ ΩM such that

(6.2) X =
M⋃
i=1

Jn(ωi).

Of course this implies that also X =
⋃M

i=1 Jn−1(ωi). Thus, denoting by H(n)
the subset of ΩM satisfying (6.2) we see that (i) H(n) is nonempty, (ii) H(n) is
closed (whether a vector (ω1, . . . , ωM ) ∈ ΩM is in H(n) or not, depends only on
the first n coordinates of each component ωi) and (iii) H(n) ⊂ H(n− 1).

By compactness H =
⋂

n∈N H(n) is nonempty. Fix (ω1, . . . , ωM ) ∈ H and
recall that for 1 ≤ i ≤ M , J(ωi) =

⋂
n∈N Jn(ωi). It is now easy to check that

(6.2) implies (6.1). (In fact if x ∈ X then for every n there exists an in with
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x ∈ Jn(ωin). Then, there exists an i for which x ∈ Jn`
(ωi) for infinitely many `,

hence x ∈ J(ωi).) This completes the proof of (6.1).
Note that for each i, every x, x′ ∈ J(ωi) — as J(ωi) =

⋂
j∈N T−jAωi(j) —

we have for every j ∈ N,

(6.3) d(T jx, T jx′) < ε/2.

However, taking any sequence yn → y0 we have by assumption a corresponding
sequence kn such that

(6.4) d(T jy0, T
knyn) > ε.

By (6.1) there exists an 1 ≤ i ≤ M such that yn ∈ J(ωi) for infinitely many n.
Since J(ωi) is closed this implies that also y0 ∈ J(ωi) and comparing (6.3) with
(6.4) we get a contradiction. �

A dynamical system (X, T ) is called scattering if every finite open cover by
nondense sets has unbounded complexity function. We write SCT for the class
of scattering systems in RT.

Lemma 6.2 (Blanchard–Host–Maass). SCT = MINf.

Note that the inclusion MIN ⊂ TE implies SCT = MINf ⊃ TEf ⊃ WM.

Corollary 6.3 (Blanchard–Host–Maass). WM ⊂ SCT.

Question 6.4. WM ⊂ SCT, are they equal?

7. The Weiss–Akin–Glasner theorem

The next theorem (Weiss [27] and Akin and Glasner [5]) will be the key to the
solution of some of the above mentioned questions as well as to other problems
of a similar nature.

Theorem 7.1 (Weiss–Akin–Glasner). Let F be a proper translation invari-
ant thick family of subsets of Z. A dynamical system is in TRS(kF) if and only
if it is weakly disjoint from every system in TRS(F):

TRS(kF) = TRS(F)f.

In particular, for F = τB = thick, we get

TRS(synd) = TE = WMf = TRS(thick)f,

and for F = τkτB = thick-synd, we get

TRS(pw-synd) = (WM ∩ TE)f = TRS(thick-synd)f.

Outline of Proof. By definition TRS(kF) ⊂ TRS(F)f.
For the other direction one needs the following lemma whose rather intricate

“combinatorial” proof we omit.
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Lemma 7.2. For F as in the theorem, A ∈ F , and 0 ∈ A imply that there
exists a subshift (X, σ) ∈ TRS(F) (i.e. a subsystem of the Bernoulli system
(Ω, σ) where Ω = {0, 1}Z and σ : Ω → Ω is the shift) for which

A = N(U0[1], U0[1])

(here U0[1] = {ω ∈ X : ω(0) = 1}).

Now suppose (Y, S) is transitive but not kF transitive. Then there exists
a nonempty open U ⊂ Y such that N(U,U) 6∈ kF , hence B = N(U,U)c ∈ F .
(In fact D 6∈ kF ⇒ there exists F ∈ F such that D ∩ F = ∅ ⇒ F ⊂ Dc ⇒
Dc ∈ F .)

Let A = B ∪ {0}, then A ∈ F and applying the above lemma to A we
construct a subshift (X, σ) with A = N(U0[1], U0[1]). Considering the product
system (Y ×X, S × σ) we have

N(U × U0[1], U × U0[1]) = N(U,U) ∩A = {0}.

We conclude that the product system is not transitive and we have thus shown
that (Y, S) 6∈ TRS(kF) ⇒ (Y, S) 6∈ TRS(F)f. �

This answers Question 5.2(a) in the affirmative.

Theorem 7.3 (Weiss). WMf = TE.

8. Almost equicontinuity, monothetic groups
and a fixed point property

Transitive dynamical systems which are not sensitive to initial conditions
were studied by Glasner and Weiss in [16], where it was shown that under some
mild additional condition, such as being an E-system, such systems are isomor-
phic to a rotation on a compact monothetic group. It was also shown there
that any transitive uniformly rigid system admits a transitive non-sensitive ex-
tension. The latter fact, when combined with a result of Glasner and Maon
(see [14]) which provides examples of nontrivial minimal uniformly rigid and
weakly mixing systems, demonstrates the prevalence of non-sensitive systems.

In the paper [4], by Akin, Auslander and Berg, the notion “non-sensitivity”
was given a better name: “almost equicontinuity”. In this work the authors re-
discovered some of the results of [16] and gave the class of almost equicontinuous
systems a systematic and comprehensive treatment.

Recall that a point x in a dynamical system (X, T ) is an equicontinuity point
if for every ε > 0 there exists a neighbourhood U of x such that

sup
n∈Z

d(Tnx, Tnx′) ≤ ε for all x′ ∈ U.



Classifying Dynamical Systems by their Recurrence Properties 29

A dynamical system (X, T ) is called almost equicontinuous (AE for short) if it
contains a dense set of equicontinuity points. An AE system is uniformly rigid
and the set

Λ = Λ(X, T ) = unif-cls{Tn : n ∈ Z} ⊂ Homeo(X)

is a Polish monothetic group. ((X, T ) is uniformly rigid if and only if the Polish
group Λ(X, T ) is not discrete, see [14].) If an AE system (X, T ) is also transitive,
then the set EQ(X) of equicontinuity points coincides with the dense Gδ set of
transitive points. Moreover for a transitive uniformly rigid system (X, T ) and
any transitive point x0 ∈ X, the map S 7→ Sx0 is a homeomorphism of Λ(X, T )
onto Λx0 ⊂ X — with the relative topology it inherits from X — if and only
if (X, T ) is AE. Finally, if Λ is any Polish non-discrete monothetic topological
group then there exists a transitive AE system (X, T ) with Λ = Λ(X, T ).

In [12] the following terminology was introduced. A topological group G

has the fixed point on compacta property (FPC) if every compact G dynamical
system has a fixed point. Recently the theory of Polish groups with the the fixed
point on compacta property received a lot of attention and new and exciting
connections with other branches of mathematics (like Ramsey theory, Gromov’s
theory of mm-spaces, and concentration of measure phenomena) were discovered
(see V. Pestov’s survey paper [25]). In [12] I show that the Polish group G of all
measurable functions f from a nonatomic Lebesgue measure space (Ω,B,m) into
say [0, 1], with pointwise product and the topology of convergence in m-measure,
is monothetic and has the FPC property.

I refer the reader to Akin’s book “Recurrence in topological dynamics” [3]
where many of the subjects of the present review, including AE systems, are
treated in depth. More recently the notion of locally equicontinuous (LE) systems
was introduced by Glasner and Weiss in [17]. These are the systems (X, T )
with the property that for every x ∈ X the subsystem OT (x) is AE. It turns
out that every weakly almost periodic (WAP) system is LE and intricate new
examples of LE systems which are not WAP were discovered in [17]. The class
of LE systems and the related class of hereditarily almost equicontinuous (HAE)
systems are studied in details in a work by Glasner and Megrelishvili (see [15]).

9. Scattering but not weakly mixing systems

Theorem 9.1 (Akin–Glasner). Let (X, T ) be a transitive AE system. The
following conditions are equivalent:

(a) (X, T ) ∈ MINf = SCT.
(b) The Polish monothetic group Λ(X, T ) has the fixed point property.

This theorem provides a negative solution to Question 6.4, as follows.



30 E. Glasner

Corollary 9.2 (Akin–Glasner). WM ( SCT

Proof. Let Λ be any Polish monothetic topological group with the FPC
property (such as the one described in Section 8). Let (X, T ) be a transitive
AE system with Λ = Λ(X, T ). By Theorem 9.1 (X, T ) ∈ SCT. Suppose (X, T )
∈ WM, so that (X×X, T ×T ) is transitive. Let (x0, x

′
0) ∈ X×X be a transitive

point. If x is an arbitrary point of X, then there exists a sequence {ni} in Z
such that limi→∞(Tnix0, T

nix′0) = (x0, x). However, being AE, the topology
induced on Z by the relative topology of OT (x0) is the same as the relative
topology induced on Z when embedded in Λ. Therefore limi→∞ Tnix0 = x0

implies limi→∞ Tni = e in Λ, whence limi→∞ Tnix′0 = x = x0. Thus X = {x0}
is the trivial one point system and Λ is the trivial one element group. This
contradiction implies that (X, T ) 6∈ WM and the proof is complete. �

Recently, Huang and Ye have constructed explicit examples of dynamical
systems (in fact subshifts) (X, T ) ∈ SCT \ WM (see [20]), as well as (X, T )
∈ TEf \WM (see [21]). The latter is a (negative) solution to Question 5.2(b).

Theorem 9.3 (Huang–Ye). WM ( TEf.

10. Topological mild mixing

The notion of mild mixing was first introduced in ergodic theory by Fursten-
berg and Weiss in [11].

Definition 10.1. Let X = (X,X , µ, T ) be a measure dynamical system.

(a) The system X is rigid if there exists a sequence nk ↗∞ such that

limµ (TnkA ∩A) = µ(A)

for every measurable subset A of X. We say that X is {nk}-rigid .
(b) An ergodic system is mildly mixing if it has no non-trivial rigid factor.

The authors show that the mild mixing property is equivalent to the following
multiplier property.

Theorem 10.2. An ergodic system X = (X,X , µ, T ) is mildly mixing if and
only if for every ergodic (finite or infinite) measure preserving system (Y,Y, ν, T ),
the product system (X × Y, µ× ν, T × T ) is ergodic.

Since every Kronecker system is rigid and since an ergodic system X is weakly
mixing if and only if it admits no nontrivial Kronecker factor, it follows that mild
mixing implies weak mixing. Clearly strong mixing implies mild mixing. It is
not hard to construct rigid weakly mixing systems, so that the class of mildly
mixing systems is properly contained in the class of weakly mixing systems.
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Finally there are mildly but not strongly mixing systems; e.g. Chacón’s system
is an example (see [23] and [1]).

We say that a subset J of Z has uniform density 1 if for every 0 < λ < 1
there exists an N such that for every interval I ⊂ Z of length > N we have
|J ∩ I| ≥ λ|I|. We denote by D the family of subsets of Z of uniform density 1.

Let F be a family of nonempty subsets of Z which is closed under finite
intersections (i.e. F is a filter). Following [9] we say that a sequence {xn : n ∈ Z}
in a topological space X F-converges to a point x ∈ X if for every neighbourhood
V of x the set {n : xn ∈ V } is in F . We denote this by

F- lim xn = x.

We have the following characterization of weak mixing for measure preserving
systems.

Theorem 10.3. The dynamical system X = (X,X , µ, T ) is weakly mixing if
and only if for every A,B ∈ X we have

D- limµ(T−nA ∩B) = µ(A)µ(B).

An analogous characterization of measure theoretical mild mixing is obtained
by considering the families of IP and IP∗ sets. An IP-set is any subset of Z
containing a subset of the form IP{ni} = {ni1 + . . . + nik

: i1 < . . . < ik}, for
some infinite sequence {ni}∞i=1. We let I denote the family of IP-sets and call
the elements of the dual family kI = I∗, IP∗-sets. Again it is not hard to see
that the family of IP∗-sets is closed under finite intersections. For a proof of the
next theorem we refer to [9].

Theorem 10.4. The dynamical system X = (X,X , µ, T ) is mildly mixing if
and only if for every A,B ∈ X we have

I∗- limµ(T−nA ∩B) = µ(A)µ(B).

We now turn to the topological category. It will be convenient here to deal
with families of subsets of Z+ rather than Z. If F is such a family then

TRS(F) = {(X, T ) : N+(A,B) ∈ F for every nonempty open A,B ⊂ X}.

Here N+(A,B) = N(A,B)∩Z+. Let us call a subset of Z+ a SIP-set (symmetric
IP-set), if it contains a subset of the form

SIP{ni} = {nα − nβ > 0 : nα, nβ ∈ IP{ni} ∪ {0}},

for an IP sequence IP{ni} ⊂ Z+. Denote by S the family of SIP sets. It is not
hard to show that

Fthick ⊂ S ⊂ I,
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(see [9]). Hence Fsyndetic ⊃ S∗ ⊃ I∗, hence TRS(synd) ⊃ TRS(S∗) ⊃ TRS(I∗),
and finally

TRS(synd)f ⊂ TRS(S∗)f ⊂ TRS(I∗)f.

Definition 10.5. A topological dynamical system (X, T ) is called topolog-
ically mildly mixing if it is in TRS(S∗) and we denote the collection of topolog-
ically mildly mixing systems by MM = TRS(S∗).

We will need the following proposition; for a proof refer to [18].

Proposition 10.6. Let (X, T ) be a topologically transitive dynamical sys-
tem; then the following conditions are equivalent:

(a) (X, T ) ∈ RT.
(b) The recurrent points are dense in X.

Theorem 10.7. A dynamical system is in RT if and only if it is weakly
disjoint from every topologically mildly mixing system RT = MMf. And con-
versely, it is topologically mildly mixing if and only if it is weakly disjoint from
every recurrent transitive system MM = RTf.

Proof. (1) Since TRS(S∗) is nonvacuous (for example every topologically
mixing system is in TRS(S∗)), it follows that every system in TRS(S∗)f is in RT.

Conversely, assume that (X, T ) is in RT but (X, T ) 6∈ TRS(S∗)f, and we
will arrive at a contradiction. By assumption there exists (Y, T ) ∈ TRS(S∗) and
a nondense nonempty open invariant subset W ⊂ X × Y . Then πX(W ) = O is
a nonempty open invariant subset of X. By assumption O is dense in X. Choose
open nonempty sets U0 ⊂ X and V0 ⊂ Y with U0×V0 ⊂ W . By Proposition 10.6
there exists a recurrent point x0 in U0 ⊂ O. Then there is a sequence ni → ∞
such that for the IP-sequence {nα} = IP{ni}∞i=1, IP- lim Tnαx0 = x0 (see [9]).
Choose i0 such that Tnαx0 ∈ U0 for nα ∈ J = IP{ni}i≥i0 and set D = SIP(J).
Given V a nonempty open subset of Y we have:

D ∩N(V0, V ) 6= ∅.

Thus for some α, β and v0 ∈ V0,

Tnα−nβ (Tnβ x0, v0) = (Tnαx0, T
nα−nβ v0) ∈ (U0 × V ) ∩W.

We conclude that
{x0} × Y ⊂ cls W.

The fact that in an RT system the recurrent points are dense together with
the observation that {x0} × Y ⊂ clsW for every recurrent point x0 ∈ O, imply
that W is dense in X × Y , a contradiction.

(2) From part 1 of the proof we have RT = TRS(S∗)f, hence RTf =
TRS(S∗)ff ⊃ TRS(S∗).
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Suppose (X, T ) ∈ RT but (X, T ) 6∈ TRS(S∗), we will show that (X, T ) 6∈
RTf. There exist U, V ⊂ X, nonempty open subsets and an IP-set I = IP{ni}
for a monotone increasing sequence {n1 < n2 < . . . } with

N(U, V ) ∩D = ∅, where D = {nα − nβ : nα, nβ ∈ I, nα > nβ}.

If (X, T ) is not topologically weakly mixing then X ×X 6∈ RT hence (X, T ) 6∈
RTf. So we can assume that (X, T ) is topologically weakly mixing. Now,
in X ×X,

N(U × V, V × U) = N(U, V ) ∩N(V,U) = N(U, V ) ∩ −N(U, V )

is disjoint from D∪−D, and replacing X by X×X we can assume that N(U, V )∩
(D∪−D) = ∅. In fact, if X ∈ RTf then X×Y ∈ RT for every Y ∈ RT, therefore
X × (X × Y ) ∈ RT and we see that also X ×X ∈ RTf.

By going to a subsequence, we can assume that

lim
k→∞

nk+1 −
k∑

i=1

ni = ∞.

in which case the representation of each n ∈ I as n = nα = ni1 + . . . + nik
;

α = {i1 < . . . < ik} is unique.
Next let y0 ∈ {0, 1}Z be the sequence y0 = 1I . Let Y be the orbit closure of

y0 in {0, 1}Z under the shift T , and let [1] = {y ∈ Y : y(0) = 1}. Observe that

N(y0, [1]) = I.

It is easy to check that

IP- lim Tnαy0 = y0.

Thus the system (Y, T ) is topologically transitive with y0 a recurrent point; i.e.
(Y, T ) ∈ RT.

We now observe that

N([1], [1]) = N(y0, [1])−N(y0, [1]) = I − I = D ∪ −D ∪ {0}.

If X × Y is topologically transitive then in particular

N(U × [1], V × [1]) = N(U, V ) ∩N([1], [1])

= N(U, V ) ∩ (D ∪ −D ∪ {0}) = infinite set.

But this contradicts our assumption. Thus X × Y 6∈ RT and (X, T ) 6∈ RTf.
This completes the proof. �

We now have the following:
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Corollary 10.8. Every topologically mildly mixing system is weakly mixing
and topologically ergodic: MM ⊂ WM ∩ TE.

Proof. We have TRS(S∗) ⊂ RT = TRS(S∗)f, hence for every (X, T ) ∈
TRS(S∗), X ×X ∈ RT i.e. (X, T ) is topologically weakly mixing. And, as we
have already observed the inclusion Fsyndetic ⊃ S∗, entails TE = TRS(synd) ⊃
TRS(S∗) = MM. �

To complete the analogy with the measure theoretical setup we next define
a topological analogue of rigidity. This is just one of several possible definitions
of topological rigidity and we refer to [14] for a treatment of these notions.

Definition 10.9. A dynamical system (X, T ) is called uniformly rigid if
there exists a sequence nk ↗∞ such that

lim
k→∞

sup
x∈X

d(Tnkx, x) = 0,

i.e. limk→∞ Tnk = id in the uniform topology on the group of homeomorphism of
H(X) of X. We denote by R the collection of topologically transitive uniformly
rigid systems.

In [14] the existence of minimal weakly mixing but nonetheless uniformly
rigid dynamical systems is demonstrated. However, we have the following:

Lemma 10.10. A system which is both topologically mildly mixing and uni-
formly rigid is trivial.

Proof. Let (X, T ) be both topologically mildly mixing and uniformly rigid.
Then Λ = cls{Tn : n ∈ Z} ⊂ H(X) is a Polish monothetic group.

Let Tni be a sequence converging uniformly to id, the identity element of
Λ. For a subsequence we can ensure that {nα} = IP{ni} is an IP-sequence such
that IP- lim Tnα = id in Λ. If X is nontrivial we can now find an open ball
B = Bδ(x0) ⊂ X with TB ∩ B = ∅. Put U = Bδ/2(x0) and V = TU ; then by
assumption N(U, V ) is an SIP∗-set and in particular:

for all α0 there exists α, β > α0, nα − nβ ∈ N(U, V ).

However, since IP- lim Tnα = id, we also have eventually, Tnα−nβ U ⊂ B; a con-
tradiction. �

Corollary 10.11. A topologically mildly mixing system has no nontrivial
uniformly rigid factors.

We conclude this section with the following result which shows how these
topological and measure theoretical notions are related.
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Theorem 10.12. Let (X, T ) be a topological dynamical system with the prop-
erty that there exists an invariant probability measure µ with full support such
that the associated measure preserving dynamical system (X,X , µ, T ) is measure
theoretically mildly mixing then (X, T ) is topologically mildly mixing.

Proof. Let (Y, S) be any system in RT; by Theorem 10.7 it suffices to show
that (X × Y, T × S) is topologically transitive. Suppose W ⊂ X × Y is a closed
T × S-invariant set with int W 6= ∅. Let U ⊂ X, V ⊂ V be two nonempty
open subsets with U × V ⊂ W . By transitivity of (Y, S) there exits a transitive
recurrent point y0 ∈ V . By theorems of Glimm and Effros (see [19], [7]), and
Katznelson and Weiss (see [24], also Weiss [26]), there exists a (possibly infinite)
invariant ergodic measure ν on Y with ν(V ) > 0.

Let µ be the probability invariant measure of full support on X with respect
to which (X,X , µ, T ) is measure theoretically mildly mixing. Then by [11] the
measure µ× ν is ergodic. Since µ× ν(W ) ≥ µ× ν(U × V ) > 0 we conclude that
µ× ν(W c) = 0 which clearly implies W = X × Y . �

This section is based on [18]. For more on these topics refer to [9], [3], [27],
[5], [20]–[22].

11. Monothetic Polish groups
admit nontrivial weakly mixing actions

Given a Polish monothetic non-discrete group Λ, we say that a dynamical
system (X, T ) extends to Λ if (X, T ) is uniformly rigid and the group Λ acts
on X extending the action of Z ∼= {Tn : n ∈ Z}. In other words the map
an 7→ Tn (where a is a topological generator of Λ), from {an} ⊂ Λ into Λ(X, T ),
extends to a continuous surjective homomorphism. The “dual family theorem”,
Theorem 7.1, is instrumental in proving the next result.

Theorem 11.1 (Akin–Glasner). Let F be a proper translation invariant
thick family of subsets of Z. Let Λ a Polish monothetic non-discrete group and
let (X, x0, T ) be an AE system with transitive point x0 and with Λ(X, T ) = Λ.
The following conditions are equivalent:

(a) The point x0 is kF-recurrent; i.e. {n ∈ Z : d(x0, T
nx0) < ε} ∈ kF for

all ε > 0.
(b) (X, T ) is kF-transitive.
(c) Any transitive system (Y, T ) which extends to Λ is kF-transitive.
(d) The only F-transitive system (Z, T ) which extends to Λ is the trivial

system.

Recall that a subset A of Z has uniform density 1 if for every 0 < λ < 1
there exists an N such that for every interval I ⊂ Z of length > N we have
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|A ∩ I| ≥ λ|I|. We denote by D the family of sets with this property. One can
check that D is a thick, translation invariant family and that kD is the family
of subsets of Z with positive upper Banach density.

Corollary 11.2. If (X, T ) is a transitive AE but not equicontinuous system
(which is the same as not being minimal), then it is neither kD-transitive, nor
weakly mixing, nor TE.

Proof. Let V be an open nonempty subset of X and x0 a transitive point.
It is easy to verify that N(V, V ) = N(x0, V )−N(x0, V ). If A = N(x0, V ) ∈ kD
then a well known result implies that the difference set N(V, V ) = A − A is
syndetic so that (X, T ) ∈ TRS(synd) = TRS(kF), with F = thick. Applying
Theorem 11.1 we conclude that x0 is kF-recurrent; i.e. syndetically recurrent,
hence minimal. Since both weak mixing and topological ergodicity imply kD-
transitivity, our claims follow. �

Theorem 11.3 (Akin–Glasner). For every non-discrete, non-compact, Pol-
ish monothetic group Λ, there exists a nontrivial D-transitive dynamical system
(X, T ) to which Λ extends. Such a system is both weakly mixing and TE.

Proof. Let (X, T ) be a transitive AE system with Λ = Λ(X, T ). Since Λ is
non-compact (X, T ) is not equicontinuous. By Corollary 11.2 (X, T ) is neither
kD-transitive, nor weakly mixing, nor TE. It follows that the dynamical system
(X, T ) does not satisfy condition (a) in Theorem 11.1 (with F = D), and by that
theorem neither is the equivalent condition (d) fulfilled. We therefore conclude
that there exists a nontrivial transitive system (Z, T ) which extends to Λ and is
D-transitive, hence both WM and TE. �

Recall our notation D for the family of subsets of Z with uniform density 1.
One can check that D is a thick, translation invariant family and that kD is the
family of subsets of Z with positive upper Banach density.

Problem 11.4. Is there a Polish monothetic group Λ, which is MAP but
does not have the fixed point on compacta property?

In [12] it is shown that a positive answer to Problem 11.4 will provide a
negative answer to the following famous problem from combinatorial number
theory.

Problem 11.5. Is it true that for every syndetic subset S ⊂ Z the difference
set S − S is a Bohr neighbourhood? (I.e. is there a finite set of real numbers
{λ1, . . . , λk} and ε > 0 such that {n ∈ Z : maxj{‖nλj‖ < ε}} is contained
in S − S, where ‖ · ‖ denotes the distance to the closest integer?)

In view of Theorem 11.3 it is also natural to ask the following question.
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Problem 11.6. Is there a Polish monothetic group Λ, which does not admit
any nontrivial minimal weakly mixing dynamical systems but does not have the
fixed point on compacta property?

Note that from the general structure theory of minimal systems it follows
that if Λ is both MAP and does not admit any nontrivial minimal weakly mixing
dynamical systems, then it has the fixed point on compacta property.

12. Various degrees of scattering

In their paper [20] Huang and Ye introduce the following terminology. Ap-
plying the f operation to the chain of inclusions

Equi ⊂ MIN ⊂ E ⊂ TE,

(where Equi stands for the class of transitive equicontinuous systems) one obtains
the corresponding chain

Equif ⊃ MINf ⊃ Ef ⊃ TEf.

Motivated by the characterization SCT = MINf they call the class Equif weak
scattering and the classes Ef and TEf strong scattering and extreme scattering,
respectively.

Combining some folklore knowledge with new observations they characterize
these classes as follows.

• Weak scattering = Equif coincides with the class of Bohr-transitive
systems, where the latter is the class of all systems for which every
N(U, V ) meets every Bohr neighbourhood.

• Scattering = MINf coincides with the class of systems in which every
N(U, V ) is a set of recurrence; i.e. N(U, V ) meets every S − S where S

is syndetic.
• Strong scattering = Ef coincides with the class of systems such that

every N(U, V ) is a Poincaré set; i.e. N(U, V ) meets every A−A where
A is a subset of positive upper Banach density.

Equi MIN E TE

Equif MINf Ef TEf

weak scattering scattering strong scattering extreme scattering

TRS(Bohr) TRS(recurrence) TRS(Poincaré)

Table 2. Degrees of scattering
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By constructing appropriate subshifts Huang and Ye show that

WM ( TEf ( Ef.

The question whether the classes of strong scattering, scattering, and weak scat-
tering are equal is open and in fact depends on the solution of Problem 11.5.

13. The standard classes of transitive dynamical systems

I have described in this survey, some of the key ideas and results which were
produced recently in the subject of classification of transitive dynamical systems.
The diagram in Figure 1 supplies further information, albeit in a rather concise
and incomplete form. For more details the reader is advised to consult the
original papers, some of which are indicated in the references list.

WM
thick

k

��
2

2
2

2
2

2
2

2
2

� � TEf

� qFFFFFFFFF
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ud1
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� uQQQQQQQQQQQQQ
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�
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�
�

�
�

�
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Figure 1. The standard classes of dynamical systems

The entries in the diagram appear as names of classes with their F-transitive
characterization below (when one is available).

Af denotes the class of systems which are weakly disjoint from the class A,
� � is just ⊂, and //___ means taking f of a class. The k above an

arrow indicates that, in addition, the passage is to the dual family. Recall that
B is the family of infinite subsets of Z. The various classes are:

• WM = weak mixing = thick-transitive,
• TE = topologically ergodic = syndetic-transitive,
• TEf = syndf (is there an F-transitivity description for this class?),
• WM ∩ TE = (thick-syndetic)-transitive,
• (WM ∩ TE)f = (piecewise-syndetic)-transitive,
• D = (uniform density 1)-transitive,
• Df = (positive upper Banach density)-transitive.

Further information, which is hard to fit into the diagram, is as follows:

(1) By the Weiss–Akin–Glasner theorem

D
k //___ Df .
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(2) By the Weiss–Akin–Glasner theorem and the results of Section 10

Mixing
kB

k

::
P X _ f n

u
� � MM oo //___ RT

B
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