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PERIODIC SOLUTIONS OF A KIND OF LIÉNARD EQUATIONS

WITH TWO DEVIATING ARGUMENTS

Tiantian Ma

Abstract. In this paper, we deal with the existence of periodic solutions

of a kind of Liénard equations with two deviating arguments

x′′ + f(t, x(t− σ(t)))x′(t) + g(t, x(t− τ(t))) = p(t).

Some new results on the existence of periodic solutions of the given equa-

tions are proved by using the continuation theorem.

1. Introduction

In recent years, the periodic problem of Liénard equations with deviating

arguments has been widely studied because of its background in applied sciences

(see [2], [5], [7], [9]–[13] and the references cited therein). In [7], Huang and

Xiang studied the periodic solutions of Duffing equations with a single constant

deviating argument

(1.1) x′′ + g(x(t− τ)) = p(t).
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When g satisfies one sign condition xg(x) > 0, |x| > M and a one-sided bound-

edness condition, the authors proved the existence of periodic solutions of equa-

tion (1.1). In [9], Liu and Huang studied the periodic solutions of Liénard equa-

tions with one deviating argument

(1.2) x′′ + f(x(t))x′(t) + g(t, x(t− τ(t))) = p(t).

When f , g are Lipschitz continuous, f is bounded and g satisfies one sign condi-

tion x(g(t, x)− p(t)) > 0 (or < 0) for t ∈ R, |x| ≥ d, they obtained the existence

and uniqueness of periodic solution of equation (1.2).

In [11], Lu and Ge discussed the existence of periodic solutions of Liénard

equations with two deviating arguments

(1.3) x′′ + f(t, x(t− σ(t)))x′(t) + β(t)g(x(t− τ(t))) = p(t),

where f : R2 → R is continuous and 2π periodic with respect to the first variable,

g : R→ R is continuous and σ, β, τ, p : R→ R are continuous and 2π periodic.

Assume that the following conditions are satisfied:

(1.4) lim
|x|→+∞

sgn(x)g(x) = +∞,

(1.5) lim sup
|x|→+∞

∣∣∣∣g(x)

x

∣∣∣∣ ≤ r.
Moreover,

(1.6) 0 < β0 = min
t∈[0,2π]

β(t) ≤ β1 = max
t∈[0,2π]

β(t).

When the conditions (1.4), (1.5) and (1.6) hold, it was proved in [11] that, if

|f(t, x)| ≤ % (% is a positive constant) for (t, x) ∈ R2, then equation (1.3) has at

least one 2π periodic solution provided that the inequality 2π(% + 2πrβ1) < 1

holds and if |f(t, x)| ≥ % for (t, x) ∈ R2, then equation (1.3) has at least one 2π

periodic solution provided that the inequality 2πrβ1 < % holds.

In this paper, we deal with the existence of periodic solutions of a kind of

Liénard equations with two deviating arguments

(1.7) x′′ + f(t, x(t− σ(t)))x′(t) + g(t, x(t− τ(t))) = p(t),

where f, g : R2 → R are continuous and 2π periodic with respect to the first

variable, σ, τ, p : R → R are continuous and 2π periodic. By taking a new es-

timating method, we give some new conditions to guarantee the existence of

periodic solutions of equation (1.7). Main results of this paper are the following

theorems.

Theorem 1.1. Assume that there exist constants % ≥ 0, d > 0, r ≥ 0 and

c > 0 such that the following conditions hold:

(f1) |f(t, x)| ≤ % for (t, x) ∈ R2;
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(g1) sgn(x)g(t, x) > l for t ∈ R, |x| > d, where l = max{|p(t)| : t ∈ [0, 2π]};
(g2) g(t, x) ≤ rx+ c for t ∈ R, |x| ≥ d.

Then equation (1.7) has at least one 2π periodic solution provided that the in-

equality 2π(%+ πr) < 1 holds.

Theorem 1.2. Assume that there exist constants % ≥ 0, d > 0, r ≥ 0 and

c > 0 such that the following conditions hold:

(f1) |f(t, x)| ≤ % for (t, x) ∈ R2;

(g1) sgn(x)g(t, x) > l for t ∈ R, |x| > d, where l = max{|p(t)| : t ∈ [0, 2π]};
(g3) |g(t, x)| ≤ r|x|+ c for t ∈ R, |x| ≥ d.

Then equation (1.7) has at least one 2π periodic solution provided that the in-

equality %+ πr < 1 holds.

Theorem 1.3. Assume that there exist constants % > 0, d > 0, r ≥ 0 and

c > 0 such that the following conditions hold:

(f2) |f(t, x)| ≥ % for (t, x) ∈ R2;

(g1) sgn(x)g(t, x) > l for t ∈ R, |x| > d, where l = max{|p(t)| : t ∈ [0, 2π]};
(g3) |g(t, x)| ≤ r|x|+ c for t ∈ R, |x| ≥ d.

Then equation (1.7) has at least one 2π periodic solution provided that the in-

equality πr < % holds.

Remark 1.4. The main Theorems 1.1–1.3 improve and complement the re-

sults in [11]. In fact, if we take g(t, x) = β(t)g(x), then we have

lim sup
|x|→+∞

∣∣∣∣g(t, x)

x

∣∣∣∣ ≤ β1r
provided that the conditions (1.5) and (1.6) hold. When the conditions (1.4)–

(1.6) hold, we know from Theorem 1.2 that, if |f(t, x)| ≤ % (% is a positive

constant) for (t, x) ∈ R2, then equation (1.3) has at least one 2π periodic solu-

tion provided that the inequality % + πrβ1 < 1 holds and we know from The-

orem 2.3 that, if |f(t, x)| ≥ % for (t, x) ∈ R2, then equation (1.3) has at least

one 2π periodic solution provided that the inequality πrβ1 < % holds. Therefore,

Theorems 1.2 and 1.3 improve the results in [11].

Throughout this paper, for any continuous 2π periodic function x(t), we

always use notations as follows,

||x||∞ = max
t∈[0,2π]

{|x(t)|}, ||x||2 =

(∫ 2π

0

x2(t) dt

)1/2

.

2. Preliminary lemmas

As is well known that continuation theorems play an important role in study-

ing the existence of periodic solutions of the second order differential equations.

We now introduce a continuation theorem given by Gaines and Mawhin ([4]).
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Lemma 2.1. Let X and Y be two Banach spaces. Suppose that L : D⊂X→Y

is a Fredholm operator with index zero and N : X → Y is L-compact on Ω, where

Ω is an open bounded subset of X. Moreover, assume that all the following

conditions are satisfied:

(a) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(b) Nx 6∈ ImL, for all x ∈ ∂Ω ∩KerL;

(c) The Brower degree deg{QN,Ω ∩KerL, 0} 6= 0.

Then equation Lx = Nx has at least one solution in Ω.

Next, we shall give two lemmas which will be used in getting the prior bounds.

Lemma 2.2. Let x(t) be a continuously differentiable 2π periodic function.

Then, for any t ∈ [0, 2π],

||x||∞ ≤ |x(t)|+ π||x′||∞.

Proof. Let t ∈ [t, t+ 2π] be such that |x(t)| = ||x||∞. Then we have

|x(t)| =
∣∣∣∣x(t) +

∫ t

t

x′(s) ds

∣∣∣∣ ≤ |x(t)|+
∫ t

t

|x′(s)| ds.

On the other hand, we have

|x(t)| = |x(t− 2π)| =
∣∣∣∣x(t) +

∫ t−2π

t

x′(s) ds

∣∣∣∣ ≤ |x(t)|+
∫ t

t−2π
|x′(s)| ds.

Therefore,

(2.1) ||x||∞ ≤ |x(t)|+ 1

2

∫ 2π

0

|x′(t)| dt,

which implies

||x||∞ ≤ |x(t)|+ π||x′||∞. �

Lemma 2.3. Let x(t) be a twice continuously differentiable 2π periodic func-

tion. Then ∫ 2π

0

|x′(t)|2 dt ≤
∫ 2π

0

|x′′(t)|2 dt.

Proof. The proof follows directly from the Wirtinger inequality ([6]). �

3. Main theorems

In this section, we shall use the continuation theorem introduced in Section 2

to prove the existence of periodic solutions of equation (1.7). To this end, we

first quote some notations and definitions.

Let X and Y be two Banach spaces defined by

X = {x ∈ C1(R,R) : x(t+ 2π) = x(t), for all t ∈ R},

Y = {y ∈ C(R,R) : y(t+ 2π) = y(t), for all t ∈ R}
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with the norms

||x||X = max{||x||∞, ||x′||∞}, ||y||Y = ||y||∞.

Define a linear operator

L : D(L) ⊂ X → Y, Lx = x′′,

where D(L) = {x ∈ X : x′′ ∈ C(R,R)}, and a nonlinear operator

N : X → Y, (Nx)(t) = −f(t, x(t− σ(t)))x′(t)− g(t, x(t− τ(t))) + p(t).

It is easy to see that

KerL = R and ImL =

{
y ∈ Y :

∫ 2π

0

y(t) dt = 0

}
.

It follows that L is a Fredholm mapping of index zero.

Let us define two continuous projectors P : X → KerL and Q : Y → Y by

setting

Px = x(0), Qy =
1

2π

∫ 2π

0

y(t) dt.

Set LP = L|D(L)∩KerP → ImL. Then LP is an algebraic isomorphism and we

define KP : ImL→ D(L) by

KP = L−1P .

Clearly, we have that, for any y ∈ ImL,

(KP y)(t) = − t

2π

∫ 2π

0

(t− s)y(s) ds+

∫ t

0

(t− s)y(s) ds.

For any open bounded set Ω ⊂ X, we can prove by standard arguments that

KP (I −Q)N and QN are relatively compact on the closure Ω. Therefore, N is

L-compact on Ω.

It is noted that equation (1.7) is equivalent to the operator equation

Lx = Nx.

To use Lemma 2.1, we embed this operator equation into an equation family

with a parameter λ ∈ (0, 1),

Lx = λNx,

which is equivalent to the equation as follows,

(3.1) x′′ + λf(t, x(t− σ(t)))x′(t) + λg(t, x(t− τ(t))) = λp(t), λ ∈ (0, 1).

In the following, we shall prove some new theorems on the existence of periodic

solutions of equation (1.7) by using the continuation theorem. By standard

arguments [4], it suffices to prove that there exist positive constants M1 and M2

such that, for any 2π periodic solution x(t) of equation (3.1),

||x||∞ < M1, ||x′||∞ < M2.
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Theorem 3.1. Assume that there exist constants % ≥ 0, d > 0, r ≥ 0 and

c > 0 such that the following conditions hold:

(f1) |f(t, x)| ≤ % for (t, x) ∈ R2;

(g1) sgn(x)g(t, x) > l for t ∈ R, |x| > d, where l = max{|p(t)| : t ∈ [0, 2π]};
(g2) g(t, x) ≤ rx+ c for t ∈ R, x ≥ d.

Then equation (1.7) has at least one 2π periodic solution provided that the in-

equality 2π(%+ πr) < 1 holds.

Proof. We shall prove that all conditions of Lemma 2.1 are satisfied. Con-

sider the auxiliary equation (3.1). Let x(t) be any 2π periodic solution of equa-

tion (3.1). Then there exist t∗, t
∗ ∈ [0, 2π] such that

x(t∗) = min
t∈[0,2π]

x(t), x(t∗) = max
t∈[0,2π]

x(t).

It follows that x′(t∗) = 0, x′′(t∗) ≥ 0; x′(t∗) = 0, x′′(t∗) ≤ 0. Therefore,

g(t∗, x(t∗ − τ(t∗))) ≤ l, g(t∗, x(t∗ − τ(t∗))) ≥ −l.

According to (g1), we get

x(t∗ − τ(t∗)) ≤ d, x(t∗ − τ(t∗)) ≥ −d.

Consequently, there exists t ∈ [0, 2π] such that |x(t− τ(t))| ≤ d. Since x(t) and

τ(t) are 2π periodic, there exists t̃ ∈ [0, 2π] such that

(3.2) |x(t̃)| ≤ d.

From Lemma 2.2 and (3.2) we have

(3.3) ||x||∞ ≤ d+ π||x′||∞.

Write S1 = {t ∈ [0, 2π] : x(t − τ(t)) > d}, S2 = {t ∈ [0, 2π] : x(t − τ(t)) < −d},
S3 = {t ∈ [0, 2π] : |x(t− τ(t))| ≤ d}. Since∫ 2π

0

f(t, x(t− σ(t)))x′(t) dt+

∫ 2π

0

g(t, x(t− τ(t))) dt =

∫ 2π

0

p(t) dt,

we get

−
∫
S2

g(t, x(t− τ(t))) dt =

∫ 2π

0

f(t, x(t− σ(t)))x′(t) dt

+

(∫
S1

+

∫
S3

)
g(t, x(t− τ(t))) dt−

∫ 2π

0

p(t) dt.

Furthermore,∫
S2

|g(t,x(t− τ(t)))| dt = −
∫
S2

g(t, x(t− τ(t))) dt(3.4)

≤
∫ 2π

0

|f(t, x(t− σ(t)))x′(t)| dt
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+

(∫
S1

+

∫
S3

)
|g(t, x(t− τ(t)))| dt+

∫ 2π

0

|p(t)| dt.

From (2.1) and (3.4) we have

||x′||∞ ≤
1

2

∫ 2π

0

|x′′(t)| dt ≤ 1

2

∫ 2π

0

|f(t, x(t− σ(t)))x′(t)| dt

+
1

2

∫ 2π

0

|g(t, x(t− τ(t)))| dt+
1

2

∫ 2π

0

|p(t)| dt

≤
∫ 2π

0

|f(t, x(t− σ(t)))x′(t)| dt

+

(∫
S1

+

∫
S3

)
|g(t, x(t− τ(t)))| dt+

∫ 2π

0

|p(t)| dt.

Furthermore, from (f1), (g2) and (3.3) that

||x′||∞ ≤ 2%π||x′||∞ + 2rπ||x||∞ + 2π(c+Md + l)

≤ 2%π||x′||∞ + 2rπ(d+ π||x′||∞) + 2π(c+Md + l)

= 2π(%+ rπ)||x′||∞ + 2π(rd+Md + c+ l),

where Md = max{|g(x)| : |x| ≤ d}.
Since 2π(%+rπ) < 1, there exists a constant M1 > 0 such that ||x′||∞ ≤M1.

According to (3.3), we obtain ||x||∞ ≤ d+ πM1. �

Similarly, we have the following result.

Theorem 3.1′. Assume that there exist constants % ≥ 0, d > 0, r ≥ 0 and

c > 0 such that the following conditions hold:

(f1) |f(t, x)| ≤ % for (t, x) ∈ R2;

(g1) sgn(x)g(t, x) > l for t ∈ R, |x| > d, where l = max{|p(t)| : t ∈ [0, 2π]};
(g′2) g(t, x) ≥ rx− c for t ∈ R, x ≤ −d.

Then equation (1.7) has at least one 2π periodic solution provided that the in-

equality 2π(%+ πr) < 1 holds.

Remark 3.2. The conclusion of Theorem 3.1 (or Theorem 3.1′) still holds if

the condition (g1) is replaced by the condition:

(g′1) sgn(x)g(t, x) < −l for t ∈ [0, 2π], |x| > d, where l = max{|p(t)| : t ∈
[0, 2π]},

whereas condition (g2) (or (g′2)) is replaced by the condition:

(g′′2) g(t, x) ≥ −rx − c for t ∈ R, x ≥ d, (or g(t, x) ≤ −rx + c for t ∈ R,

x ≤ −d).

Corollary 3.3. Assume that conditions (f1) and (g1) hold. Moreover, g

satisfies the sublinear condition as follows:

(3.5) lim
x→+∞

g(t, x)

x
= 0 or lim

x→−∞

g(t, x)

x
= 0
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uniformly for t ∈ [0, 2π]. Then equation (1.7) has at least one 2π periodic solution

provided that the inequality 2π% < 1 holds.

Proof. Since 2π% < 1, there exists a constant ε > 0 such that 2π(%+επ) < 1.

From (3.5) we know that there exists a constant dε > 0 such that

(3.6) g(t, x) ≤ εx for t ∈ [0, 2π], x ≥ dε

or

(3.7) g(t, x) ≥ εx for t ∈ [0, 2π], x ≤ −dε.

If (3.6) holds, then we know from Theorem 3.1 that equation (1.7) has at least

one 2π periodic solution. If (3.7) holds, then we know from Theorem 3.1′ that

equation (1.7) has at least one 2π periodic solution. �

In the following, we shall deal with the existence of periodic solutions of

equation (1.7) when the condition (g2) (or (g′2)) is replaced by one double sided

condition.

Theorem 3.4. Assume that there exist constants % ≥ 0, d > 0, r ≥ 0 and

c > 0 such that the following conditions hold:

(f1) |f(t, x)| ≤ % for (t, x) ∈ R2;

(g1) sgn(x)g(t, x) > l for t ∈ R, |x| > d, where l = max{|p(t)| : t ∈ [0, 2π]};
(g3) |g(t, x)| ≤ r|x|+ c for t ∈ R, |x| ≥ d.

Then equation (1.7) has at least one 2π periodic solution provided that the in-

equality %+ πr < 1 holds.

Proof. Consider the auxiliary equation (3.1). Let x(t) be any 2π periodic

solution of equation (3.1). Multiplying both sides of (3.1) by x′′(t) and integra-

ting on the interval [0, 2π], we have∫ 2π

0

x′′(t)2 dt = − λ
∫ 2π

0

f(t, x(t− σ(t)))x′(t)x′′(t) dt

− λ
∫ 2π

0

g(t, x(t− τ(t)))x′′(t) dt+ λ

∫ 2π

0

p(t)x′′(t) dt

≤
∫ 2π

0

|f(t, x(t− σ(t)))x′(t)x′′(t)| dt

+

∫ 2π

0

|g(t, x(t− τ(t)))x′′(t)| dt+

∫ 2π

0

|p(t)x′′(t)| dt.

According to the conditions (f1) and (g3), we get∫ 2π

0

x′′(t)2 dt ≤ %
∫ 2π

0

|x′(t)x′′(t)| dt

+ r

∫ 2π

0

|x(t− τ(t))x′′(t)| dt+ (c+ l)

∫ 2π

0

|x′′(t)| dt
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≤ %
(∫ 2π

0

x′(t)2 dt

)1/2(∫ 2π

0

x′′(t)2 dt

)1/2

+ r||x||∞
∫ 2π

0

|x′′(t)| dt+ (c+ l)

∫ 2π

0

|x′′(t)| dt.

From (2.1), (3.2) and Lemma 2.3, we have∫ 2π

0

x′′(t)2 dt ≤ %
∫ 2π

0

x′′(t)2 dt

+ r

(
d+

1

2

∫ 2π

0

|x′(t)| dt
)∫ 2π

0

|x′′(t)| dt+ (c+ l)

∫ 2π

0

|x′′(t)| dt

≤ %
∫ 2π

0

x′′(t)2 dt+ rπ

(∫ 2π

0

x′(t)2 dt

)1/2(∫ 2π

0

x′′(t)2 dt

)1/2

+ (rd+ c+ l)

∫ 2π

0

|x′′(t)| dt

≤ (%+ rπ)

∫ 2π

0

x′′(t)2 dt+ (rd+ c+ l)
√

2π

(∫ 2π

0

x′′(t)2 dt

)1/2

.

Since % + rπ < 1, there exists a constant M1 > 0 such that ||x′′||2 ≤ M1.

Furthermore, we have

(3.8) ||x′||∞ ≤
1

2

∫ 2π

0

|x′′(t)| dt ≤
√

2πM1

2
=: M2.

From (3.8) and Lemma 2.2 we get ||x||∞ ≤ d+ ||x′||∞ ≤ d+M2. �

Corollary 3.5. Assume that conditions (f1) and (g1) hold. Moreover, g

satisfies the sublinear condition as follows:

(3.9) lim
|x|→+∞

g(t, x)

x
= 0

uniformly for t ∈ [0, 2π]. Then equation (1.7) has at least one 2π periodic solution

provided that the inequality % < 1 holds.

Proof. Since % < 1, there exists a constant ε > 0 such that % + επ < 1.

If (3.9) holds, then there exists a constant dε > 0 such that |g(t, x)| ≤ ε|x| for

t ∈ [0, 2π], |x| ≥ dε. According to Theorem 3.4, equation (1.7) has at least one

2π periodic solution. �

In the case when f is unbounded, we can obtain the following result.

Theorem 3.6. Assume that there exist constants % > 0, d > 0, r ≥ 0 and

c > 0 such that the following conditions hold:

(f2) |f(t, x)| ≥ % for (t, x) ∈ R2;

(g1) sgn(x)g(t, x) > l for t ∈ R, |x| > d, where l = max{|p(t)| : t ∈ [0, 2π]};
(g3) |g(t, x)| ≤ r|x|+ c for t ∈ R, |x| ≥ d.
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Then equation (1.7) has at least one 2π periodic solution provided that the in-

equality πr < % holds.

Proof. We only deal with the case f(t, x) ≥ % for (t, x) ∈ R2. Another case

f(t, x) ≤ −% for (t, x) ∈ R2 can be handled similarly. Consider the auxiliary

equation (3.1). Let x(t) be any 2π periodic solution of equation (3.1). Mul-

tiplying both sides of (3.1) by x′(t) and integrating on the interval [0, 2π], we

get∫ 2π

0

f(t, x(t− σ(t)))x′(t)2dt+

∫ 2π

0

g(t, x(t− τ(t)))x′(t) dt =

∫ 2π

0

p(t)x′(t) dt.

According to (f2), we have

%

∫ 2π

0

x′(t)2 dt ≤
∫ 2π

0

f(t, x(t− σ(t)))x′(t)2 dt

= −
∫ 2π

0

g(t, x(t− τ(t)))x′(t) dt+

∫ 2π

0

p(t)x′(t) dt.

Hence,

%

∫ 2π

0

x′(t)2 dt ≤
∫ 2π

0

|g(t, x(t− τ(t)))||x′(t)| dt+

∫ 2π

0

|p(t)||x′(t)| dt.

From condition (g3) we obtain

%

∫ 2π

0

x′(t)2 dt ≤ r||x||∞
∫ 2π

0

|x′(t)| dt+ (l + c)

∫ 2π

0

|x′(t)| dt,

which, together with (2.1) and (3.2), implies

%

∫ 2π

0

x′(t)2 dt ≤ r
(
d+

1

2

∫ 2π

0

|x′(t)| dt
)∫ 2π

0

|x′(t)| dt+ (l + c)

∫ 2π

0

|x′(t)| dt

≤ rπ
∫ 2π

0

x′(t)2dt+ (rd+ l + c)
√

2π

(∫ 2π

0

x′(t)2 dt

)1/2

.

Since rπ < %, there exists a constant M1 > 0 such that

(3.10) ||x′||2 ≤M1.

Furthermore, we get

||x||∞ ≤ d+
1

2

∫ 2π

0

|x′(t)| dt ≤ d+

√
2π

2

(∫ 2π

0

x′(t)2 dt

)1/2

≤ d+

√
2π

2
M1 =: M2.

On the other hand, we have

(3.11) ||x′||∞ ≤
1

2

∫ 2π

0

|x′′(t)| dt ≤ 1

2

(∫ 2π

0

|f(t, x(t− σ(t)))||x′(t)| dt

+

∫ 2π

0

|g(t, x(t− τ(t)))| dt
)

+
1

2

∫ 2π

0

|p(t)| dt.
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Set

c1 = max{|f(t, x)| : 0 ≤ t ≤ 2π, |x| ≤M2},(3.12)

c2 = max{|g(t, x)| : 0 ≤ t ≤ 2π, |x| ≤M2}.(3.13)

From (3.10)–(3.13) we obtain

||x′||∞ ≤
1

2
c1

∫ 2π

0

|x′(t)|dt+ (c2 + l)π ≤
√

2π

2
c1M1 + (c2 + l)π. �

Remark 3.7. The conclusion of Theorem 3.4 (or Theorem 3.6) still holds if

the condition (g1) is replaced by the condition (g′1).

Corollary 3.8. Assume that the conditions (f2) and (g1) hold. Moreover,

g satisfies the sublinear condition (3.9). Then equation (1.7) has at least one 2π

periodic solution.

Proof. Since % > 0, there exists a constant ε > 0 such that επ < %. If

(3.9) holds, then there exists a constant dε > 0 such that |g(t, x)| ≤ ε|x|, for

t ∈ [0, 2π] and |x| ≥ dε. According to Theorem 3.6, equation (1.7) has at least

one 2π periodic solution. �

From Corollary 3.8 we can derive the following result.

Corollary 3.9. Assume that the conditions (f2), (g1) hold and g is bounded

on R. Then equation (1.7) has at least one 2π periodic solution.
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