MODERN LoOGIC 25

DEFINITIONS IN NONSTRICT POSITIVE FREE LOGIC

RAYMOND D. GUMB

Computer Science Department
University of Massachusetts
Lowell, MA 01854, USA
email: gumb@cs.uml.edu

and
KAREL LAMBERT

Department of Philosophy
University ofCalifornia, Irvine
Irvine, CA 92717, USA
email: jlambert@benfranklin.hnet.uci.edu
and, after April 1st of each year: jlambert@ednetl.osl.or.gov

Abstract. Every “practical” programming language supplies the programmer
with at least one nonstrict construct, such as the ALGOL60 arithmetic ‘if-then-
else’ and the LISP ‘cond’. Many programming languages also enable the user to
define nonstrict functions. In some languages, this is accomplished through the
lazy evaluation of procedure parameters, as realized, for example, by the call-by-
name devices of ALGOL60 and SIMULAG67 and the call-by-need mechanism of
haskell. In other languages, such as Common LISP, a macro definition facility
can serve a similar purpose. Programming languages that provide a mechanism
for the user to define nonstrict functions are nonstrict languages, and we call the
natural underlying logic of these languages nonstrict positive free logic. In this
paper, we present the definition theory of nonstrict positive free logic. Suitable

" The groundwork for this paper was done while Gumb was on sabbatical at
the University of California Irvine Philosophy Department visiting with
Lambert. Gumb is grateful to Lambert and the UCI Philosophy Department,
David Israel and the Stanford University Center for the Study of Language and
Information, and Daniel Friedman and the Indiana University Computer Science
Department for their hospitality during his sabbatical. Helpful comments have
been made by Nino Cochiarella, William Farmer, Robert K. Meyer, John
Peterson, Richmond Thomason, and Peter Woodruff.

26 Volume 7, no. 1 (January 1997)

transformations of sentences in standard logic into sentences in nonstrict
positive free logic preserve many properties of definitions in standard logic.

Before embarking on details, here is one general piece of advice. One often hears
that...some. .. logic is pointless because it can be translated into some simpler
language in a first-order way. Take no notice of such arguments. There is no
weight to the claim that the original system must therefore be replaced by the new
one. What is essential is to single out important concepts and to investigate their
properties. Dana Scott ([Scott 1970, 143])

1. The Motivation for Nonstrict Positive Free Logic. Free
logic has been implicit in the literature on program specification and veri-
fication from the inception of the field.! Here, after Lambert and van
Fraassen [Lambert & van Fraassen 1972], we understand a free logic to be
an extension of standard first-order logic in the sense that, when attention is
restricted to closed formulas containing only variables as singular terms, the
theorems and derivations of a free logic coincide with those of standard
logic. Free logic is unlike standard logic in that singular terms need not
have existential import.

Following Lambert [Lambert 1981], one must distinguish negative free
logic from positive free logic. In negative free logic, any atomic statement

! As noted in [Gumb J996], C. A. R. Hoare’s treatment of the existential
quantifier in his pioneering paper [Hoare 1969] presupposes that the underlying
logic is free. In an axiomatization of computer arithmetic, he states the law:

=3 X (X=max+1)

where max is the largest integer representable. The assertion is unsatisfiable in
standard logic, implying that the underlying logic is free. Similarly, the free
interpretation of the quantifiers has roots in the early history of intuitionistic
logic [Ruitenburg 1991]. Attempts to formalize intuitionistic logic with the
standard quantifiers has lead to a number of unsound versions of intuitionistic
logic in the literature [Leblanc & Gumb 7983b]. These difficuities can be
attributed to the doctrine that the range of values of free variables (individual
parameters), variables bound by the universal quantifier, and variables bound by
the existential quantifier should all be the same. We follow Menger’s counterpart
of Occam’s Razor, the Law Against Miserliness: “It is vain to do with less what
requires more™ [Menger 1979, 106]. Conflation of the different senses of the
term ‘variable’ are all too common in the literature, and it would be less error-
prone, as well as better pedagogically, to use distinct terms for each of the
senses, a point stressed, for example, in Thomason’s introductory logic text
[Thomason 1969].

MODERN LOGIC 27

containing at least one singular term that does not refer to an existent? is
false, whereas a positive free logic allows some such statement to be true.
A related terminology is used in computer science.? An n-ary predicate p" is
called strict in its i-th arguments provided p"(t,, .. . , ¢,) is false whenever
t, (1 <i<n) does not refer to an existent,* and a function f* is called strict
in its i-th arguments provided f"(z,, . . . , t,) does not refer to an existent if
t; does not. A predicate (function) is called strict if it is strict in all of its
arguments. Combining the traditions in philosophical logic and computer
science, it is natural to call a positive free logic that permits the definition
of nonstrict predicates and functions a nonstrict positive free logic.’

Even if one were to grant that negative free logic is the more natural for
formalizing all of conventional mathematics (which we do not!),® nonstrict
positive free logic would still be needed to reason about nonstrict functions.

? In Kripke models of intuitionistic logic, the domain of the universal
quantifier is, in effect, a superset of the domain of the existential quantifier. So,
in free intuitionistic logic, a term that refers to no existent can be viewed as a
term that refers to an object outside the domain of the existential quantifier.
Quine’s dictum “To be is to be the value of a bound” [Quine 7/963] must be
modified to suit the intuitionistic case: “To be is to be the value of a variable
bound by the existential quantifier”, which appears uninformative. Similarly,
the dictum requires modification to suit lazy programming languages. The
variables in lambda abstractions in these languages (the formal parameters of
functions) can be bound to an error value that is outside the domain of the
existential quantifier.

? In computer science, perhaps the closest work to our own is that on the
specification language COLD (Feijs & Jonkers 1992], [Koymans & Renardel de
Lavalette 7/989] and [Renardel de Lavalette 71994]). However, the free logic
underlying COLD is infinitary, and research on it has focused on strict predicates
and functions. The design of COLD has been influenced by the work of Scott
[Scott 1967; 1979].

* In this case, one might think of # as being undefined. There is another
sense of “undefined” in computer science that means “not fully specified”. Hoare
[Hoare 1969, 580] has argued that an advantage of “axiomatic semantics” for
programming languages is that it can be used to leave aspects of a language
undefined and allow implementation on differing hardware designs. In this
connection, free logic might be used to prevent over specification by, for
example, dropping axioms specifying the result of division by zero. We do not
consider this approach further in the present paper.

’ In contrast, Beeson’s system [Beeson 1985} and related logics such as
those of Feferman [Feferman 7992] Farmer [Farmer 1990], and Pamas [Parnas
1993] are naturally called strict negative free logics.

¢ If one were to grant this, our paper would be seen as bridging a gap
between logic and computing practice that is specific to computer science. Gaps
between logic and mathematical practice [Corcoran 1973] are duplicated in gaps
between logic and computing practice.

28 Volume 7, no. 1 (January 1997)

As we shall illustrate below, a positive free logic is needed to guarantee that
sentences are assigned the correct truth-values. That a user can define non-
strict functions in a lazy programming language has deep implications for
the definition theory of the underlying logic. In these languages, nonstrict
positive free logic is required for formalizing user-defined functions.

Some classical mathematical theories are axiomatized appropriately in
standard first-order logic, and, in order to treat these theories properly, results
in standard logic must extend naturally to nonstrict positive free logic. For
this reason, it is simpler to use an “inner domain, outer domain”, two-
valued semantics.’

Intuitively, “existents” populate the inner domain, while the outer
domain has as its one and only inhabitant the nonexistent error object err.
Programs compute the value of terms, but reasoning about programs de-
termines the truth of sentences.®

In this paper, we present definition theory for a nonstrict positive free
logic in which there is exactly one error object err to which all terms
without existential import can refer.’” By using a free logic, we are able to
state the axioms of a mathematical theory without cluttering the axiomat-
ization with error conditions, as would be required using restricted quantifi-
cation in standard logic. For example, Peano’s axiom:

VXVY(succ (X) =suc(¥) - X=7)

can be stated in the usual way, whereas with restricted quantification, the
axiom takes on the more awkward form:

VX : Natno V Y : Natno (succ (X) =succ (¥) =» X=Y)
or, translated into standard first-order logic, the even more verbose form:
VXVY (Natno(X) — (Natno(Y) — (succ (X) =suc(¥) — X=1Y))).

Nonstrict positive free logic thus facilitates specifying computer systems
and proving them correct.

7 Other semantics such as supervaluations [Benccivenga 1986] are available
for positive free logics, but these do not lend themselves easily to extending
classical results in definition theory to positive free logic.

® Functions and predicates in nonstrict positive free logics are treated in
quite distinct manners. The Boolean “predicates” computed by a program are
most naturally treated as boolean functions in the underlying free logic.

® Having exactly one error object identifies nontermination and all run-time
errors. This is most natural in languages such as Miranda and haskell in which
execution is aborted immediately when an error is raised. See [Thomason 71989]
for further discussion of this issue.

MODERN LOGIC 29

Nonstrict positive free logic enables the definition of nonstrict func-
tions such as the constant 1-ary function ‘zero’ and the 3-ary function ‘if-
then-clse’. The following equations hold for these functions:

zero(err) =0
if 1then2elseerr=2
if O then 2 else err = err.

Similarly, a family of nonstrict #-ary projection functions are defined so that
id} (%, X,)=x; (1 <i<n)

regardless of whether thereisaj (1 £ j < n) such that j, = err. Only non-
strict positive free logic can assign sentences such as these the correct truth-
value, namely frue. Nonstrict positive free logic is the first-order fragment
of the natural underlying logic of lazy languages such as haskell and
Miranda.

Nonstrict positive free logic is more expressive than standard logic if
both are employed naturally. As well as facilitating reasoning about lazy
programming languages, nonstrict positive free logic frequently can
mechanically incorporate analogs of theorems that are adequately expressed
in standard logic. In Section 5, we will present some transformations of
sentences in standard logic into sentences in nonstrict positive free logic
that preserve many properties of definitions in standard logic.

2. Nonstrict Positive Free Logic: Axiomatization and
Semantics. Our nonstrict positive free logic, in many aspects, is similar
to systems found in the literature, and so in our sketch of it is brief.
Regarding the syntax, we follow the conventions of [Leblanc 1976], except
that we introduce function parameters (function symbols) and an individual
constant ‘err’ that is intended to refer to the error object err. Specifically, we
distinguish between individual variables (bound variables) X, . . . , written
in upper case, and individual parameters (free variables) a, . . ., written in
lower case. For each n = 0, we have countably many r-ary function
parameters f”, . . . '* that can be used to construct complex singular terms.
For the construction of sentences, we have sentence parameters p°, . . . and
n-ary predicate parameters p", Writing = for syntactic identity, A(a)
for any sentence, and A(X) for the result A[X\a] of substituting X for every

° In some contexts, for example in Section 3, we find it convenient to
identify individual parameters with O-ary function parameters.

30 Volume 7, no. 1 (January 1997)

occurrence of a in A(a), the key clause in the inductive definition of the set
of sentences is:

VX A(X) is a sentence if A(a) is.

A literal is an atomic sentence or the negation of one, and an existential is
a sentence of the form 3X (X =), where ¢ is any singular term.

As primitive logical constants, we have the universal quantifier (V),
negation (=), if-then (=), the binary (nonstrict) equality predicate (=), and
the error constant (err). Included amongst the nonprimitive nonlogical
constants are the existential quantifier (3),and (A), or (v), and if-and only-if
(<), which are defined in the usual way. As parenthesis omitting con-
ventions, we understand that — associates to the right and all other binary
operators associate to the left. The binding strength of the operators is given
by the following order (where the operators are amanged in order of
decreasing strength): the unary connectives, A, v, —, and <. The inequality
predicate (#), the existence predicate (E!), the strict equality predicate (=), and
the strict nonequality predicate (%), and are also logical constants, and are
introduced below in a manner typical in the free logic literature. Our
underlying free logic can be axiomatized much as Leblanc’s axiomatization
of the positive free logic CQ. [Leblanc 1976]:"* We have a typical axio-

matization of the propositional calculus, together with axioms for the uni-
versal quantifier:

VX(A— B) »VXA—->VXB
A— VXA
VX A(X) if A(a) is an axiom.
VYaXX=Y)

VXAX) = IX AX)*?

" In [Gumb 1989], we use a Fitch-style natural deduction system.

%
'? This axiom is not provable in CQ_. Semantically, it insures that there
is at least one existent, as explained in [Bencivenga 1986, 414]. For this

*
reason, CQ _ is a universally free logic in the sense of [Meyer & Lambert 1968].

MODERN LOGIC 31

and axioms for equality and the error constant. In the following, we under-
stand A[#\7] to be the sentence obtained by replacing every occurrence of ¢ in
A with ¢:

t=t — (A = A[\])
t=1 — (A = A[AF] - A)
err=t & —3XX=1)
A distinctive mark of free logic is that the standard specification law
VX A(X) — A(f)

is not provable, but the weaker specification law that is restricted to
existents

VX AX) = IX (X =1 — AQ)

is provable. In standard logic, 3X (X = ¢) is provable, whereas in free logic
it need not be provable.

The following axioms could be used to introduce additional predicates
that are logical constants peculiar to free logic:'®

t#f o= (@=1)

El) e X X=1)

3 These axioms are equivalent to the full explicit definitions given in
Section 3. These predicates are nonprimitive logical constants because only
logical constants occur in the definiens. An additional reason for considering
them to be logical constants is that, in some axiomatizations of positive free
logic with different sets of primitives, the Craig Interpolation Lemma goes
through when they are counted as logical constants but fails otherwise. In the
identity-free logic with E! as a primitive, for example, consider

= VXAX) A—A(a) > —E!(@@)
The sentence — E!(a)serves as an interpolant, but no E!-free sentence can. Like

equality, E! is indeed a predicate, but, unlike predicates like ‘sleeps’, it is a
logical predicate.

32 Volume 7, no. 1 (January 1997)

t=t EOAt=t
t#F U SEWMAE(D) Atz

The notion of a proof is understood in the usual manner. Understanding
a theory T to be a set of sentences, we write A if the sentence A is

provable, and T + A as well as -, A if the sentence A is provable from T.
Turning to the semantics, a model is a triple M = (Dy, Dy, Iyy), Dy is a

nonempty set, D,, = err, {errj¢ D,, and I,, is an interpretation function
mapping symbols into appropriate objects. D,, is the inner domain of M,
D, is the outer domain of M, and err is the error object. When no
ambiguity can arise, we shall omit subscripts.’® The interpretation function
I assigns objects of the appropriate types as follows:

1. (err) = err,

2. aye DUD,

3. e (DUD)y = (DUD)”

41 (-t D=1, .. I),)) € DUD,
5. I(p°) € {true, false}, and
6. I(p") < (DU DY".

Our inductive definition of truth is typical. We extend the domain of
to all sentences, understanding a sentence A to be true, written I(A) = true

or M = A provided:!®

LIO=It)ifA=t=1,

' Note that the predicate E! can be undecidable in a nonstrict positive free
theory T in the sense that, for some term ¢, we may have neither +, E! (¢) nor -,
— E! (#). Consequently, free logic is not a fragment of “many-sorted” or “order-
sorted” logic as those logics are normally understood. See, for example,
[Schmidt-Strauss 1987, 4]. Free logic is less cluttered than many-sorted or order
sorted logic or logic with restricted quantification ([Hailperin 71957]) as it is not
burdened with a quantifier over the outer domain. Quantification over errors is of
no mathematical interest and, because it is unneeded and verbose, it interferes
with understanding system specifications and proofs of program correctness.

15 We take I(f") to be a total function on D\J D, although the restriction of

I{f") to D need not be total. For example, if I(E!(g'(f))) = false for some term ¢,
we force g to be total by insuring that I((g(9)) = err.

' In the following, we use the sign = for syntactic identity, and we
understand that an interpretation I’ is an a-variant of an interpretation I provided
F(b) = I(b) for every individual parameter b # a.

MODERN LOGIC 33

2. (), ... I, e Ip")ifA=p™(z,, ..., ¢,),

3. I(B) = false if A = B,

4. I(B) =false or I(C) =trueif A=B — C, and

5. I'(B(a)) = true for every a-variant I' of I such that F(@) € D ifA=
VX B(X), where a is the first individual parameter foreign to VX B(X).

As usual, a sentence A is a logical consequence of a theory T, written
T & A as well as F; A, provided that, in each model M such that M = B

for every B € T, we have M = A. The sentence A is called valid if kA,

where @ is the emptyset.

Nonstrict positive free is a reasonable logic, having intuitive Hilbert-
style axiomatic, natural deduction, Gentzen-style sequent, and tableaux
systems.” We note in particular that these deductive systems are strongly
sound and complete and that the Deduction Theorem holds. Furthermore, it
has a reasonable model theory because, as we shall discuss in more detail in
Section 4, the Craig Interpolation Lemma and hence the Beth Definability
Theorem hold.’®

7 For further information, see [Leblanc 1976] and [Bencivenga 1986] on
axiomatizations, [Lambert & van Fraassen 1972], [Bencivenga 7986], and
[Gumb 1989] on natural deduction, [Bencivenga 1/986] on sequents, and [Gumb
1979b] and [Gumb 1984] on tableauxs. All of these systems with the exception
of that in {Gumb 1989] require minor modifications to accommodate the unique
error object err. We sketch the modifications required for tableaux in Section 4.

18 A logic underlying a specification language for computer systems must
be reasonable, even if formal verification of complete programs is never
attempted. For example, it must be feasible to prove the equivalence of speci-
fications in order to establish that program transformations, as used in compiler
optimizations, preserve meaning. Tentative notes on desirable properties of
specification languages, can be found in [Gumb 7982]. Corcoran [Corcoran
1980] argues that even classical mathematicians are not interested in logics
solely for their model-theoretic prowess or, in our terms, their capacity to
provide semantic “specifications”. Corcoran studies “slightly augmented first-
order logic” that has one predicate variable. The variable, when it occurs in a
sentence, is given the generality interpretation. Corcoran argues that slightly
augmented first-order logic is of little mathematical interest even though, when
it is taken as the underlying logic, Peano arithmetic is categorical. Slightly
augmented first-order logic is similar to the system described in [Scott 71979],
except that the latter is a constructive theory of types, has infinitely many free
variables in each type, and imposes the generality interpretation on free
variables in every type.

34 Volume 7, no. 1 (January 1997)

3. Full Explicit Definitions. We understand explicit, equational,
and conditional definitions. as they are typically presented in formalizations
of standard first-order logic. Recall that the conditions on explicit and
equational definitions insure that defined symbols are eliminable in favor of
the primitive symbols and that definitions are noncreative in the sense that,
after the definition is introduced, no previously unprovable assertion con-
taining only logical and primitive symbols becomes provable. We sum-
marize the presentation of Suppes ([Suppes 1957]), modifying his treatment
of free variables to ease the transition to the free case.”

Let n 2 0, f* be an n-ary function symbol (function parameter), t(a,,
..., 4,) be a term, and

fl(ah" ',an)=t(al" . ’an)
be an equation. We call its universal closure
VX,... VX, X,.... X,)=tX,,...,X,))

introducing the new n-ary function symbol f* an equational definition and
[a defined symbol if the following conditions are satisfied:

1.the X; (1 £i <n) are distinct individual variables,
2. the X; are the only individual variables occurring in #(X, ..., X,),
and

3. the only nonlogical symbols occurring in #(X;, . . . , X,) are either
primitive symbols or previously defined symbols.

For example, in arithmetic, the individual constant 1 and the 1-ary function
plus2 can be introduced with the equational definitions:

1 = succ(0)

VX (plus2 (X) = succ(succ(X)))

An explicit definition of an n-ary predicate p" is of the form:

'* Suppes takes definitions to be open sentences in which free variables are
given the generality interpretation. Simply put, our definitions are the universal
closure of his definitions.

MODERN LOGIC 35

VX,...¥VX, 0" X;,... ., X,) 0AX,,..., X))
if the following conditions are satisfied:

1. the X; (1 £i <n) are distinct individual variables,

2. the X; are the only individual variables occurring in A(X;, ..., X)),
and

3. the only nonlogical symbols occurring in A(X, ..., X,) are either

primitive symbols or previously defined symbols.

For example, in arithmetic < can be defined as follows:
VXVYX<Y3IZX+Z=Y))
Similarly, an explicit definition of an n-ary function f” is of the form:
VX,...VX, VY(f(X;...VX,))= Yo AX,...VX,Y)
if the following conditions are satisfied:

1.the X; (1<£i<n) and Y are distinct individual variables,

2. the X; and Y are the only individual variables occurring in
AX,...VX,7Y),

3. the only nonlogical symbols occurring in A(X| ... VX, Y) are

either primitive symbols or previously defined symbols, and
4. the existence and uniqueness conditions:

VX,...VX,3Y A(X, ... VX, ¥)
VX,...VX, VY AX,... VX, D AAX,... VX, ¥) > Y =Y)

are provable from the nonlogical axioms and preceding definitions.

An equational definition is equivalent to an explicit definition. For example,
1 and plus2 can be defined in arithmetic with the explicit definitions:

VY(1=Y & Y=succ (0)

VX VY (plus2(X) = Y & Y = succ(succ(X)))

36 Volume 7, no. 1 (January 1997)

The requirement that existence and uniqueness conditions be provable is
omitted from equational definitions because these conditions are provable
without exception for equational definitions.

The treatment of conditional definitions in standard logic is messy and
provides some of the motivation for free logic definition theory. A
conditional definition of an n-ary function f* of the form:

VX,... VX, VY (C(X,.. X)) > X,.. X,=YAX,...VX, Y)
if the following conditions are satisfied:

1. the X; (1£1< n)and Y are distinct individual variables,

2. the X; and Y are the only individual variables occurring in
AX,,... X, Y,

3. the only nonlogical symbols occurring in A(X,,..., X,, Y) are
either primitive symbols or previously defined symbols, and

4. the conditional existence and uniqueness conditions:

VX, ...,VX,(CX,,..., X) > Y AKX, ... VX,, V)
VX, ...,VX,VYVY (CX,,..., X,)—>
AKX, ..., X, DAAX,... VX, Y)> Y =Y))

are provable from the nonlogical axioms and preceding definitions.

If an individual constant, say 0, is primitive or has been previously defined,
a conditional definition of the above form can be converted into the explicit
definition:

VX, ... VXYY X, ... X,=Y o (CX, , ..., X,)—>
AKX, ... VX, YDA =C(X,...VX, ¥)—= Y=0))

For example, the conditional definition of division (+) in the theory of
fields:

VXVYVZ(Y#20-> X+Y=Zeo X=YXZ))
can be converted into the explicit definition:

VXVYVZIX+Y=Ze (Y202 X=YXZD)A(Y=0->2Z=0))

MODERN LOGIC 37

The definition theory for nonstrict positive free logic builds directly
upon that for standard logic.”® Explicit definitions in nonstrict free logic are
of limited interest, because, like conditional definitions in standard logic,
they are not sufficient for insuring eliminability in the general case. The
theory of definitions in standard logic requires some modification to suit the
free case. We require a device that, intuitively, enables us to quantify

universally over the outer domain. The universal expansion V* a, . . . V*
a, A(a,,..., a,) of a sentence A(a,,..., a,)is defined by induction
onnz20:
AO=A
and
V*a,...V¥a, A(Q;,..., Gy, =

V*q,...V¥a, VX,,Aa,,..., a,,X,,.,) AA(a,,..., a,, emr)

We understand a full explicit definition of the predicate p” to be the
universal expansion V*a,...V*a,A(a,,.. ., a,) of a sentence A of
the form

pa,..., a,)eB(a,,..., a,)

Note that the universal closure of A is an explicit definition. For function
symbols, the definitions of a full explicit definition and a full equational
definition are entirely similar, except that the requirement in standard logic
regarding the provability of the existence and uniqueness conditions must be
modified. In nonstrict positive free logic, the analog of the existence
condition is the universal expansion of:

dY A(a,,..., a,,Y)AA(a,,..., a,, emr)
and the analog of the uniqueness condition is the universal expansion of:

Alay,..., a,,b)AA(ay,..., a,,b'Y>b=b

% There has been some previous work in the theory of definitions in free
logic. For example, [Schock 1965] formulated rules of definition for strict

predicates and functions as does [Renardel 7994] in an infinitary free logic, and
[Dwyer 1988] studies the eliminability problem restricted to closed sentences.
To enable the definition of nonstrict functions such as ‘zero’ -—to be given
shortly — nonstrict positive free logic requires a more general approach. We
emphasize that the theory of definitions in nonstrict positive free logic,

especially that presented in Section 5, is facilitated by the “inner domain, outer
domain” semantics.

38 Volume 7, no. 1 (January 1997)

In a full explicit definition of a function symbol, we require that the analogs
of the existence and uniqueness conditions be proven prior to the
introduction of the symbol.2! A straightforward argument, using the fact that
explicit definitions are noncreative in standard logic, establishes that, in
nonstrict positive free logic, full explicit definitions are noncreative and that
predicate symbols introduced in full explicit definitions are eliminable.”? In
the case of a full explicit definition of a function symbol, proof that the
function symbol is eliminable uses the fact that the the analog of the
existence condition is provable.” In summary, we have:

Theorem 1. A full explicit definition of a predicate (function) symbol is
noncreative.

Theorem 2. A predicate (function) symbol introduced in a full explicit
definition is eliminable.

21 Note that, although the axiom for err
er=t&—dXX=9

appears to be equivalent to a full explicit definition, it is not because the analog
of the existence condition for err cannot even be expressed, much less proven.
This is because the system obtained by dropping this axiom and adding the
axiom of “universal existence” IX (X = ¢) is consistent. The models of this
system are models of standard logic, because the inner and outer domains co-
incide. The undefinability of err is a curiosity arising from not having quanti-
fication over the outer domain.

*»This is because a nonstrict free theory can be mapped, using the
translation that can be read off from the definition of truth, into a standard theory
in the metalanguage.

2% The case for a 1-ary function symbol f illustrates the key step in the proof
of eliminability. If f has been introduced with the full explicit definition (con-
stituted by the universal expansion of the sentence):

fla)=b & B(a.b)
then f can be eliminated from A(f(c)) as follows:

A(fc) =
AW (W=£c) AA(W)) v (err = flc) AAlerD) =
AW (B(c,W) AA(W)) v (B(c.err) A A(em))

The rest of the proof is as in the standard case. The case when f is n-ary is
similar.

MODERN LOGIC 39

Since full explicit definition are noncreative and eliminable, we call

them completely proper.
Somewhat analogous to a conditional definition, we also permit a near-full
explicit definition of a function symbol, which is like a full explicit
definition, except that we do not require that the analog of the existence
condition be proven. We say that a near-full explicit definition is proper
because it is noncreative. However, a function symbol introduced in a near-
full explicit definition may not be eliminable.

The analog of the uniqueness condition for a full equational definition is
provable making use of the laws of equality. The analog of the existence
condition is also provable provided that the analog of the existence condition
has been proven for every function symbol occurring in the definiens.

A predicate (function) introduced with a full explicit definition is called
a full predicate (function), and one that is introduced with an explicit
definition (but not a full explicit definition) nonfull. For example, < is a
nonstrict predicate because neither the sentence err < err nor its negation is
intuitively valid. Hence, it is a nonfull predicate because it is introduced in
free arithmetic with the explicit definition given above. Furthermore, < is a
nonlogical constant because < occurs in the definiens. However, #, E!, = ,
and # are full predicates that are nonprimitive logical constants because
they are introduced with the universal expansions of the following

sentences:
a#be —(a=b)
Ell@) o X (X =a)
a=bo>El(@Aaa=b
a #boE (AAEB)Aa#b
Note that # is a nonstrict predicate, while E!, =, and # are strict.
The nonstrict function ‘zero’ is introduced with a full equational

definition (constituted by the universal expansion of the sentence):

zero (a)=0

and ‘if-then-else’ with the full explicit definition
ifathenbelse b’ =c &

@=1- c=b)a@=0->b'=c)A(~(a=0va=1) - c=em)

40 Volume 7, no. 1 (January 1997)

The analogs of the existence and unigueness condition are readily proven for
‘if-then-else’, and so its definition is completely proper. The function
symbols ‘zero’ and ‘if-then-else’ are eliminable nonlogical constants.

4. The Beth Definability Theorem. In standard logic, the Craig
Interpolation Lemma implies the Beth Definability Theorem, and this result
carries over to nonstrict positive free logic. In addition to its usual role in
standard logic of insuring a reasonable model theory, the Craig Lemma in
computer science has an additional, fundamental application. Software
engineers make critical use of the Craig Lemma in establishing the
Modularization Theorem which enables computer systems to be decomposed
into modules [Parnas 1972].%

Proof of the Craig Lemma can be had by modifying the proof for CQ_.
in [Gumb /979b]. To accommodate the unique error object err, we supple-
ment the usual clauses in the definition of a (Hintikka) model set with
clauses stating, intuitively, that err cannot be an existent and that it is the
unique error object. Let ¢ and ¢’ be any terms, A any sentence, and < be a

well-ordering of the singular terms with err as the first element. We under-
stand a model set to be a set of sentences S satisfying the following
conditions:*

24 Turski and Maibaum ([Turski and Maibaum 7987, 175] write: “It seems
that the crucial requiremhent to establish the (Modularization Theorem) is that the
Craig Interpolation Lemma holds in the linguistic system.” See also [Veloso
19931.

% In our definition of a model set, we follow the conventions in [Gumb
1979a, 37-38], and [Gumb 1984, 176]. Rules of the tree method are read off
from the clauses defining a model set as usual. Corresponding adjustments in the
rules of the tree method and its Routine in [Gumb 1979b, 322-323], are needed

to suit the modified rule (D.=) and the new rule (I.@), as well as the the new rules
(C.err) and (D.err). The adjustment to rule (D.=) is required to handle function
parameters. Roughly, we substitute one term for another term that is equal to it
just when the first term is “simpler” (<) than the second. This blocks certain

infinite loops in the Routine when we have, for example, a = f(a).

The rule (1.&) is an “initialization” rule and is fundamentally different in
character from the C-rules and the D-rules. Unlike the C-rules, it does not directly
signal that S cannot be a model set. Unlike the D-rules, it does not reflect the
compositionality principles inherent in the semantics. The Routine accom-
modates it by requiring that, in Step 1 on p. 323, 3X (X = X) be placed at the top
of the tree (and the line numbering changed accordingly). It insures that the inner
domain of a model constructed from an open branch is nonempty as mandated by
the semantics, and it blocks, for example, VX (X # X) from being a member of a

model set. Recall that in our semantics, we have k&= 3X (X = X).

MODERN LOGIC 41

1) IXX=X) e S.

(C#) t #te S.

(C=) IfAe S,then—A ¢ S.

(Cerr) X (X=em) g S.

(D.=) If A(®) is a literal or an existential, A(t) € S,? < tandeithert="re
Sorf=te S, then A(Y) € S.

(Demr) VXX #)e S or VX(t#X)e S, thent=erre S.

(D"1—1) A€, then A € §.

(D.=—) f - (A—>B)e S,thenA,—~Be S.

(D.—») If A—> Be S, theneither—-A € S orBe S.

D.~V) F-VXAX) € S and -VX A(X) # IX(X =?) for some term 7,
then, for some term ¢, A(?), IX(X =1) € S.

(D.V) f VX A(X) € S, then A(¢) € S for each term ¢ such that IX(X =1)
e S.

The following result is the key ingredient in proof of the completeness
of the tree method for nonstrict positive free logic:*

Theorem 3. (Hintikka’s Lemma): A model set is satisfiable.

Proof of the following is had by a straightforward editing of the proof
in [Gumb 1979b):*

Theorem 4. Extended Joint Consistency Theorem (Craig-

Lyndon-Robinson): The theory T, U T, is inconsistent iff there is a
sentence F such that

Illustrating the other new rules, rule (C.err) blocks the unsatisfiable IX (X =
err) from being a member of a2 model set. We require that err be the first element
in the well-ordering < so that there is no ¢ < err, blocking {IX (X = 1), ¢ = err}

from being included in a model set. As it is, we have {IX X =1¢), r =err, X (X
err)} by rule (D.=), and now rule (C.err) can be applied. The rule (D.err) in
conjunction with (C.err) blocks {VX (X # 1),VX (X #¢), t # '}. The motivation for
the other rules is as usual.

%6 TThis proof is easily had by editing the proofs in [Gumb1979a], 38-43,
with modifications to suit our model-theoretic semantics as in Boolos and
Jeffrey’s simple completeness proof [Boolos & Jeffrey 1974, 138-143

%7 The case for the C-rule (C.err) is incorporated into the inductive proof of
Case 1, as part of the Basis, Case 1, on p. 324. The cases for the introduction

nule (I.@) and the D-rule (D.err) are treated in the inductive step like Case 1.1 for
(D. ——) on p. 330. A model-theoretic proof of a result similar to that in [Gumb
1979b] can by found [Dwyer 1988].

42 Volume 7, no. 1 (January 1997)

1. T, U {F} and T, U {—F} are inconsistent,

2. each sentence and predicate parameter occurring in F also occurs
in both T, and T,, and

3. each sentence and predicate parameter occurring in F occurs in T,
the opposite way as in F and in T, the same way as in F.

We now present a version of Beth’s theorem that incorporates justifi-

cation for Padoa’s method. Letp", p;', . . ., p," be distinct predicates of
arity n, n,, . . . , n,, occurring in the theory T, and

(D.p")Y=V*a,...V*a, (p"(a,...a) < (B(a, ...a,))

The predicate p is called fully and explicitly definable from p,, . . . , p, in
T if - (D.p". Clearly, if p were new to the theory T " and T = T~ U
(D.p"), then p would be fully and explicitly definable in 7. An entirely
similar terminology is used in the case of functions. Let ¢" be a new
predicate, and T, be the result of substituting ¢” for every occurrence of p” in
T. The predicate ¢ is implicitly definable from p,, . .., p,, in T if

TUT, - V*a,...V*q,(p"(a,,..,a,) e q" (@,,...,a,))

Proof of the Beth Definability Theorem as found in the literature (see,
for example [Boolos and& Jeffrey 1974] and [Smullyan 1968]) is readily
adapted to the nonstrict positive free case. The following proof is typical of
those used for obtaining the results reported in this paper in that the
modifications to the proofs for standard logic are routine. However, in the
literature, the Craig Interpolation Lemma is normally used, and, because the
Extended Joint Consistency Theorem (Theorem 4) can be used directly
instead, we briefly outline the proof to show how the Theorem slightly
simplifies the proof by obviating appeal to the Compactness Theorem.

Theorem 5. Beth Definability Theorem: A predicate (function) is
implicitly definable iff it is explicitly definable.

Proof: To reduce clutter, we follow Smullyan [Smullyan /968, 132-133)
in restricting attention to 1-ary predicates. We prove

(ED) T + V*a (p (a) & (B (a))
=
(D) TUT, - V*a, ... V*a (p (@) © (g (a))

MODERN LOGIC 43

(=) The justification of Padoa's method is very simple. Suppose (ED).
Then T, + V*a (g (a) <> (B (a)). Hence, (ID) because p and g are foreign to
T and B(a).

(<) Suppose (ID). Letting a be an individual parameter foreign to 7,
we have:

TOT, v{3X (X =a)} (p (@) & (g (@)) A (plerr) & g(erm))
Hence, the two theories
L{E3XX=a)} VT V{-p@hv{3XX=a)} VT, vig(a)})
and

2.T U{=plemDUT, U{glem})

are inconsistent. By Theorem 4, there are F and F,, as in the theorem such
that each of the following theories is inconsistent:

3.{3X(X=a)} VT U {~pa} v {Fa)}
4. {IX X=a)} VT, viga} v {—Fla)}
5.T U {—plem)} U {Fo,(em)}
6.7, U {glem}w{—F,(em}
From (4) and (6), we have that (7) and (8) are inconsistent:
7.{3IXX=a)} VT v {p(@)} v {~F(a)}
8.T U {p(em)} U {— Fq(em)}

Assembling (3), (5), (7), and (8), we have (9) and hence (10):

9.7 VX (p(X) <> F(X)) A (p(err) « Flerr))

10. T + V*a (p(a) &> (a # err = F(a)) A (a = err) = F,_ (err)))

44 Volume 7, no. 1 (January 1997)

Taking B(a) = (@ # err — F(a)) A (@ =err) = F, (emr))) in (10), we see that
we have proven (ED). []

5. Definitional Transformations. In this section, we describe
transformations on sentences that yield full explicit definitions. Under some
of these transformations, results in standard logic carry over into nonstrict
positive free logic. This is useful because some previously established
theorems about definitional extensions of standard theories can be had in the
nonstrict positive free case without proving each individual result “from
scratch.” Using these transformations, many facts about mathematical
theories that are adequately formalized in standard logic can be easily had in
nonstrict positive free logic, a logic that is also adequate for formalizing
computing practice.

The first two transformations convert definitions in nonstrict positive
free logic that are “not quite™ full explicit definitions into ones that are. The
equational transformation of a full equational definition into a full explicit
definition is schematized as follows:

V*a,...V*a,(f"(a,,...,a,)=t({(a,,...,a)) =
V*a,...V*q, V*b (f"(ay,...,a,)=beb=t((a,...,a,))

For example, we have for the nonstrict function ‘zero’

V*a (zero (a) = 0) = VX (zero(X) = 0 A zero(err) =0 =
V*a V*b (zero(@)=b > b=0)=
VXVY(zeroX) =Y o X=0AVX (zeroX) =err < err=0) A
VY (zero(err) =Y <> Y= 0) A (zero(err) = err < err=0)

A full explicit definition obtained by applying the equational transformation
is equivalent to the original full equational definition.

Consider the strict 1-ary functions id (the identity function), twice (the
doubling function),”® and . (the totally undefined function). The reader
might find it instructive to compare the role of the four conjuncts in the full
explicit definition of ‘zero’ with the roles of the corresponding four con-
juncts in the full explicit definitions obtained by equational transformation
from the following full equational definitions:

idl@)=a

2 The function twice is strict because + is understood to be strict. See, for
example, the axiomatization of arithmetic in [Gumb 7989, Chapter 5], as
corrected in [Gumb 71994] and [Gumb 1996].

MODERN LOGIC 45

twice(@)=a+a
l{a)=err

In standard logic, the functions zero and id can be introduced with entirely
similar equational definitions, but .L cannot be introduced at all because it
is not a total function.

The near-full explicit transformation of a near-full explicit definition
of an n-ary function f* into a full explicit definition is schematized as
follows:

V*a,...V*a,V*b (f"(a,,...,a,)=be Al(a,,...,a)) =
V*a,...V*a, V*b (f"(a,,...,a,)=b &>
dYA({(a,,...,a, V)—>b=YV)A(3IYA@G,...,a,Y)>b=err

The analog of the uniqueness condition holds for the full explicit definition
because it holds for the near-full explicit definition, and proof of the analog
of the existence condition follows immediately from the form of the full
explicit definition.

We say that a (nonstrict positive) free theory corresponds with a
standard theory provided that the free theory shares the same nonlogical
vocabulary as the standard theory and the err-free fragment of the set of
theorems of the free theory is identical with the set of theorems of the
standard theory. The next transformation converts a standard theory into a
free theory that corresponds with the standard theory.

The strict axiom transformation of a standard theory T is obtained by
supplementing T with axioms stating that each primitive n-ary function (n
2 0) is total:

VX,...VX,3Yf X,,....X,)=Y
and strict:
V*q, ... V*a,V*b (~(E! (g, A...A(E!' (a,,)) > f @a;,...,a,)=err
and each primitive n-ary predicate p” is strict:
V*q,...V*aq, V*b (—(E! (g;A...A(E! (@) 2P (ay,...,a,))

The next set of transformations preserve correspondence in definitional
extensions.

46 Volume 7, no. 1 (January 1997)

1. The strict transformation of an explicit definition in standard logic
of an n-ary predicate p” into a full explicit definition is schematized as
follows:

VX,.. VX, 0" X,,.... X)) A(X,,...,. X)) =
V*g,...V*a,(p"(@a,,...,a,) <
El(@)An...AE!l(a,) AA(a,,...,a))

2. The strict transformation of an explicit definition in standard logic
of an n-ary function f* into a full explicit definition is schematized as
follows:

VX,...VX, VY X,,.... X)) =Y A(X,,....X,) =
V*a,...V*aNb(f"(a;,...,a,)=b&
(E!(@)An...AEl(a,)AA(@y,...,a,,b) A
(—=(E! (a; A...A(E!(a,)) = b=erm))

3. The strict transformation of a conditional definition in standard logic
of an n-ary function f* into a full explicit definition is schematized as
follows:?

VX,... VX VY(C(X,....X) >
F&X,....X,)=Y & AX,,....X,, D))=
V*q,... V*a¢N*b("(a,,...,a,)=b&
Ela)A...AEl@a)ACa,...,a,)— (@;,...,a,b) A
—Ea)A...AEa)AC(a,,...,a))—> b=em)

For example, the conditional definition of division (+) in the theory of fields
can be converted to a full explicit definition as follows:*

2 The strict transformation is related to a device of Schock [Schock 71965,
40]. Schock points out that with a transformation of the following form:

VXl...VXnVY(C(Xl,...,Xn) - (fn(Xl,...,Xn) =Y ¢« A(Xl,...,Xn,Y))) =
V*al...V*anV ="b(fn(al,...,an) =b e
C(al,...,an)/\A(al,...,an,b))

it follows that

VX, ... VX, (—CX, ..., X)) = —=E{f X, ,.... X))

MODERN LOGIC 47

VXVIWZ (Y20 > X+Y=Z < X=YX2Z) =
V*ag...V*bV*c(a+ b=c &
ENa) AEI(B) AEN) b#0 > a=b Xc) A
(- ENa) AEBD) AENc)A D£0) = b=em))
The applicability of this transformation is not subject to a restriction simi-

lar to the restriction on the corresponding transformation in standard logic
discussed in Section 3, because the error constant is always present.

4. The closure transformation of an explicit definition in standard logic
of an n-ary predicate p" into a full explicit definition is schematized as
follows:

VX, ... VX, 0" X,.... X) e AK,,.... X)) =
V*a,...V*a,(p"(ay,...,a) e AKXy, ..., X))

5. The closure transformation of an equational definition in standard
logic of an n-ary function f* into a full equational definition is schematized
as follows:

VX, . VXX, X) =t (X, X)) =
V*aq,...V*a,V*b (" (a,,...,a)=beb=t(a,,...,a,))

Proof of the following result can be extracted from
the literature:*

Theorem 6. (a) If a free theory is the strict axiom transformation of a
standard theory then it corresponds to the standard theory. (b) If T is a free
theory that corresponds with the standard theory T, T’ is obtained by
supplementing T with a full explicit definition D, T's is obtained by Tg with

3 Our example follows Dwyer [Dwyer 1988, 51], who uses Schock’s device
to supplement the theory of fields, yielding the theory F, of fields with explicit
division. Dwyer notes that -F, VX—E!(X + 0).

3! These proofs are obtained by slightly modifying standard results of first-
order logic as presented in [Suppes 1957] and [Schoenfield 7967]. Regarding the
strictness transformations, see Farmer’s Eliminability Theorem for his partial
first-order logic (Farmer 1995], and his remark in [Farmer 1990, 1289]. Re-
garding the strictness transformation of conditional sentences, also see [Schock
1965]. Regarding the closure transformation of an equational definition, an
equational definition can be transformed into a full equational definition as an

intermediate step, and the result then follows from the remarks made earlier in
this paper.

48 Volume 7, no. 1 (January 1997)

an explicit definition Ds, and D is obtained from D; by any of the following
transformations:

1. the strict transformation of an explicit definition in standard
logic of a predicate symbol,

2. the strict transformation of an explicit definition in standard
logic of a function symbol,

3. the strict transformation of a conditional definition in standard
logic of a function symbol,

4. the closure transformation of an explicit definition in standard
logic of a predicate symbol,

5. the closure transformation of an equational definition in
standard logic of a function symbol, and

then T’ corresponds with , T’;.

The final transformation applies to an explicit definition of function
symbol, and it is more problematic in that we require a precondition
insuring that the analog of the uniqueness condition holds in the resulting
full explicit definition. The precondition blocks application of the trans-
formation when the the analog of the uniqueness condition is not guaran-
teed. We first exhibit the transformation, and then present the precondition.
The closure transformation of an explicit definition in standard logic of an
n-ary function f* into a full explicit definition is schematized as follows:

VX,...VXVY (P (X ,...,.X)=Y o AKX,,.... X)) =
V*a,...V*a,V*b (" (a;,...,a,)=b e Afa,,...,a,b))

In general, this closure transformation does not insure that the analog of
the uniqueness condition is provable for the resulting full explicit definition.
We seek a natural precondition guaranteeing that the resulting full explicit
definition is completely proper. In other words, the precondition is to insure
that the analogs of the existence and uniqueness conditions hold for the full
explicit definition. It is readily verified that the analog of the existence con-
dition holds. Consider the closure transformation of a 1-ary function f:

VXVY X)) =Y AX, V)=
V*aV*b (f(a)=b & A(a,b))=
VXVY (X) =Y < AKX, D)) A VX (AX) =err © A(X, err)) A
VY (flerr) = Y & A(err, Y)) A (flerr) = err & A(err, err))

Since fis a total function in standard logic, we havel, VX 3Y A(X, Y) and

VXVYVY' (AX,Y) AA(X,Y’)—> Y =Y"’). However, the second, third,
and fourth conjuncts do not block, for example, +, 3X A(X, err), which
would give the absurdity +;3X (X = err), However, if there are at least two

MODERN LoGIC 49

existents F3X3Y (X # Y)), the following monotonicity condition insures
the uniqueness condition:

FrVX(AX, err) > 3YAX, Y) > VYAX,) A
VX A(err, err) = (Y A(err, ¥) - VY A(X, 1))

Some examples may clarify how the requirements of at least two existents
and the monotonicity condition block inappropriate applications of the
closure transformation. Taking the existence of at least two individuals as a
precondition blocks the closure transformation from being applicable to the
explicit definition:

VXVY(fX)=Ye Y =Y)

which is a proper explicit definition in any standard theory 7 in which there
is exactly one individual (+; 3X VY (X = Y)). The monotonicity condition

blocks the closure transformation from being applicable to the explicit defi-
nition:

VXVYX) =Y X £Y)

which is a proper explicit definition in any standard theory T in which there
are exactly two individuals (F;AXIY X #YAVZ(Z =XV Z =7))). On

the other hand, the closure transformation is applicable to the explicit
definition of the function {

VXVY (X)) =Y y=0)

in any theory in which there are at least two individuals (-, IX 3Y (X #
Y)) because the monotonicity condition is satisfied, and yields the full ex-
plicit definition of the function zero given earlier in this section.

More generally for n-ary function f* the monotonicity condition is
given by the schema:

I—T \')’X1 .VX (A (Xl’ oo Xpo err)[err\Xil] e [err\Xim] -
@Y A (Xl’ e X Y)[err\Xi]l .. [err\Xi]—> VYA (Xl’ e X Y)))
1 m

(A<i,snAlLk<m)

We conclude that the precondition for the closure transformation must

require that there be at least two existents and that the monotonicity con-
dition hold. This precondition is a natural condition insuring that a full ex-

50 Volume 7, no. 1 (January 1997)

plicit definition obtained by the closure transformation is (completely)
proper, and it works because the uniqueness condition holds for the given
explicit definition in standard logic. In summary, we have:

Theorem 7. If T is a free theory that corresponds with the standard
theory Ts, T ’s is obtained by supplementing T with an explicit definition
Dy of a function symbol, T’ is obtained by supplementing T with a full
explicit definition obtained by applying the closure transformation to D,
and the precondition for the closure transformation is provable in T, then
T’ corresponds with T ;.

6. Limitations of Nonstrict Positive Free Logic. In non-
strict positive free logic as presented here, there is exactly one error object.
We believe that this approach is entirely appropriate for program specifi-
cation and verification. One error object is enough because the nonexistents
are of no mathematical interest.*> This approach is realistic because an ex-
pression in a program may be in error and may not refer to a conventional
mathematical object. It is natural because the quantifiers range over con-
ventional mathematical objects, freeing the axiomatization from the clutter
of explicit clauses intended to handle errors.® Qur approach can be
generalized just in case the number of error objects is some definite positive
integer. One might have two error objects, one for nontermination and one
for division by zero. More generally, a finite number of nonidentical error
objects might be provided for nontermination and each kind of exception
that could be raised during a computation.’ Just as a single error constant
err must be primitive as discussed in footnote 21 above, in a slightly
modified logic, each distinct error object would require a primitive error
constant.

An outer domain quantifier, as studied by Cocchiarella [Cocchiarella
1966], would be required to accommodate an infinite number of error ob-
jects. McLean [McLean 1990], in his review of [Gumb 7989], proposes a

32Scott makes a somewhat related point in [Scott 1970, 146-147].

** In the higher-order case, caution must be exercised in that identifying
error objects can lead to inconsistency. [Kuper 1994, 108-109] notes that it is a
well-known fact about the untyped A—calculus that identifying all diverging
computations leads to theidentification of all terms whatsoever. He considers the
diverging terms Q, Ax.xKQ, and Ax.xSQ, and, after applying the second and
third to K, finds that K = S.

3 Having a definite, finite number of error objects can be motivated by
other considerations. For example, Cartright and Felleisen [Cartright and
Felleisen 1992] have demonstrated that exactly two error objects in addition to
the diverging object L are needed to obtain a “fully abstract” semantics for a
sequential version of Scott’s programming language PCF.

MODERN LoOGIC 51

semantics with an infinite number of error objects that is reminiscent of
Meyer and Lambert [Meyer and Lambert 1968]. He advocates that there be
an error object for each possible syntactically distinct error in a program.
These error objects might be useful, one might think, in programming de-
bugging. Yet, how useful would these error objects be in isolation, without
additional information on the context (environmental and otherwise) in
which errors arise? At the low level of abstraction needed in program de-
bugging, an infinite number of possible error messages might be entirely
appropriate. However, at the higher levels of abstraction required for pro-
gram specification and verification, a definite, finite number of error objects
is sufficient, and, necessary for uncluttered reasoning.*

An infinite number of error objects cannot be handled adequately in free
logic unless one is willing to have quantification over the outer domain, a
tactic deplored by free logicians. Our position is that the (nonconstructive)
positive free logic known in the literature as E-logic [Scott 1979],
[Troelstra and van Dalen 1988]) is inadequate for formalizing the logic of
program specification and verification. As noted by Lambert ([Lambert
1979)), a principle of substitution salva veritate, essential to the theory of
definition, is not forthcoming in E-logic. Further, E-logic purports to cap-
ture universal quantification over the outer domain by taking free variables
to have the generality interpretation. As a deductive system for E-logic,
Scott ([Scott 1979, 663]) suggests the one in Dummett [Dummett 1977},
127]). However, Dummett’s systemm makes no special provision for sen-
tences with free variables given the generality interpretation. The Deduction
Theorem and Robinson Joint Consistency Theorem® fail in E-logic. E-
logic cannot be employed in the manner intended and can be salvaged only
by admitting quantifiers over the outer domain as advocated by Cocchia-
rella.®

35 I am grateful to John Peterson for pointing out the need to distinguish the
error requirements of different levels of abstraction.

3 The Deduction Theorem fails because in E-logic we have, for example, X =
0+ X=1but # X =0 X= 1. This corresponds to the fact that, in standard
logic, we have VX (X =0) H VX (X = 1) while » VX (X =0 > X =1).

37 The Robinson Theorem fails because, for example, {A(X)} U {—A(D)} is
unsatisfiable in E-logic,but the separating sentence is not expressible. To see
this, consider in standard first-order logic that VX {A(X)} U {VY = A(Y)} is
unsatisfiable and that 3Z — A(Z) serves as a separating sentence.

® Davis and Fecher ([Davis and Fecher 1991]) argue that existential
quantification can be captured in a system with free variables given the gen-
erality interpretation, essentially a version of Hilbert’s €-calculus. However,
this is not the approach taken in E-logic.

52 Volume 7, no. 1 (January 1997)

Bibliography

Michael BEESON. 1985. Foundations of constructive mathematics,
Berlin/Heidelberg/New York/Tokyo, Springer-Verlag.

Ermanno BENCIVENGA. 1986. Free logics, D. Gabbay and F. Guenthner
(editors), Handbook of philosophical logic, Vol. 3 (Dordrecht, Reidel), 373—
426.

George S. BooLOS and Richard C. JEFFREY. 1974. Computability and
logic, Cambridge, Cambridge University Press.

Robert CARTRIGHT and Matthias FELLEISEN. 1992. Observable
sequentiality and full abstraction, in Conference Record of the Nineteenth
Annual ACM Symposium on the Principles of Programming Languages, ACM,
328-342.

Alonzo CHURCH. 1965. Review of [Lambert 1963], The Journal of
Symbolic Logic 30, 103-104.

— 1973. Review of [Scott 1967], The Journal of Symbolic Logic 38,
166-169.

Nino COCHIARELLA. 1966. A logic of possible and actual objects, The
Journal of Symbolic Logic 31, 688.

John CORCORAN.1973, Gaps between logical theory and mathematical
practice, M. Bunge (editor), The methodological unity of science (Dordrecht,
Reidel), 23-50.

—. 1980. Categoricity, History and Philosophy of Logic 1, 187-207.

Martin DAVIS and Ronald FECHER. 1991. Afree variable version of the
first-order predicate calculus, Logic and Computation 1, 431-451.

Gerard R. RENARDEL DE LAVALETTE. 1994. From implicit via inductive
to explicit definitions, C. A. Middelburg, D. J. Andrews, J. F. Groote (editors),
Semantics of specification languages, Workshops in computing (Berlin/
Heidelberg/New York/Tokyo, Springer-Verlag), 304-314.

Michael DUMMETT. 1977. Elements of intuitionism, Oxford, Oxford
University Press.

Robert C. DWYER. 1988. Denoting and defining: A study in free logic,
Ph.D. thesis, University of California, Irvine.

William M. FARMER. 1988. A partial functions version of Church’s simple
theory of types, Technical Report M88-52, MITRE Corporation, Bedford,
Massachusetts, November 1988. (An earlier version of [Farmer 7990] that uses
L)

—. 1990. A partial functions version of Church’s simple theory of types, The
Journal of Symbolic Logic 55, 1269-1291.

— 1995. Reasoning about partial functions with the aid of a computer,
Erkenntnis, forthcoming. Presented at the Partial Functions and Programming
Conference, University of California at Irvine, February 17, 1995.

Solomon FEFERMAN. 1992. Logics for termination and correctness of
functional programs, Y. N. Moschovakis (editor), Logics from computer science
(Berlin/Heidelberg/New York/Tokyo, Springer-Verlag), 95-127.

MODERN LOGIC 53

L. M. G. FE1Js and H. B. M. JONKERS. 1992. Formal specification and
design, Cambridge, Cambridge University Press.

M.P. FOURMAN, C. J. MULVEY, and D. S. ScoTT (editors). 1979.
Applications of sheaves: Proceedings of the research symposium on applications

of sheaf theory to logic, algebra, and analysis, Durham, Lecture Notes in
Mathematics, Vol. 753, Berlin, Springer-Verlag.

Dmitry P. GORSKY. 1981. Definition, Moscow, Progress Publishers.

Raymond D. GUMB. 1979a. Evolving theories, New York, Haven.

— 1979b. An extended joint consistency theorem for free logic with
equality, Notre Dame Journal of Formal Logic 20, 321-335. Abstract in the
Journal of Symbolic Logic 42 (1977), 146.

—. 1982. On the underlying logics of specification languages, ACM
Software Engineering Notes 4, 21-23.

—. 1984. An extended joint consistency theorem for a family of free modal
logics with equality, The Journal of Symbolic Logic 49, 174-183. Abstract in
the Journal of Symbolic Logic 46 (1981), 435-436.

— 1985. Free intuitionistic logic and its $4 counterpart, Logique et
Analyse 28, 283-294.

— 1989. Programming logics: An introduction to verification and
semantics, New York, Wiley.

— 1994. Free arithmetic, The Journal of Symbolic Logic 59, 717-718.
(abstract.)

— 1996. Free logic in program specification and verification, in E.
Morsher (editor), New directions in free logic (Bonn, Akademia Verlag).

Theodore HAILPERIN. 1957. Atheory of restricted quantification I, The
Journal of Symbolic Logic 22, 19-35.

C. A. R. HOARE. 1969. An axiomatic basis of computer programming,
Communications of the ACM 12, 576-583.

C. P. J. KOYMANS and G. R. RENARDEL DE LAVALETTE. 1989. The
logic MPL_, M. Wirsig and J. A. Bergstra (editors), Algebraic methods: Theory,
tools, and applications, Lecture Notes in Computer Science, Vol. 394 (Berlin/
Heidelberg/New York/Tokyo, Springer-Verlag), 247-282.

Jan KUPER. 1994. Partiality in logic and computation: aspects of
undefinedness, Ph.D. thesis, University of Twente.

Karel LAMBERT. 1963. Existential import revisited, Notre Dame Journal of
Formal Logic 4, 288-292.

—~. 1981. On the philosophical foundations of free logic, Inquiry 24, 147
203.

—. 1991. (editor). Philosophical applications of free logic, Oxford,
University Press.

—. 1997. Nonextensionality, W. Lenzen (editor), Festschrift fiir Franz von
Kutschera (Berlin, de Gruyter, 19977); forthcoming.

Karel LAMBERT and Bas VAN FRAASSEN. 1972. Derivation and
counterexample: An introduction to philosophical logic, Encino, CA,
Dickenson.

54 Volume 7, no. 1 (January 1997)

Hugues LEBLANC. 1976. Truth-value semantics, Amsterdam, North-
Holland.

— 1982. Existence, truth, and provability, Albany, State University of
New York Press.

H. LEBLANC and R. D. GUMB (editors). 1983a. Essays in epistemology
and semantics, New York, Haven.

— 1983b. Soundness and completeness proofs for three brands of
intuitionistic logic, in [Leblanc and Gumb 1983a], 163-197. Abstract in the
Journal of Symbolic Logic 46 (1981), 201-202.

J. D. McLEAN. 1990. Review of [Gumb 1989], ACM Computing Reviews,
August 1990, 405. (9008-0639.)

Karl MENGER. 1979. A counterpart of Occam’s razor, in his Selected
papers in logic and foundations, dialectics, and economics (Dordrecht, Reidel),
105-135.

Robert K. MEYER and Karel LAMBERT. 1968. Universally free logic and
standard quantification theory, The Journal of Symbolic Logic 33, 8-26.

David L. PARNAS. 1972. On the criteria to be used in decomposing systems
into modules, Communications of the ACM 15, 1053-1058.

—. 1993. Predicate logic for software engineering, IEEE Transactions on
Software Engineering 19, 856-861.

Willard V. O. QUINE. 1963. On what there is, in his From a logical point
of view (New York, Harper Torchbooks), 1-19.

Wim RUITENBURG. 1991. The unintented interpretations of intuitionistic
logic, T. Drucker (editor), Perspectives on the history of mathematical logic
(Boston/Basel/Berlin, Birkhduser), 134-160.

Rolf SCHOCK. 1965. On definitions, Archiv fir mathematische Logik und
Grundlagenforschung 8, 28-44.

Joseph SCHOENFIELD. 1967. Mathematical logic, Reading, MA,
Addison-Wesley.

Dana S. ScOTT. 1967. Existence and description in formal logic, R.
Schoenmann (editor), Bertrand Russell, philosopher of the century (London,
Allen and Unwin), 181-200. (Reprinted in {Lambert 1997].)

— 1970. Advice on modal logic, K. Lambert (editor), Philosophical
problems in logic (Dordrecht, Reidel), 143-173.

— 1979. Identity and existence in intuitionistic logic, in [Fourman,
Mulvey, and Scott 7979], 660-696.

Raymond M. SMULLYAN. 1968. First-order logic, Berlin, Springer-
Verlag.

Manfred SCHEMIDT-STRAUSS. 1987. Computational aspects of order-
sorted logic with term declarations, Lecture Notes in Computer Science, Vol.
395, Berlin/Heidelberg/New York/Tokyo, Springer-Verlag.

Patrick SUPPES. 1957. Introduction to logic, New York, D. van Nostrand.

Richmond THOMASON. 1969. Symbolic logic: an introduction, New York.

MODERN LOGIC 55

— 1995. Logicism: Exact philosophy, linguistics, and artificial
intelligence. Talk presented at the Twenty-fifth Annual Meeting of the Society
for Exact Philosophy, Calgary, Alberta, May 1995.

Simon THOMPSON. 1989. A logic for Miranda, Formal Aspects of
Computing 1, 339-365.

A. S. TROELSTRA and D. van DALEN. 1988. Constructivism in
mathematics: An introduction, Vol. I, Amsterdam/New York/Oxford/Tokyo,
North-Holland.

Wiladyslaw M. TURSKI and Thomas S. E. MAIBAUM. 1987. The
specification of computer programs, Wokingham, England Addison-Wesley.

Michael UNTERHALT. 1986. Kripke-Semantik fiir Logik mit partieller
Existenz, Ph.D. thesis, Westfahlischen Wilhelms-Universitat Miinster.

Paulo A. S. VELOSO. 1993. A new, simpler proof of the modularization
theorem for logical specifications, Bulletin of the IGPL 1, 3-12.

