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INFINITELY MANY SOLUTIONS
FOR OPERATOR EQUATIONS

INVOLVING DUALITY MAPPINGS
ON ORLICZ–SOBOLEV SPACES

George Dinca — Pavel Matei

Abstract. Let X be a real reflexive and separable Banach space having
the Kadeč–Klee property, compactly imbedded in the real Banach space V

and let G: V → R be a differentiable functional.
By using “fountain theorem” and “dual fountain theorem” (Bartsch

[3] and Bartsch–Willem [4], respectively), we will study the multiplicity of

solutions for operator equation

Jϕu = G′(u),

where Jϕ is the duality mapping on X, corresponding to the gauge func-

tion ϕ.

Equations having the above form with Jϕ a duality mapping on Orlicz–
Sobolev spaces are considered as applications. As particular cases of the

latter results, some multiplicity results concerning duality mappings on

Sobolev spaces are derived.

1. Introduction

This paper is concerned with multiplicity results for equations of type

(1.1) Jϕu = G′(u),
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where

(a) X is a real reflexive and separable Banach space having the Kadeč–Klee
property, compactly imbedded in the real Banach space V ;

(b) Jϕ:X → X∗ is a duality mapping corresponding to the gauge function
ϕ (see Definition 2.2 below);

(c) G′:V → V ∗ is the differential of the functional G:V → R.

As usual, X∗ (resp. V ∗) denotes the dual space of X (resp. V ) and 〈 · , · 〉X,X∗

(resp. 〈 · , · 〉V,V ∗) denotes the duality pairing between X∗ and X (resp. V ∗

and V ).
Often, we shall omit to indicate the spaces in duality and, simply, we shall

write 〈 · , · 〉.
Our approach is a variational one, the so called “fountain theorem” and

“dual fountain theorem” (Bartsch [3] and Bartsch–Willem [4] respectively, see
also Willem [19]) being the basic ingredients which are used.

Equations having the form (1.1) with Jϕ a duality mapping on Orlicz-Sobolev
spaces are considered as applications. As particular cases of these results, some
multiplicity results concerning duality mappings on Sobolev spaces are derived.

More particularly, these results apply to many differential operators which
are, in fact, duality mappings on some appropriate spaces of functions (for ex-
ample, if ∆p, 1 < p < ∞, is the so called p-Laplacian, then −∆p is the duality
mapping on W 1,p

0 (Ω) corresponding to the gauge function ϕ(t) = tp−1, t ≥ 0).

2. The main result

Let X be a real reflexive and separable Banach space. It is well known that
there are E = {e1, . . . , en, . . . } ⊂ X and F = {f1, . . . , fn, . . . } ⊂ X∗ such that
X = Sp(E), X∗ = Sp(F ) and

〈fi, ej〉 =

{
1 for i = j,

0 for i 6= j.

For what follows, we shall note

(2.1) Xj = Sp({ej}), Yk =
k⊕

j=1

Xj , Zk =
∞⊕

j=k

Xj .

Theorem 2.1. Let X be a real reflexive, smooth and separable Banach space
having the Kadeč–Klee property and compactly imbedded in the real Banach
space V . Let H ∈ C1(X, R) be an even functional having the form

(2.2) H = Ψ−G,
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where

(a) at any u ∈ X, Ψ(u) = Φ(‖u‖), with

(2.3) Φ(t) =
∫ t

0

ϕ(ξ) dξ, for all t ≥ 0,

ϕ: R+ → R+ being a gauge function which satisfies

p∗ = sup
t>0

tϕ(t)
Φ(t)

< ∞;

(b) G:V → R satisfies:
(b)1 G′:V → V ∗ is demicontinuous;
(b)2 there is a constant θ > p∗ such that, at any y ∈ V ,

〈G′(y), y〉V,V ∗ − θG(y) ≥ C = const.

(c) for any u ∈ X, with ‖u‖X > 1, one has

(2.4) H(u) ≥ c1‖u‖p
X − c2‖i(u)‖q

V − d,

where i stands for the compact injection of X in V while q > p > 0,
c1 > 0, c2 > 0 and d are real constants;

(d) for any k ∈ N∗ and u ∈ Yk, with ‖u‖X > 1, one has

H(u) ≤ c3‖u‖r
X − c4‖u‖s

X + c5,

where s > 0, r < s, c4 > 0, c3 and c5 are real constants.
(e) there exist p∗ > 1 and the positive constants c7, c8 such that

(2.5) |G(y)| ≤ c7‖y‖V + c8‖y‖p∗
V ,

for any y ∈ i(X).

Then, the functional H possesses a sequence of critical positive values which
converges to +∞ and another one, of critical negative values converging to 0.

Before proceeding to the proof of Theorem 2.1, we list some results we need.
First, we recall that a real Banach space X is said to be smooth if it has

the following property: for any x ∈ X, x 6= 0, there exists a unique u∗(x) ∈ X∗

such that 〈u∗(x), x〉 = ‖x‖X and ‖u∗(x)‖X∗ = 1. It is well known (see, for
instance, Diestel [8], Zeidler [20] ) that the smoothness of X is equivalent with
the Gâteaux differentiability of the norm. Consequently, if (X, ‖ · ‖X) is smooth,
then, for any x ∈ X, x 6= 0, the only element u∗(x) ∈ X∗ with the properties
〈u∗(x), x〉 = ‖x‖X and ‖u∗(x)‖X∗ = 1 is u∗(x) = ‖ · ‖′X(x) (where ‖ · ‖′X(x)
denotes the Gâteaux gradient of the ‖ · ‖X -norm at x).

A function ϕ: R+ → R+ is said to be a gauge function if ϕ is continuous,
strictly increasing, ϕ(0) = 0 and ϕ(t) →∞ as t →∞.
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Definition 2.2. If X is a real smooth Banach space and ϕ: R+ → R+ is a
gauge function, the duality mapping on X corresponding to ϕ is the mapping
Jϕ:X → X∗ defined by

Jϕ0 = 0, Jϕx = ϕ(‖x‖X)‖ · ‖′X(x), if x 6= 0.

The following metric properties are consequent:

‖Jϕx‖X∗ = ϕ(‖x‖X),

〈Jϕx, x〉 = ϕ(‖x‖X)‖x‖X , for all x ∈ X.

Definition 2.3. A real Banach space has the Kadeč–Klee property if it is
strictly convex and

if xn ⇀ x and ‖xn‖ → ‖x‖ then xn → x.

Remark 2.4. Any locally uniformly convex Banach space (in particular,
any uniformly convex Banach space) has the Kadeč–Klee property. For proof,
we refer to Diestel [8].

Definition 2.5. Let X be a real Banach space. The operator T :X → X∗

is said to satisfy condition (S)+ if and only if, as n →∞, the following holds:

xn ⇀ x and lim sup
n→∞

〈Txn, xn − x〉 ≤ 0 implies xn → x.

Proposition 2.6. If X is a real smooth Banach space having the Kadeč–
Klee property, then, any duality mapping Jϕ:X → X∗ satisfies condition (S)+
(see [9]).

Proposition 2.7. Let X be a real reflexive and separable Banach space and
let Yk be the subspaces of X given by (2.1). We assume the following:

(H)1 The operator S:X → X∗ is bounded and satisfies condition (S)+.
(H)2 The operator K:X → X∗ is compact.

Then, any bounded sequence (unj ) ⊂ X with unj ∈ Ynj and

‖(Sunj
−Kunj

)|Ynj
‖Y ∗

nj
→ 0 as j →∞,

contains a convergent subsequence.

Proof. There exists a subsequence also denoted (unj
)j and u ∈ X such

that unj ⇀ u as j →∞. We deduce that (Sunj )j is bounded and (passing to a
subsequence) we can suppose that Kunj

→ f∗ ∈ X∗ as j →∞.
We will show that

(2.6) 〈Sunj −Kunj , unj − u〉 → 0 as j →∞.
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One can choose vnj
∈ Ynj

such that vnj
→ u as j →∞. But

〈Sunj
−Kunj

, unj
− u〉 = 〈Sunj

−Kunj
, unj

− vnj
〉+ 〈Sunj

−Kunj
, vnj

− u〉

Since unj − vnj ∈ Ynj , we have

〈Sunj
−Kunj

, unj
− vnj

〉 = (Sunj
−Kunj

) |Ynj
(unj

− vnj
)

≤ ‖(Sunj
−Kunj

) |Ynj
‖Y ∗

nj
‖unj

− vnj
‖ → 0 as j →∞.

On the other hand, the sequences (Sunj
)j and (Kunj

)j are bounded. Taking
into account that vnj

→ u as j →∞, it follows that

〈Sunj −Kunj , vnj − u〉 → 0 as j →∞,

therefore (2.6) holds.
Now, since Kunj

→ f∗ as j →∞ and unj
⇀ u as j →∞, one has

〈Kunj
, unj

− u〉 → 0 as j →∞,

therefore

〈Sunj
, unj

− u〉 → 0 as j →∞.

The operator S satisfying condition (S)+, it follows that unj
→ u as j →∞

and proposition is proved. �

In order to state the next results, we recall that if X is a real Banach space,
H ∈ C1(X, R) and c ∈ R, we say that H satisfies the (PS)∗c-condition (with
respect to (Yn)n), if any sequence (unj )j ⊂ X for which

(2.7) unj
∈ Ynj

, lim
j→∞

H(unj
) = c and lim

j→∞
‖(H|Ynj

)′(unj
)‖Y ∗

nj
= 0,

contains a subsequence converging to a critical point of H. Also, we say that
H satisfies the Palai-s-Smale condition at level c on X ((PS)c-condition, for
short), if any sequence (un) ⊂ X for which H(un) → c and H ′(un) → 0 as
n → ∞, possesses a convergent subsequence. The (PS)∗c -condition implies the
(PS)c-condition (Willem [19, Remark 3.19, a)]).

In what follows, a sequence (unj
) ⊂ X satisfying (2.7), will be called a (PS)∗c-

sequence for H.
One has

Corollary 2.8. Let X be a real reflexive and separable Banach space (X =
Sp(E)), compactly imbedded in the real Banach space V and H ∈ C1(X, R) be
such that H ′(u) = Su − Nu, where S:X → X∗ is bounded, satisfies condition
(S)+ and N :V → V ∗ is demicontinuous. Let Yk be the subspaces of X given
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by (2.1). If c ∈ R, assume that any (PS)∗c-sequence for H is bounded. Then, H

satisfies the (PS)∗c-condition for any c ∈ R.

Proof. Since H ′ has the form H ′(u) = Su−Ku with K = i∗◦N◦i:X → X∗

compact, it follows by Proposition 2.7 that, if (unj )j ⊂ X is a bounded (PS)∗c -
sequence for H, then (unj )j contains a convergent subsequence (also denoted
(unj

)j . Therefore unj
→ u as j →∞.

We shall show that H ′(u) = 0. Since Sp(E) = X, it is sufficient to show that
〈H ′(u), w〉 = 0, for any w ∈ Sp(E).

Indeed, if w ∈ Sp(E), there exists p ∈ N such that w ∈ Yp, therefore w ∈ Yq,
q ≥ p. From (2.7), it follows that for any ε > 0, there exists nε such that

‖(H|Ynj
)′(unj

)|Y ∗
nj

< ε, for all j ≥ nε.

But w ∈ Ynj
, for any j ≥ max(p, nε). Consequently,

(2.8) lim
j→∞

〈(H|Ynj
)′(unj

), w〉 = 0.

Since
〈H ′(u), w〉 = 〈H ′(u)−H ′(unj ), w〉+ 〈H ′(unj ), w〉,

taking into account H ∈ C1(X, R) and (2.8), we obtain 〈H ′(u), w〉 = 0, for any
w ∈ Sp(E), therefore H ′(u) = 0. �

Corollary 2.9. Let X be a real, reflexive and smooth Banach space having
the Kadeč–Klee property and compactly imbedded in the real Banach space V .
Let H ∈ C1(X, R) be a functional having the form H = Ψ−G, where:

(a) at any u ∈ X, Ψ(u) = Φ(‖u‖) with

Φ(t) =
∫ t

0

ϕ(s) ds, for all t ≥ 0

and ϕ: R+ → R+ being a gauge function which satisfies

sup
t>0

tϕ(t)
Φ(t)

= p∗ < ∞;

(b) G:V → R satisfies:
(b)1 G′:V → V ∗ is demicontinuous;
(b)2 there is a constant θ > p∗ such that

(2.9) 〈G′(y), y〉V,V ∗ − θG(y) ≥ C = const. for all y ∈ V.

Then, the functional H satisfies the (PS)∗c-condition, for any c ∈ R.

Proof. It suffices to prove that the hypotheses of Corollary 2.8 are fulfilled
with S = Jϕ and N = G′. Indeed, according to Asplund’s Theorem ([2]) Ψ′ =
Jϕ, Jϕ is bounded and, by Proposition 2.6, Jϕ satisfies condition (S)+. The



Solutions for Operator Equations Involving Duality Mappings 55

demicontinuity of G′ is assumed by (b)1. It remains to be proved that any
(PS)∗c -sequence for H is bounded.

Let (unj )j ⊂ X be a (PS)∗c -sequence for H. By putting εnj = ‖H ′(unj )‖Y ∗
nj

and taking into account the boundedness of H(unj ) one has:

(2.10) H(unj
)− 1

θ
〈H ′(unj

), unj
〉X,X∗ ≤ M +

εnj

θ
‖unj

‖X , M = const.

On the other hand, since, at any u ∈ X, H(u) = Ψ(u)−G(i(u)), one has

H ′(u) = Ψ′(u)− (i∗ ◦G′ ◦ i)(u) = Jϕu− (i∗ ◦G′ ◦ i)(u),

where, as usual, i stands for the injection of X in V and i∗ is its adjoint. Con-
sequently,

H(unj
) − 1

θ
〈H ′(unj

), unj
〉X,X∗

=Φ(‖unj
‖)−G(i(unj

))−−1
θ
〈Jϕunj

− (i∗ ◦G′ ◦ i)(unj
), unj

〉X,X∗

=
[
Φ(‖unj

‖)− 1
θ
ϕ(‖unj

‖)‖unj
‖
]

+
1
θ
[〈G′(i(unj )), i(unj )〉V,V ∗ − θG(i(unj ))].

From p∗ definition, ϕ(‖unj‖)‖unj‖ ≤ p∗Φ(‖unj‖) such that, taking into ac-
count (2.9), one obtains

(2.11) H(unj
)− 1

θ
〈H ′(unj

), unj
〉X,X∗ ≥

(
1− p∗

θ

)
Φ(‖unj

‖) +
C

θ
.

Comparing (2.10) and (2.11), we infer that(
1− p∗

θ

)
Φ(‖unj‖) ≤ M1 +

εnj

θ
‖unj‖, M1 = M − C

θ
.

Since Φ(t)/t →∞ as t →∞ and εnj
→ 0 as n →∞, this inequality implies the

boundedness of (un). �

Next we state the basic result we need for proving Theorem 2.1.

Theorem 2.10. Let X be a real reflexive and separable Banach space and
let Xk, Yk, Zk be the subspaces of X given by (2.1). Let H ∈ C1(X, R) be an
even functional satisfying the following hypotheses:

(H)1 H satisfies the (PS)∗c-condition, for any c ∈ R;
(H)2 For any k ∈ N∗ there exists ρk > rk > 0 such that

(2.12) ak = max
u∈Yk

‖u‖X=ρk

H(u) ≤ 0
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and

(2.13) bk = inf
u∈Zk

‖u‖X=rk

H(u) →∞ as k →∞;

(H)3 There exists k0 ∈ N∗ such that for any k ≥ k0 there exist ϕk > rk > 0
such that

inf
u∈Zk

‖u‖X=ϕk

H(u) ≥ 0,(2.13)

bk = max
u∈Yk,‖u‖X=rk

H(u) < 0(2.14)

and

(2.15) dk = inf
u∈Zk

‖u‖X≤ϕk

H(u) → 0 as k →∞.

Then, H possesses a sequence of critical positive values which converges to +∞
and another one, of critical negative values converging to 0.

Theorem 2.10 is obtained as a direct consequence of both “fountain theo-
rem” (Bartsch [3]) and “dual fountain theorem” (Bartsch–Willem [4]) as fol-
lows: the hypothesis “H satisfies the (PS)∗c -condition for every c ∈ [dk0 , 0)”
in the statement of the “dual fountain theorem” is replaced by “H satisfies
the (PS)∗c -condition for every c ∈ R”, the fact that (PS)∗c -condition implies the
(PS)c-condition is taken into account and then by union of the such modified
hypotheses of the two above quoted theorems.

Proof of Theorem 2.1. We shall prove that the hypotheses of Theo-
rem 2.10 are satisfied and then will follow by this theorem that the functional H

possesses a sequence of critical positive values which converges to ∞ and another
one, of critical negative values converging to 0.

Indeed, according to Corollary 2.9, H satisfies the (PS)∗c -condition for any
c ∈ R. Thus hypothesis (H)1 of Theorem 2.10 is satisfied.

We split in two steps the proof of the fact that hypothesis (H)2 of Theo-
rem 2.10 is also satisfied.

Step 1. Define

(2.16) αk = sup{‖i(u)‖V | u ∈ Zk, ‖u‖X = 1}, k ∈ N∗,

and show that

(a) 0 < αk+1 ≤ αk, for all k ∈ N∗, and αk → 0 as k →∞;
(b)

(2.17) ‖i(u)‖V ≤ αk‖u‖X , for all u ∈ Zk, k ∈ N∗,

where i stands for the compact injection of X in V .
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Indeed, let C = const. > 0 be such that

‖i(u)‖V ≤ C‖u‖X , for all u ∈ X.

Since for any u ∈ Zk, with ‖u‖X = 1 one has ‖i(u)‖V ≤ C, we derive that
αk ≤ C. Since Zk+1 ⊂ Zk one derives that αk+1 ≤ αk. Since i(u) 6= i(0) = 0 for
any u ∈ X, u 6= 0, one derives that ‖i(u)‖V > 0 for any u ∈ Zk, with ‖u‖X = 1.
Consequently, αk > 0.

By αk definition, there is uk ∈ Zk, with ‖uk‖X = 1 such that

(2.18) 0 ≤ αk − ‖i(uk)‖V <
1
k

, k ∈ N∗.

We shall prove that uk ⇀ 0 (in X). Since X is reflexive and (uk) is bounded,
it suffices to show that zero is the unique weakly cluster point of (uk).

Consider a subsequence of (uk) (still denoted by (uk)) and an element u ∈ X

such that uk ⇀ u. We shall prove that u = 0. Let p ∈ N∗ be fixed (but arbitrary
chosen). One has fp(uk) → fp(u) as k → ∞. But, for any k > p, fp(uk) = 0
(that’s because uk ∈ Zk =

⊕∞
j=kXj , Xj = Sp({ej}) and fp(ej) = 0 for any

j ≥ k).
Consequently, fp(u) = 0. Since X∗ = Sp({f1, . . . , fn, . . . }), we derive, by

density, that f(u) = 0, for all f ∈ X∗, thus u = 0. Since uk ⇀ 0 (in X), the
compactness of i implies i(uk) → 0 in Y and then, from (2.18), αk → 0. Clearly,
(b) directly follows by the definition of αk.

Step 2. Define rk = (c1/2c2α
q
k)1/(q−p) and ρk = max(rk +1, t0), t0 > 0 being

such that h(t) = c3t
r − c4t

s + c5 ≤ 0 for t ≥ t0 (since h(t) → −∞ as t → ∞,
such a t0 exists). Clearly, one has ρk > rk > 0. Moreover, we shall show that
(2.12) and (2.13) hold.

Let u ∈ Yk with ‖u‖X = ρk. Since ρk > 1, it follows from (d) that H(u) ≤
c3ρ

r
k−c4ρ

s
k +c5 = h(ρk) and, since ρk ≥ t0, it follows that h(ρk) ≤ 0, thus (2.12)

holds.
Let k0 be such that rk > 1 for any k ≥ k0 (since rk →∞ as k →∞, such a

k0 exists). Since ‖i(u)‖Y ≤ αk‖u‖X , for any u ∈ Zk (see (2.17)), we derive from
(2.4) that, for k ≥ k0 and u ∈ Zk satisfying ‖u‖X = rk,

H(u) ≥ c1‖u‖p
X − c2α

q
k‖u‖

q
X − d = c1r

p
k − c2α

q
krq

k − d =
c1

2
rp
k − d.

Consequently, for k ≥ k0

inf
u∈Zk

‖u‖X=rk

H(u) ≥ c1

2
rp
k − d →∞ as k →∞.

Consequently, (2.13) holds as well, therefore (H)2 is satisfied.
Now, we shall prove that the hypothesis (H)3 of Theorem 2.10 is also satisfied.

Let us consider t0 > 1 such that h(t) = c3t
r − c4t

s + c5 < −1 for t ≥ t0 (Since
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h(t) → −∞ as t → ∞, such a t0 exists). Define rk = t0, for all k ∈ N∗.
Let u ∈ Yk with ‖u‖X = rk. Since rk > 1, it follows from (d) that H(u) ≤
c3r

r
k − c4r

s
k + c5 = h(rk) and, since rk = t0, it follows that h(rk) < −1, thus

(2.14) holds. Now, we will show that there exists k0 ∈ N∗ such that for any
k ≥ k0 there exists ϕk > rk > 0 such that (2.13) holds.

Define γk = (c1/(2c2α
q
k))1/(q−p), whith (αk)k given by (2.16).

Since limk→∞ αk = 0, it follows that limk→∞ γk = ∞, therefore there exists
k1 ∈ N∗ such that, for any k ≥ k1, one has γk > t0.

We derive from (2.4) that, for k ≥ k1 and u ∈ Zk satisfying ‖u‖X = γk,

H(u) ≥ c1‖u‖p
X − c2α

q
k‖u‖

q
X − d = c1γ

p
k − c2α

q
kγq

k − d =
c1

2
γp

k − d.

Since limk→∞((c1/2)γp
k − d) = ∞, there exists k0 ∈ N∗, k0 ≥ k1 such that,

for any k ≥ k0,
c1

2
γp

k − d > 0.

Define ϕk = γk0 > t0 = rk. Consequently, for k ≥ k0 and u ∈ Zk, ‖u‖X = ϕk,
H(u) > 0, therefore (2.13) holds as well.

Now, since Ψ(u) ≥ 0, for all u ∈ X, we derive from (2.2) and (2.5) that

H(u) ≥ −G(u) ≥ −c7‖i(u)‖V − c8‖i(u)‖p∗
V , for all u ∈ X.

Consequently, for k ≥ k0 and u ∈ Zk satisfying ‖u‖X ≤ ϕk, one has

H(u) ≥ −c7αkϕk − c8α
p∗
k ϕp∗

k ,

therefore dk ≥ −c7αkγk0 − c8α
p∗
k γp∗

k0
, for all k ≥ k0. Then limk→∞ dk ≥ 0.

On the other hand, since Zk ∩ Yk 6= ∅ and rk < ϕk, it follows that

dk ≤ bk < 0, for all k ≥ k0,

therefore −c7αkγk0 − c8α
p∗
k γp∗

k0
≤ dk ≤ bk < 0, for all k ≥ k0.

Since αk → 0 as k → ∞, it follows that (2.15) is satisfied. Thus hypothesis
(H)3 of Theorem 2.10 is satisfied. The proof is complete. �

3. Applications to Orlicz–Sobolev spaces

Throughout this section Ω denotes a bounded open subset of RN , N ≥ 2. Let
a: R → R be a strictly increasing odd continuous function with limt→∞ a(t) = ∞.
For m ∈ N∗, let us denote by Wm

0 EA(Ω) the Orlicz–Sobolev space generated by
the N -function A, given by

(3.1) A(t) =
∫ t

0

a(s) ds.

We shall always suppose that

(3.2) lim
t→0

∫ 1

t

A−1(τ)
τ (N+1)/N

dτ < ∞,
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replacing, if necessary, A by another N -function equivalent to A near infinity
(which determines the same Orlicz space).

Suppose also that

(3.3) lim
t→∞

∫ t

1

A−1(τ)
τ (N+1)/N

dτ = ∞.

With (3.3) satisfied, we define the Sobolev conjugate A∗ of A by setting

A−1
∗ (t) =

∫ t

0

A−1(τ)
τ (N+1)/N

dτ, t ≥ 0.

The existence and multiplicity of weak solutions for the boundary value prob-
lem

Jau =
∑
|α|<m

(−1)|α|Dαgα(x,Dαu) in Ω,(3.4)

Dαu = 0 on ∂Ω, |α| ≤ m− 1,(3.5)

is studied, in this section, in the following functional framework:

• T [u, v] is a nonnegative symmetric bilinear form on the Orlicz–Sobolev
space Wm

0 EA(Ω), involving the only generalized derivatives of order m of the
functions u, v ∈ Wm

0 EA(Ω), satisfying

c1

∑
|α|=m

(Dαu)2 ≤ T [u, u] ≤ c2

∑
|α|=m

(Dαu)2, for all u ∈ Wm
0 LA(Ω),

with c1, c2 be positive constants;
• ‖u‖m,A = ‖

√
T [u, u‖(A) is a norm on Wm

0 EA(Ω), ‖ · ‖(A) designating the
Luxemburg norm on the Orlicz space LA(Ω);

• Ja: (Wm
0 EA(Ω), ‖ · ‖m,A) → (Wm

0 EA(Ω), ‖ · ‖m,A)∗ is the duality mapping
on (Wm

0 EA(Ω), ‖ · ‖m,A) subordinated to the gauge function a;
• gα: Ω×R → R, |α| < m, are Carathéodory functions satisfying hypotheses:

(H)1 there exist the N -functions Mα, |α| < m, which increase essentially
more slowly than A∗ near infinity and satisfy the ∆2-condition, such
that

(3.6) |gα(x, s)| ≤ cα(x) + dαM
−1

α (Mα(s)), x ∈ Ω, s ∈ R, |α| < m,

where Mα are the complementary N -functions to Mα, cα ∈ KMα
(the

Orlicz class generated by the N -function Mα) and dα are positive con-
stants;

(H)2 for any α with |α|<m, there exist sα >0 and θα > p∗=supt>0 ta(t)/A(t)
such that

0 < θαGα(x, s) ≤ sgα(x, s),
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for almost every x ∈ Ω and all s with |s| ≥ sα, where

(3.7) Gα(x, s) =
∫ s

0

gα(x, τ) dτ.

Assume also that

(H)3 the function a(t)/t is nondecreasing on (0,∞), (3.2) and (3.3) being
fulfilled as well (see the beginning of this section).

By (weak) solution of the problem (3.4)–(3.5), we understand a solution of
the equation

(3.8) Jau = G′(u),

in the following functional framework:

(i) X = Wm
0 EA(Ω) endowed with the ‖ · ‖m,A-norm;

V =
⋂
|β|<m Wm−1LMβ

(Ω) endowed with the norm

‖u‖V =
∑
|β|<m

‖u‖W m−1LMβ
(Ω);

(ii) Ja = the duality mapping on (Wm
0 EA(Ω), ‖·‖m,A) corresponding to the

gauge function a;
(iii) G′:V → V ∗ is the differential of the functional G:V → R,

G(u) =
∑
|α|<m

∫
Ω

Gα(x,Dαu(x)) dx.

According to [10, Proposition 6.2], X is compactly imbedded in V .

Proposition 3.1. Let A: R → R+ be the N -function given by (3.1). Fur-
thermore, we assume that A satisfies (3.2) and (3.3), the ∆2-condition being also
satisfied by A and A. Let gα: Ω × R → R, |α| < m be Carathéodory functions
satisfying condition (H)1. Then, the functional H:Wm

0 EA(Ω) → R defined by

(3.9) H(u) = Ψ(u)−G(u),

with
Ψ(u) = A(‖u‖m,A), G(u) =

∑
|α|<m

∫
Ω

Gα(x,Dαu(x)) dx,

for all u ∈ Wm
0 EA(Ω), is well-defined and C1 on Wm

0 EA(Ω), with

H ′(u) = Jau−
∑
|α|<m

(−1)|α|Dαgα(x,Dαu).

Proof. Clearly, the well-definedness of H on Wm
0 EA(Ω) reduces to that

of G. At its turn, the well-definedness of G on Wm
0 EA(Ω) is proved in [10,

Proposition 7.5].
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We shall prove more: G is well-defined on V . Fix α with |α| ≤ m − 1. If
u ∈ Y , then u ∈ Wm−1LMβ

(Ω), for all β with |β| ≤ m − 1. In particular,
u ∈ Wm−1LMα(Ω), therefore Dαu ∈ LMα(Ω) = EMα(Ω).

Taking into account [10, Proposition 7.5 and (7.15)], one has

|Gα(x, s)| ≤ cα|s|+ 2dαMα(|s|).

Therefore∫
Ω

Gα(x, Dαu(x)) dx ≤ cα

∫
Ω

|Dαu(x)| dx + 2dα

∫
Ω

Mα(|Dαu(x)|) dx.

Since, Dαu ∈ EMα
(Ω) ↪→ L1(Ω), it follows that

∫
Ω
|Dαu(x)| dx makes sense.

Also,
∫
Ω

Mα(|Dαu(x)|) dx makes sense. Consequently,∫
Ω

Gα(x, Dαu(x)) dx < ∞.

In order to prove that H ∈ C1, it is sufficient to prove that Ψ ∈ C1 and
G ∈ C1. Indeed, one has ([10, Proposition 7.5]):

Ψ′(u) = Jau, for all u ∈ Wm
0 EA(Ω),

where

Jau =

{
0 if u = 0,

a(‖u‖m,A)‖ · ‖′m,A(u) if u 6= 0,

and

〈‖ · ‖′m,A(u), h〉 =

∫
Ω

a

(√
T [u, u](x)
‖u‖m,A

)
T [u, h](x)√
T [u, u](x)

dx∫
Ω

a

(√
T [u, u](x)
‖u‖m,A

)√
T [u, u](x)
‖u‖m,A

dx

,

for all u ∈ Wm
0 EA(Ω), u 6= 0, for all h ∈ Wm

0 EA(Ω).
The continuity of the map u 7→ ‖·‖′m,A(u) at any u 6= 0 is proved in [10, The-

orem 3.6] and for the continuity of Ψ′ at u = 0, see the proof of Proposition 7.5
in [10]. Thus Ψ ∈ C1.

As far as the C1-regularity of G is concerned, for a later use, we shall prove
more: G is C1 on V and

(3.10) 〈G′(u), h〉 =
∑
|α|<m

∫
Ω

gα(x,Dαu(x))Dαh(x) dx, u, h ∈ V.

Indeed, let u, h ∈ V . One has

|G(u + h) −G(u)− 〈G′(u), h〉|

=
∣∣∣∣ ∑
|α|<m

∫
Ω

[Gα(x, Dαu(x) + Dαh(x))

−Gα(x,Dαu(x))− gα(x, Dαu(x))Dαh(x)] dx

∣∣∣∣
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=
∣∣∣∣ ∑
|α|<m

∫
Ω

[gα(x,Dαu(x) + θDαh(x) ·Dαh(x))Dαh(x)

− gα(x, Dαu(x))Dαh(x)] dx

∣∣∣∣
≤ 2

∑
|α|<m

‖gα(x, Dαu(x) + θDαh ·Dαh(x))

− gα(x, Dαu(x))‖(Mα)‖D
αh‖(Mα)

≤ 2‖h‖V

∑
|α|<m

‖gα(x, Dαu(x) + θDαh ·Dαh(x))− gα(x, Dαu(x))‖(Mα),

where 0 ≤ θDαh(x) ≤ 1 ([13, Lemma 18.1]) and Hölder’s type inequality was
used ([13, p. 80]). Consequently,

|G(u + h)−G(u)− 〈G′(u), h〉|
‖h‖V

≤ 2
∑
|α|<m

‖gα(x,Dαu(x) + θDαh ·Dαh(x))− gα(x,Dαu(x))‖(Mα).

Suppose ‖h‖V → 0. It follows that

‖h‖W m−1LMα (Ω) → 0, therefore ‖Dαh‖(Mα) → 0,

for any α with |α| < m. Taking into account the continuity of Nemytskij oper-
ators (see [13, Theorem 17.6]), it follows that G is Fréchet differentiable on V

and G′ is given by (3.10).
Moreover, the operator G′:V → V ∗ given by (3.10) is continuous (see [10,

Proposition 6.3]).
Now, since X is continuously imbedded in V and G is C1 on V , it follows

that G is C1 on X. �

The main result is the following.

Theorem 3.2. Let A: R → R+ be the N -function given by (3.1), fulfill-
ing (3.2), (3.3) and hypothesis (H)3, and let gα: Ω × R → R, |α| < m, be
Carathéodory functions satisfying (H)1, (H)2 and being odd in the second ar-
gument: gα(x,−s) = −gα(x, s). Suppose that the N -functions A, A and Mα,
|α| < m, satisfy the ∆2-condition. With

(3.11) p0 = inf
t>0

ta(t)
A(t)

, p∗ = sup
t>0

ta(t)
A(t)

< ∞,

we further assume:

(H)4 p0 < γ = max|α|<m γα, γα = supt>0 tM ′
α(t)/Mα(t).
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Then, the functional (3.9) possesses a sequence of critical positive values which
converges to ∞ and another one, of critical negative values converging to 0.

Proof. Theorem 2.1 applies. Indeed, since a(t)/t is nondecreasing on (0,∞),
Wm

0 EA(Ω) is uniformly convex ([10, Theorem 3.14]). Consequently, Wm
0 EA(Ω)

is reflexive and has the Kadeč–Klee property. The same space is smooth ([10,
Theorem 3.6]), separable ([1, Theorem 8.28]) and compactly imbedded in V =⋂
|β|<m Wm−1LMβ

(Ω), endowed with the norm

(3.12) ‖u‖V =
∑
|β|<m

‖u‖W m−1LMα (Ω).

([10, Proposition 6.2]). The functional H ∈ C1(X, R) (Proposition 3.1), is even
(since gα are odd in the second argument) and satisfies the hypotheses (a)–(d)
of Theorem 2.1.

Since (3.11) holds, the hypothesis (a) is obviously satisfied with ϕ = a. Since
G′:V → V ∗ is continuous ( [10, Proposition 6.3]), (b)1 is obviously satisfied.

Taking into account [10, Lemma 7.7]), we infer that there exists a positive
constant C such that

(3.13)
∑
|α|<m

∫
Ω

[
1
θ
gα(x,Dαun(x))Dαun(x)−Gα(x,Dαun(x))

]
dx ≥ −C,

where θ = min|α|<m θα. We remark that (3.13) can be rewrited as

1
θ
〈G′(un), un〉 −G(u) ≥ −C,

therefore (b)2 in Theorem 2.1 is fulfilled.
We will prove that hypothesis (c) of Theorem 2.1 is fulfilled. For the first

term in (3.9), according to [10, Lemma 6.5 a)], we have

(3.14) A(‖u‖m,A) ≥ A(1)‖u‖p0
m,A,

for all u ∈ Wm
0 EA(Ω) with ‖u‖m,A > 1.

We shall now handle the estimations for the second term in (3.9). As in [10,
Proposition 7.5, (7.15)], from (H)3 we deduce that for any α with |α| < m one
has

(3.15) |Gα(x, s)| ≤ |cα(x)||s|+ 2dαMα(|s|), x ∈ Ω, s ∈ R.

Consequently,

(3.16)
∫

Ω

Gα(x,Dαu(x)) dx ≤
∫

Ω

|cα(x)||Dαu(x)| dx

+ 2dα

∫
Ω

Mα(|Dαu(x)|) dx,
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for all u ∈ Wm
0 EA(Ω). From Hölder’s type inequality, we derive

(3.17)
∣∣∣∣ ∫

Ω

cα(x)|Dαu(x)| dx

∣∣∣∣ ≤ 2‖cα‖(Mα)‖D
αu‖(Mα),

therefore ∣∣∣∣ ∫
Ω

cα(x)|Dαu(x)| dx

∣∣∣∣ ≤ 2‖cα‖(Mα),

if ‖Dαu‖(Mα) ≤ 1 and∣∣∣∣ ∫
Ω

cα(x)|Dαu(x)| dx

∣∣∣∣ ≤ 2‖cα‖(Mα)‖D
αu‖γ

(Mα),

if ‖Dαu‖(Mα) > 1. Consequently,

(3.18)
∣∣∣∣ ∫

Ω

cα(x)|Dαu(x)| dx

∣∣∣∣ ≤ kα(‖u‖γ
Y + 1), for all u ∈ Wm

0 EA(Ω),

where kα = 2‖cα‖(Mα).
On the other hand, if ‖Dαu‖(Mα) ≤ 1, then∫

Ω

Mα(Dαu(x)) dx ≤ 1.

If ‖Dαu‖(Mα) > 1, then from [10, Lemma 6.5, b)]

(3.19)
∫

Ω

Mα(Dα(u(x))) dx ≤ ‖Dα(u)‖γα

(Mα) ≤ ‖u‖γ
Y ,

therefore

(3.20)
∫

Ω

Mα(|Dαu(x)|) dx ≤ ‖u‖γ
Y + 1, for all u ∈ Wm

0 EA(Ω).

Taking into account (3.16), (3.18) and (3.20), it follows that∫
Ω

Gα(x, Dαu(x)) dx ≤ (kα + 1)‖u‖γ
Y + (kα + 1),

for all u ∈ Wm
0 EA(Ω), |α| < m. Consequently, summing by α, we have

(3.21)
∑
|α|<m

∫
Ω

Gα(x, Dαu(x)) dx < c2‖u‖γ
Y + c2,

where c2 =
∑
|α|<m(kα + 1). Then, from (3.14) and (3.21), one obtains

F (u) ≥ A(1)‖u‖p0
m,A − c2‖u‖γ

Y − c2,

if u ∈ Wm
0 EA(Ω), ‖u‖m,A > 1, therefore, the hypothesis (c) of Theorem 2.1 is

fulfilled.
Now, we will prove that the hypothesis (d) of Theorem 2.1 is fulfilled. Let

Yk be a finite dimensional subspace of Wm
0 EA(Ω). According to [10, Lemma 7.6,

(7.46)], it is shown that for any α with |α| < m, one has

Gα(x, s) ≥ γα(x)|s|θα , for a.e. x ∈ Ω and |s| ≥ sα,
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where γα ∈ L∞(Ω).
For α with |α| < m and v ∈ Wm

0 EA(Ω), we define

Ωα
≥ = {x ∈ Ω | |Dαv(x)| ≥ sα}, Ωα

< = Ω \ Ωα
≥.

Then∫
Ω

Gα(x,Dαv(x)) dx ≥
∫

Ωα
≥

γα(x)|Dαv(x)|θα dx +
∫

Ωα
<

Gα(x, Dαv(x)) dx.

But∫
Ωα
≥

γα(x)|Dαv(x)|θα dx =
∫

Ω

γα(x)|Dαv(x)|θα dx−
∫

Ωα
<

γα(x)|Dαv(x)|θα dx.

Since ∫
Ωα

<

γα(x)|Dαv(x)|θα dx ≤ ‖γα‖∞sθα
α vol(Ω),

we have∫
Ω

Gα(x,Dαv(x)) dx ≥
∫

Ω

γα(x)|Dαv(x)|θα dx +
∫

Ωα
<

Gα(x, Dαv(x)) dx− kα,

where kα = ‖γα‖∞sθα
α vol(Ω). On the other hand, it follows from (3.15) that∫

Ωα
<

Gα(x,Dαv(x)) dx ≤ ‖cα‖L1(Ω)sα + 2dαMα(sα)vol(Ω),

therefore ∫
Ω

Gα(x,Dαv(x)) dx ≥
∫

Ω

γα(x)|Dαv(x)|θα dx−Kα,

where Kα = kα + ‖cα‖L1(Ω)sα + 2dαMα(sα)vol(Ω). Consequently,

F (v) ≤ A(‖v‖m,A)−
∑
|α|<m

∫
Ω

γα(x)|Dαv(x)|θα dx + K,

where K is a positive constant and θα are given by (H)2. Taking into account
the definition of p∗, for ‖v‖m,A > 1, one obtains

F (v) ≤ A(1)‖v‖p∗

m,A −
∑
|α|<m

∫
Ω

γα(x)|Dαv(x)|θα dx + K.

Now, the functional ‖ · ‖γ :Wm
0 EA(Ω) → R defined by

‖u‖γ =
∑
|α|<m

( ∫
Ω

γα(x)|Dαu(x)|θα dx

)1/θα

is a norm on Wm
0 EA(Ω). Denoting by

‖Dαu‖θα
=

( ∫
Ω

γα(x)|Dαu(x)|θα dx

)1/θα

,
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one has

‖u‖γ =
∑
|α|<m

‖Dαu‖θα
.

Let α be a multiindex satisfying

‖Dαu‖θα
= max
|α|<m

‖Dαu‖θα
.

Then ‖u‖γ ≤ N0‖Dαu‖θα , where N0 =
∑
|α|<m 1. Therefore

∑
|α|<m

∫
Ω

γα(x)|Dαu(x)|θα dx ≥
∫

Ω

γα(x)|Dαu(x)|θα dx = ‖Dαu‖θα

θα
≥ 1

N0
‖u‖θα

γ .

Since ‖ · ‖m,A-norm and ‖ · ‖γ-norm are equivalent on the finite dimensional
subspace Yk, there is a constant δ = δ(Yk) > 0 such that

‖u‖m,A ≤ δ‖u‖γ .

Therefore

F (v) ≤ A(1)‖v‖p∗

m,A − 1
N0δ

θα
‖v‖θα

m,A + K,

if v ∈ Yk, ‖v‖m,A > 1.
Finally, we will prove that the hypothesis (e) of Theorem 2.1 is fulfilled.

Indeed, taking into account (3.17) and (3.12), we derive that∑
|α|<m

∫
Ω

|cα(x)||Dαu(x)| dx ≤ 2‖u‖V

∑
|α|<m

‖cα‖(Mα).

Also, from (3.19) it follows that

2
∑
|α|<m

dα

∫
Ω

Mα(Dα(u(x))) dx ≤ 2(‖u‖V + ‖u‖γ
V )

∑
|α|<m

dα,

therefore, taking into account (3.16), one has

G(u) =
∑
|α|<m

∫
Ω

Gα(x, Dαu(x)) dx ≤ c7‖u‖V + c8‖u‖γ
V ,

where

c7 = 2
∑
|α|<m

‖cα‖(Mα) + 2
∑
|α|<m

dα, c8 = 2
∑
|α|<m

dα,

that is (2.5). Taking into account Theorem 2.1 , it follows that the functional F

possesses a sequence of critical positive values which converges to ∞ and another
one, of critical negative values converging to 0. By Proposition 3.1, equation (3.8)
possesses two sequences of solutions in Wm

0 EA(Ω) or, equivalently, the problem
(3.4)–(3.5) possesses two sequences of weak solutions in Wm

0 EA(Ω). �
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4. Examples

Example 4.1. Consider the problem (3.4)–(3.5), under the following hy-
potheses:

(a) the function a: R → R is defined by

a(t) =
n∑

i=1

ai|t|pi−2t,

where ai > 0, 1 ≤ i ≤ n, pi+1 > pi ≥ 2, 1 ≤ i ≤ n− 1, pn < N ;
(b) the Carathéodory functions gα: Ω × R → R, |α| < m, are odd in the

second argument:

gα(x,−s) = −gα(x, s);

(c) there exist qα, p1 < qα < Npn/(N − pn), |α| < m, such that

(4.1) |gα(x, s)| ≤ aα + bα|s|qα−1, x ∈ Ω, s ∈ R, aα, bα positive constants;

(d) if Gα, |α| < m, are given by (3.7), then, there exist sα > 0 and θα > pn

such that

(4.2) 0 < θαGα(x, s) ≤ sgα(x, s), for a.e. x ∈ Ω and all s with |s| ≥ sα.

Under these conditions, the problem (3.4)–(3.5) has two sequences of weak
solutions.

Proof. The idea of the proof is as follows: the preceding assumptions entail
that the hypotheses of Theorem 3.2 are fulfilled.

First, we prove that hypothesis (H)3 is satisfied. Since

a(t)
t

=
n∑

i=1

ait
pi−2 for all t > 0,

it follows that a(t)/t is nondecreasing on (0,∞). In order to prove that (3.2)
and (3.3) are satisfied, the following result is needed. (see [10, Lemma 8.1(ii)]).

Lemma 4.2. Let A: R → R+, A(t) =
∫ |t|
0

a(s) ds, be an N -function. Assume
that

p∗ = sup
t>0

ta(t)
A(t)

< N

and there are constants 0 < γ < N and δ > 0 such that

(4.3) A(t) ≥ Ctγ , for all t ∈ (0, A−1(δ)).
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Then, (3.2) and (3.3) are satisfied (consequently, the Sobolev conjugate A∗ of A,
can be defined).

In our case, p∗ = pn and pn < N (by (a)). Since

A(t) =
n∑

i=1

ai

pi
tpi ≥ a1

p1
tp1 , for all t > 0,

it follows that (4.3) is satisfied with C = a1/p1, γ = p1 and any δ > 0.
Secondly, we prove that hypothesis (H)1 is satisfied. By setting

Mα(s) =
|s|qα

qα
, |α| < m, s ∈ R,

(4.1) rewrites as

|gα(x, s)| ≤ aα + bα(qα − 1)1/q′αM
−1

α (Mα(s)), x ∈ Ω, s ∈ R, |α| < m,

showing that (3.6) is satisfied.
What it remains to be proved is that Mα, |α| < m, satisfy the ∆2-condition

and increase essentially more slowly than A∗ near infinity. It is easy to check
(by definition) that Mα, |α| < m, satisfy the ∆2-condition.

By using l’Hôspital rule, we also have

lim
t→∞

A−1
∗ (t)

M−1
α (t)

= lim
t→∞

cα

A−1(t)
t1/qα+1/N

= lim
s→∞

cα

s

(A(s))1/qα+1/N
= 0,(4.4)

cα = q(qα−1)/qα
α ,

since, from (c), the degree of denominator is pn(1/qα + 1/N) > 1. Thus, Mα,
|α| < m, increase essentially more slowly than A∗.

The hypothesis (H)2 is covered by (d) (with gα odd functions in the second
argument, according to (b)).

In order to prove that A and A satisfy the ∆2-condition, the following result
is needed (see [10, Lemma 8.1(i)]):

Lemma 4.3. Let A: R → R+, A(t) =
∫ |t|
0

a(s) ds, be an N -function and A be
the complementary N -function to A. Assume that

p∗ = sup
t>0

ta(t)
A(t)

< ∞ and p0 = inf
t>0

ta(t)
A(t)

> 1.

Then, both A and A satisfy the ∆2-condition.

In our case, as already one has seen, p∗ = pn < N and p0 = p1 > 1 (according
to (a)). Since

Mα(s) =
|s|q′α
q′α

,
1
qα

+
1
q′α

= 1, |α| < m, s ∈ R,

it is easy to check (by definition) that Mα, |α| < m, satisfy the ∆2-condition.
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Finally, hypothesis (H)4 is satisfied. Indeed, since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m,

it follows that p0 = p1 < qα, |α| < m. The result follows by Theorem 3.2. �

Example 4.4. Consider the problem (3.4)–(3.5), under the following hy-
potheses:

(a) the function a: R → R is defined by

a(t) = |t|p−2t
√

t2 + 1, 2 ≤ p < N − 1;

(b) the Carathéodory functions gα: Ω × R → R, |α| < m, are odd in the
second argument:

gα(x,−s) = −gα(x, s);

(c) there exist qα, p < qα < N(p + 1)/(N − p− 1), |α| < m, such that the
growth conditions (4.1) hold;

(d) there exist sα > 0 and θα > p + 1 such that the conditions (4.2) hold.

Under these conditions, the problem (3.4)–(3.5) has two sequences of weak solu-
tions.

Proof. The idea of the proof is the same with that used for Example 4.1,
namely, we shall show that the preceding assumptions entail the fulfillment of
those of Theorem 3.2.

First, we prove that hypothesis (H)3 is satisfied. Since

a(t)
t

= tp−2
√

t2 + 1 for all t > 0,

it follows that a(t)/t is nondecreasing on (0,∞). In order to prove that (3.2)
and (3.3) are satisfied, we shall use Lemma 4.2. In our case, p∗ = p + 1 ([10,
Example 8.6]) and p + 1 < N (by (a)). Since a(t) ≥ tp−1, t > 0, one has

A(t) ≥ 1
p
tp, for all t > 0,

therefore (4.3) is satisfied with C = 1/p, γ = p < N and any δ > 0.
Secondly, the hypothesis (H)1 in Theorem 3.2 is satisfied with Mα(s) =

|s|qα/qα, |α| < m, which, obviously, satisfy the ∆2-condition. Also, Mα, |α| < m,
increase essentially more slowly than A∗ near infinity. Indeed, as in (4.4)

lim
t→∞

A−1
∗ (t)

M−1
α (t)

= lim
s→∞

cα

s

(A(s))1/qα+1/N
.

It suffices to show that

lim
s→∞

s

(A(s))1/qα+1/N
= 0.
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Since a(t) ≥ tp, for all t ≥ 0, it follows that A(t) ≥ tp+1/(p + 1), for all t ≥ 0.
Consequently,

lim
s→∞

s

(A(s))1/qα+1/N
≤ lim

s→∞

s

(p + 1)1/qα+1/N · s(1/qα+1/N)(p+1)
= 0,

since, from (c), the degree of denominator is (p + 1)(1/qα + 1/N) > 1.
The hypothesis (H)2 is covered by (d) (with gα odd functions in the second

argument, according to (b)).
In order to prove that A and A satisfy the ∆2-condition, we shall use Lem-

ma 4.3.
In our case, as already one has seen, p∗ = p + 1 < N and p0 = p > 1

(according to (a)). Also, the functions

Mα(s) =
|s|q′α
q′α

,
1
qα

+
1
q′α

= 1, |α| < m, s ∈ R,

satisfy the ∆2-condition.
Finally, the hypothesis (H)4 is satisfied. Indeed, since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m,

it follows that p0 = p < qα, |α| < m. The result follows by Theorem 3.2. �

Example 4.5. Consider the problem (3.4)–(3.5), under the following hy-
potheses:

(a) the function a: R → R is defined by

a(t) = |t|p−2t ln(1 + |t|), 2 ≤ p < N − 1;

(b) the Carathéodory functions gα: Ω × R → R, |α| < m, are odd in the
second argument:

gα(x,−s) = −gα(x, s);

(c) there exist qα, p < qα < Np/(N − p), |α| < m, such that the growth
conditions (4.1) hold;

(d) there exist sα > 0 and θα > p + 1 such that the conditions (4.2) hold.

Under these conditions, the problem (3.4)–(3.5) has a sequence of weak solutions.

Proof. The idea of the proof is the same with that used for Example 4.1,
namely, we shall show that the preceding assumptions entail the fulfillment of
those of Theorem 3.2.

First, we prove that hypothesis (H)3 is satisfied. Since a(t)/t = tp−2 ln(1+ t)
for all t > 0, it follows that a(t)/t is nondecreasing on (0,∞). In order to prove
that (3.2) and (3.3) are satisfied, we shall use Lemma 4.2.
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In our case, p∗ = p + 1 ([10, Example 8.8]) and p + 1 < N (by (a)). Since
(see [10, Example 8.8, (8.17)])

A(t) ≥ 2
p + 1

tp+1, for all t ∈ (0, δ = A−1(δ)),

it follows that (4.3) is satisfied with C = 2/(p + 1), γ = p + 1 < N and any
δ > 0.

Secondly, hypothesis (H)1 in Theorem 3.2 is satisfied with Mα(s) = |s|qα/qα,
|α| < m, which, obviously, satisfy the ∆2-condition. Also, Mα, |α| < m, increase
essentially more slowly than A∗ near infinity. As in the preceding two examples,
this turns out to show that

lim
s→∞

s

(A(s))1/qα+1/N
= 0.

This last equality is true since A(t) ≥ A(1)tp, for all t > 1 ([10, Lemma 6.5a)]),
therefore

lim
s→∞

s

(A(s))1/qα+1/N
≤ lim

s→∞

s

(A(1))1/qα+1/N · s(1/qα+1/N)p
= 0,

since, from (c), the degree of denominator is p(1/qα + 1/N) > 1.
The arguments needed for proving that hypothesis (H)2 of Theorem 3.2 is

satisfied are those used in the preceding two examples.
In order to prove that A and A satisfy the ∆2-condition, we shall use Lem-

ma 4.3. In our case, as already one has seen, p∗ = p + 1 < N and p0 = p > 1
(according to (a)). Also, the functions Mα(s) = |s|q′α/q′α, 1/qα + 1/q′α = 1,
|α| < m, s ∈ R, satisfy the ∆2-condition.

Finally, hypothesis (H)4 is satisfied, since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m,

and, by (c), p0 = p < qα, |α| < m. The result follows by Theorem 3.2. �

Example 4.6. Consider the problem (3.4)–(3.5), under the following hy-
potheses:

(a) the function a: R → R is defined by a(t) = |t|p−2t ln(1+ c+ |t|), 2 ≤ p ≤
N − 1, c = const. > 0;

(b) the Carathéodory functions gα: Ω × R → R, |α| < m, are odd in the
second argument:

gα(x,−s) = −gα(x, s);

(c) there exist qα, p < qα < Np/(N − p), |α| < m, such that the growth
conditions (4.1) hold;

(d) there exist sα > 0 and θα > p + 1 such that the conditions (4.2) hold.
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Under these conditions, the problem (3.4)–(3.5) has a sequence of weak solutions.

Proof. The idea of the proof is that used for Example 4.1, namely, we
shall show that the preceding assumptions entail the fulfillment of those of The-
orem 3.2.

First, we prove that hypothesis (H)3 is satisfied. Since a(t)/t = tp−2 ln(1 +
c + t) for all t > 0, it follows that a(t)/t is nondecreasing on (0,∞). In order to
prove that (3.2) and (3.3) are satisfied, we shall use Lemma 4.2. In our case, p∗ ≤
p+C0 < p+1, where C0 = 1/(1 + ln(1 + c + t0)) and t0−(1+c) ln(1+c+t0) = 0
([10, Example 8.10]) and p+1 ≤ N (by (a)). Since (see [10, Example 8.10, (8.23)])

(4.5) A(t) ≥ ln(1 + c)
p

tp, for all t ≥ 0,

it follows that (4.3) is satisfied with C = ln(1 + c)/p, γ = p < N and any δ > 0.
Secondly, the hypothesis (H)1 in Theorem 3.2 is satisfied with Mα(s) =

|s|qα/qα, |α| < m, which, obviously, satisfy the ∆2-condition. Also, Mα, |α| < m,
increase essentially more slowly than A∗ near infinity. As in the preceding three
examples, this comes to showing that

lim
s→∞

s

(A(s))1/qα+1/N
= 0.

This last equality is true since (4.5) holds, therefore

lim
s→∞

s

(A(s))1/qα+1/N
≤ lim

s→∞

s(
ln(1 + α)

p

)1/qα+1/N

· s(1/qα+1/N)p

= 0,

since, from (c), the degree of denominator is p(1/qα + 1/N) > 1.
The necessary arguments in order to prove that hypothesis (H)2 of Theo-

rem 3.2 is satisfied are that used in the preceding three examples.
In order to prove that A and A satisfy the ∆2-condition, we shall use Lem-

ma 4.3. In our case, as already one has seen, p∗ ≤ p + C0 < N and p0 = p > 1
(according to (a)). Also, the functions Mα(s) = |s|q′α/q′α, 1/qα + 1/q′α = 1,
|α| < m, s ∈ R, satisfy the ∆2-condition.

Finally, hypothesis (H)4 is satisfied, since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m,

and, by (c), p0 = p < qα, |α| < m. The result follows by Theorem 3.2. �

Remark 4.7. The function a in Example 4.1 appears, in a different context,
in [11] (see [11, Example 3.1]) while that in Examples 4.5 and 4.6 appears in [6]
(see [6, Examples 1 and 2], respectively).
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5. Particular cases

In this section we shall prove that some already known multiplicity results
for the p-Laplacian may be obtained as particular cases of Theorem 3.2.

Theorem 5.1. Assume the following:

(a) a(t) = |t|p−2t, t ∈ R, 2 ≤ p < N ;
(b) the Carathéodory functions gα: Ω × R → R, |α| < m, are odd in the

second argument:

gα(x,−s) = −gα(x, s);

(c) there exist qα, p < qα < Np/(N − p), |α| < m, such that

|gα(x, s)| ≤ aα + bα|s|qα−1, x ∈ Ω, s ∈ R, aα, bα positive constants;

(d) if Gα, |α| < m, are given by (3.7), then there exist sα > 0 and θα > p

such that

0 < θαGα(x, s) ≤ sgα(x, s), for a.e. x ∈ Ω and all s with |s| ≥ sα.

Under these conditions, the functional H: (Wm,p
0 (Ω), ‖ · ‖m,A) → R,

H(u) =
1
p2

∫
Ω

(
√

T [u, u])p dx−
∑
|α|<m

∫
Ω

Gα(x,Dαu(x)) dx,

possesses a sequence of critical positive values which converges to ∞ and another
one, of critical negative values converging to 0.

Proof. The idea of the proof is as follows: the preceding assumptions entail
that the hypotheses of Theorem 3.2 are fulfilled.

First, we prove that hypothesis (H)3 is satisfied. Since a(t)/t = tp−2 for all
t > 0, it follows that a(t)/t is nondecreasing on (0,∞). In order to prove that
(3.2) and (3.3) are satisfied, we will use Lemma 4.2.

In our case, p∗ = p and p < N (by (a)). Since

A(t) =
1
p
tp, for all t > 0,

it follows that (4.3) is satisfied for C = 1/p, γ = p and any δ > 0.
Secondly, we prove that hypothesis (H)1 is satisfied. By setting

Mα(s) =
|s|qα

qα
, |α| < m, s ∈ R,

(4.1) may be rewritten as

|gα(x, s)| ≤ aα + bα(qα − 1)1/q′αM
−1

α (Mα(s)), x ∈ Ω, s ∈ R, |α| < m,

thus proving that (3.6) is satisfied.
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What remains to be proven is that Mα, |α| < m, satisfy the ∆2-condition and
increase essentially more slowly than A∗ near infinity, where A∗(t) = CtNp/(N−p)

with C = ((N − p)/Np(p+1)/p)Np/(N−p). It is easy to check (by definition) that
Mα, |α| < m, satisfy the ∆2-condition. Also, from (c), Mα, |α| < m, increase
essentially more slowly than A∗ near infinity.

The hypothesis (H)2 is covered by (d) (with gα odd functions in the second
argument, according to (b)).

In order to prove that A and A satisfy the ∆2-condition, we will use Lem-
ma 4.3. In our case, as one has already seen, p∗ = p < N and p0 = p > 1
(according to (a)). Since Mα(s) = |s|q′α/q′α, 1/qα + 1/q′α = 1, |α| < m, s ∈ R, it
is easy to check (by definition) that Mα, |α| < m, satisfy the ∆2-condition.

Finally, hypothesis (H)4 is satisfied. Indeed, since

γα = sup
t>0

tM ′
α(t)

Mα(t)
= qα, |α| < m,

it follows that p0 = p < qα, |α| < m. The result follows by Theorem 3.2. �

Remark 5.2. Since (see Proposition 3.1)

H ′(u) = Jau−
∑
|α|<m

(−1)|α|Dαgα(x, Dαu),

we deduce that the problem

Jau =
∑
|α|<m

(−1)|α|Dαgα(x,Dαu) in Ω,

Dαu = 0 on ∂Ω, |α| ≤ m− 1,

has two sequences of weak solutions in (Wm,p
0 (Ω), ‖ · ‖m,A).

Remark 5.3. If, under the hypotheses of Theorem 5.1, the quadratic form
T is given by T [u, u] = |Ou|2, the corresponding results given by Theorem 5.1
and Remark 5.2 are:

(a) the functional H: (W 1,p
0 (Ω), ‖ · ‖1,A) → R,

H(u) =
1
p2

∫
Ω

|Ou|p dx−
∫

Ω

G(x, u(x)) dx,

possesses a sequence of critical positive values which converges to ∞
and another one, of critical negative values converging to 0;

(b) the problem

Jau = g(x, u) in Ω,

u = 0 on ∂Ω,

has two sequences of weak solutions in (W 1,p
0 (Ω), ‖ · ‖1,A).
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Remark 5.4. It is well-known that the duality mapping

Ja: (W 1,p
0 (Ω), ‖ · ‖1,p) → (W 1,p

0 (Ω), ‖ · ‖1,p)∗,

‖u‖1,p = ‖|Ou|‖Lp(Ω),

is given by

Ja = −∆p, ∆pu =
∂

∂xi

(
|Ou|p−2 ∂u

∂xi

)
.

Since ‖u‖1,A = p−1/p‖u‖1,p, for all u ∈ W 1,p
0 (Ω), one has Ja = (1/p)Ja =

−(1/p)∆p. Consequently, under the hypotheses (a)–(d), with m = 1, gα = g

and T [u, u] = |Ou|2, the problem

−∆pu = pg in Ω,

u = 0 on ∂Ω,

has two sequences of weak solutions in (W 1,p
0 (Ω), ‖ · ‖1,p).
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