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How smooth is almost every function
in a Sobolev space?

Aurélia Fraysse and Stéphane Jaffard

Abstract

We show that almost every function (in the sense of prevalence)
in a Sobolev space is multifractal: Its regularity changes from point
to point; the sets of points with a given Hölder regularity are fractal
sets, and we determine their Hausdorff dimension.

1. Introduction

In order to answer the question raised in the title, one should first agree on
what is meant by “almost every” in an infinite dimensional Banach space.
Prevalence supplies a natural definition which is translation invariant and
does not allow a specific measure to play a particular role. Since this notion
is not widely used, we start by recalling its definition and basic properties.

1.1. Prevalence

In a finite dimensional space, “almost every” (without referring to a specific
measure) means “for the Lebesgue measure” which enjoys a particular sta-
tus since it is the only σ-finite translation invariant measure. No measure,
in a metric infinite dimensional vector space, enjoys this property; but this
does not mean that there exists no notion of “almost everywhere” which is
translation invariant. A remarkable way to turn this problem and recover
a canonical notion of almost everywhere was discovered by J. Christensen
in 1972, see [3]. It is based on the following remark which allows to char-
acterize Lebesgue measure-zero sets in R

d by a criterium which does not
involve explicitly the Lebesgue measure.
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Lemma 1. Let S be a Borel set in R
d. If there exists a probability measure

µ such that, for any x ∈ R
d, µ(x + S) = 0, then the Lebesgue measure of S

vanishes.

This lemma can therefore be used as a definition in infinite-dimensional
spaces, see [1, 3, 6]; “zero-measure sets” thus defined are called Haar-null
(or shy).

Definition 1. Let E be a complete metric vector space. A Borel set A⊂E
is Haar-null if there exists a compactly supported probability measure µ
such that

(1.1) ∀x ∈ E, µ(x+ A) = 0.

If this property holds, the measure µ is said to be transverse to A.

A subset of E is called Haar-null if it is contained in a Haar-null Borel
set. The complement of a Haar-null set is called a prevalent set.

The following results enumerate important properties of prevalence and
show that these notions supply a natural generalization of “zero measure”
and “almost every” in finite-dimensional spaces, see [1, 3, 6].

• If S is Haar-null, then ∀x ∈ E, x+ S is Haar-null.

• If dim(E) <∞, S is Haar-null if and only if meas(S) = 0 (where meas
denotes the Lebesgue measure).

• Prevalent sets are dense.

• The intersection of a countable collection of prevalent sets is prevalent.

• If dim(E) = ∞, compact subsets of E are Haar-null.

Remarks. 1. In order to prove that a set is Haar-null, one can often use
for transverse measure the Lebesgue measure on the unit ball of a finite
dimensional subset V ; (1.1) becomes

∀x ∈ E, (x+ V ) ∩ A is of Lebesgue measure zero.

In this case V is called a probe for the complement of A.
Note that in this case, the corresponding measure is supported in a count-

able union of compact sets so that the compacity assumption in Definition 1
is necessarily fulfilled.

2. If E is a function space, choosing a probability measure on E is
equivalent to choosing a random process Xt whose sample paths are almost
surely in E. Thus, the definition of a Haar-null set can be rewritten as
follows: Let P be a property that can be satisfied by points of E and let

A = {f ∈ E : P(f) holds }.
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The condition µ(f +A) = 0 means the event P(Xt − f) has probability
zero. Therefore, a way to check that a property P holds only on a Haar-null
set is to exhibit a random process Xt whose sample paths are in E and is
such that

∀f ∈ E, a.s. Xt + f does not satisfy P
(provided that the set of sample paths almost surely belongs to a com-
pact set.)

3. If E is separable, then every measure is tight, and therefore is sup-
ported by a countable union of compact sets, see [2]; the compactness as-
sumption in the definition of prevalence is automatically fulfilled.

With a slight abuse of language, when a property holds on a prevalent
set, we will say that it holds almost everywhere. Our goal in this paper is to
investigate the regularity properties that hold almost everywhere in a given
Sobolev or Besov space. The case of the Hölder spaces Cs

0 has previously
been investigated by B. Hunt in [5]. In order to state his result, we need to
recall the definition of pointwise Hölder regularity.

Definition 2. Let α ≥ 0 and C > 0; a function f : R
d → R is (C,α)

smooth at x0 if there exists a polynomial P of degree less than [α] such that,
if |x− x0| ≤ 1,

(1.2) |f(x) − P (x− x0)| ≤ C|x− x0|α.
The function f is Cα(x0) if there exists a C > 0 such that (1.2) holds. The
Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.
Note that, if (1.2) holds for an α > 0, f is bounded in a neighborhood

of x0; therefore Hölder exponents can only be defined for locally bounded
functions. In [5], B. Hunt proved that, if s > 0, almost every function in
Cs

0(R
d) satisfies

∀x ∈ R
d, hf (x) = s.

1.2. Statement of the main results

The example supplied by Cs
0(R

d), where almost all functions have every-
where the same regularity, is not typical: We will see that functions in a
Sobolev or Besov space different from Cs

0(R
d) have (almost surely) a whole

range of Hölder exponents; furthermore, one can determine the “size” of the
sets of points with a given Hölder exponent. If H is a value taken by the
Hölder exponent, let

EH = {x : hf (x) = H},
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and

df (H) = dim(EH)

where dim denotes the Hausdorff dimension. The function df (H) is called
the spectrum of singularities of f , see [8, 4].

If s ≥ 0, Lp,s denotes the Sobolev space {f ∈ Lp, (−∆)s/2f ∈ Lp}. We
will prove the following result.

Theorem 1. • If s − d/p ≤ 0, then almost every function in Lp,s is
nowhere locally bounded, and therefore its spectrum of singularities is
not defined.

• If s− d/p > 0, then the Hölder exponent of almost every function f of
Lp,s takes values in [s− d/p, s] and

(1.3) ∀H ∈ [s− d/p, s] , df (H) = Hp− sp+ d;

furthermore, for almost every x, hf (x) = s.

• If s−d/p > 0, let x0 be an arbitrary given point in R
d; then, for almost

every function in Lp,s, hf (x0) = s− d/p.

Remarks. 1. In the second case, when p 	= ∞, Theorem 1 states that
almost every function f of Lp,s is “multifractal”. This means that the sets
of points where f has a given Hölder exponent are fractal sets indexed by
the Hölder exponent H which plays the role of a parameter continuously
varying in [s − d/p, s], see [4, 8]. Up to now it was commonly believed
among mathematicians and physicists that multifractality was the signature
of very peculiar properties of the function considered (such as self-similarity
for instance). Therefore Theorem 1, which is the first “generic” result of
multifractality in the setting provided by prevalence, reverts the common
point of view in this field.

2. Similar results for Besov spaces will be stated in Theorem 2.

3. Special attention should be payed to the position of “almost every” in
the second and third statements; indeed Fubini’s theorem does not apply in
prevalence. If one considers a “generic” function in Lp,s, its Hölder exponent
is almost everywhere s, but when a point x0 is fixed, the regularity at x0

of almost every function f will be as bad as possible, i.e. s − d/p. Note
that, in the previous case, this Hölder exponent was the one taken most
exceptionally (on a set of dimension zero).

4. The second and third points will be sharpened in respectively Propo-
sition 3 and Theorem 3 where exact moduli of continuity will be given.
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5. The first and second points coincide with the Baire-type results of [11].
(However, usually, there is no implication between prevalent and Baire-type
results.)

6. If s−d/p > 0, the following upper bound of [8] holds for every function
of Lp,s or Bs,q

p

df (H) ≤ Hp− sp+ d.

Therefore, a generic function in Lp,s (or in Bs,q
p ) is as irregular as possible.

7. The proofs given below actually show that all the above properties also
hold locally. In particular, in the second case, the spectrum of singularities
of the restriction of f to any open ball is also given by (1.3). This implies
that, on any open ball, the Hölder exponent takes all values in [s−d/p, s] so
that, for almost every function f ∈ Lp,s, the sets Eh are everywhere dense,
and the Hölder exponent hf is an everywhere discontinuous function.

1.3. Wavelet expansions in Sobolev and Besov spaces

The idea of the proof of Theorem 1 is to find appropriate probes in the
corresponding Sobolev and Besov spaces. We will explicitly construct bases
of these probes by defining their wavelet coefficients. We start by recalling
some properties of wavelets expansions. We use 2d − 1 wavelets ψ(i), which
belong to Cr, for r ≥ s+ 1, and satisfy

∀i, ∀α such that |α| ≤ r, ∂αψ(i) has fast decay,

and the set of functions

2dj/2ψ(i)(2jx− k), j ∈ Z
d, k ∈ Z

d

form an orthonormal basis of L2(Rd). Thus any function f ∈ L2(Rd) can be
written

f =
∑

c
(i)
j,kψ

(i)(2jx− k)

where

c
(i)
j,k = 2dj

∫
f(x)ψ(i)(2jx− k)dx.

(Note that we use an L∞ normalization for the wavelets, which will simplify
some formulas.) We introduce simpler notations; recall that a dyadic cube
of scale j is a cube of the form

λ =

[
k1

2j
,
k1 + 1

2j

)
× · · · ×

[
kd

2j
,
kd + 1

2j

)
,

where k = (k1, . . . kd) ∈ Z
d. Instead of indexing the wavelets and wavelet

coefficients with the three indices (i, j, k), we will use dyadic cubes.
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Since i takes 2d−1 values, we can assume that it takes values in {0, 1}d−
(0, . . . , 0); we will use the following notations:

• λ (= λ(i, j, k)) =
k

2j
+

i

2j+1
+

[
0,

1

2j+1

)d

.

• cλ = cij,k
• ψλ(x) = ψ(i)(2jx− k),

• µλ =
k

2j
.

The wavelet ψλ is essentially localized near the cube λ; more precisely, when
the wavelets are compactly supported

∃C > 0 such that ∀i, j, k, supp (ψλ) ⊂ C · λ
(where C · λ denotes the cube of same center as λ and C times wider).
Finally, Λj will denote the set of dyadic cubes λ which index a wavelet of
scale j, i.e. wavelets of the form ψλ(x) = ψ(i)(2jx − k) (note that Λj is a
subset of the dyadic cubes of side 2−(j+1)).

Sobolev spaces have the following characterization in terms of wavelet
coefficients, see [14],

(1.4) f ∈ Lp,s ⇔
( ∑

λ∈Λ

|cλ|2(1 + 4js)χλ(x)

)1/2

∈ Lp(Rd),

where χλ(x) denotes the characteristic function of the cube λ and Λ is the
set of all dyadics cubes. Besov spaces, which will also be considered, are
characterized (for p, q > 0) by

(1.5) f ∈ Bs,q
p ⇐⇒

∑
j

( ∑
λ∈Λj

|cλ|p2(sp−d)j

)q/p

≤ C

where Λj denotes the set of dyadics cubes at scale j, see [14]. Note that,
if p ∈]0, 1[, Besov spaces are no more Banach spaces but nonetheless are
separable complete metric vector spaces.

Theorem 2. • If either s− d/p > 0 or if s− d/p = 0 and q ≤ inf(p, 1),
then the conclusions of the second and third points of Theorem 1 hold
for Bs,q

p .

• If s− d/p = 0 and 0 < p ≤ q ≤ 1, then the Hölder exponent of almost
every function in Bs,q

p takes values in [0, s] and

∀H ∈ [0, d/q] df (H) = Hq

Furthermore, for almost every x, hf (x) = s.

• In the remaining cases almost every function in Bs,q
p is nowhere locally

bounded.
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Let us call “cone of influence above x0 of width L” the set of couples (j, k)
(or of cubes λ) such that ∣∣∣ k

2j
− x0

∣∣∣ ≤ L

2j

(we use the norm on R
d: |x| = supi=1,...,d |xi|). The following lemma (see [7])

will be used as a simple irregularity criterium.

Lemma 2. If f is (C,α) smooth at x0, then there exists C ′(L) such that,
in the cone of influence of width L above x0,

(1.6) |cj,k| ≤ CC ′(L)2−αj

where C ′(L) depends only on L and the wavelet, and can be bounded uni-
formly for α ∈ [0, A] (for any A > 0).

2. Proofs of Theorems 1 and 2

2.1. Spectra of singularities in the smooth cases

In this section, we prove the second point of Theorem 1 and, as regards
Besov spaces, the corresponding cases s − d/p > 0 and s − d/p = 0 with
q ≤ inf(p, 1).

Let us start with a few remarks. First, thanks to the Sobolev embeddings,
if s− d/p > 0, any function in Lp,s or in Bs,q

p cannot have Hölder exponents
less than s−d/p. Furthermore if s−d/p = 0 and q ≤ inf(p, 1), any function
of Bs,q

p is continuous, see [16]. Next, if p 	= ∞ and q 	= ∞, Besov spaces are
separable spaces. On the other hand if p = ∞ or q = ∞, the measures we
use are defined by a probe. So, in each case, the compacity assumption is
fulfilled.

Let us now consider the Besov case (we will later mention modifications
for the Sobolev case). We will prove a more precise result than the second
point of Theorem 1: We will construct explicit sets Eα of dimension d/α
and prove that almost every function of Bs,q

p satisfies the following property:
∀α ∈ (1,∞) at least on Eα the Hölder exponent of f is smaller than

H(α) := s− d

p
+

d

αp
.

Let l∈N and M=2dl. We will construct anM -dimensional probe in Bs,q
p .

The M generators of this space are defined by their wavelet coefficients.
Let j ≥ 1 and k ∈ {0, . . . , 2j − 1}d; K and J ≤ j are defined by

k

2j
=
K

2J
where K ∈ Z

d − 2Z
d.
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Each dyadic cube λ is now split into M subcubes with side 2−j−l. For each
index i ∈ {1, . . . ,M} we choose a different subcube i(λ). Let

(2.1) a =
1

p
+

2

q
.

The probe is spanned by M functions gi with the following wavelet coeffi-
cients

(2.2)

{
∀λ, di

i(λ) = j−a2( d
p
−s)j2−

d
p
J

di
λ′ = 0 if λ′ is not of the form i(λ).

It follows directly from (1.5) that the functions {gi}i={1,...,M} belong to Bs,q
p .

Definition 3. Let α≥1; a point x0 is said to be α-approximable (by dyadics)
if there exists a sequence (Jn,Kn) such that

(2.3)

∣∣∣∣x0 − Kn

2Jn

∣∣∣∣ ≤ 1

2αJn

(clearly, we can assume that Kn ∈ Z
d − 2 Z

d).

Lemma 3. If x0 is α-approximable, then there exists a sequence of distincts
coefficients (di

j,k) in the cone of influence of width 2l above x0 such that

(2.4) ∀i |di
j,k| ≥ c(M)j−a2−Hj

with H(= H(α)) = s− d
p

+ d
αp

.

Proof. Suppose that x0 is α-approximable and let λ be the dyadic cube
such that k

2j = Kn

2Jn and j = [αJn] (where Jn and Kn are given by (2.3)). The
wavelet coefficient indexed by i(λ) has size

di
i(λ) = j−a2( d

p
−s)j2−

d
p
Jn ≥ c(M)j−a2( d

p
−s)j2−

d
pα

j. �

Let α ∈ (1,∞) be fixed, and let γ > H(α). Let us first check that the
set of functions in Bs,q

p , satisfying

(2.5) |cj,k| ≤ CC ′(L)2−γj

at some α-approximable point x, is included in a Haar null Borel set. Indeed,
for i ∈ N fixed, this set is included in the countable union over λj of the
following sets Fλj

: if

Eλj
=

{
x :

∣∣∣x0 − λj

2j

∣∣∣ ≤ 1

2αj

}
,

then,
Fλj

=
{
f : ∃x ∈ Eλj

f satisfies (2.5) at x
}
.
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Each Fλj
is a closed set. Indeed, suppose that fn converge to f in Bs,q

p .
For each n, there exists xn ∈ Eλj

such that fn satisfies (1.6) at xn. Since Eλj

is compact, there exists x ∈ Eλj
an accumulation point of xn, and a subse-

quence of xn converging to a point x such that (2.5) still holds at x. Since,
for each λ, the mapping f → cλ is continuous on a given Besov or a Sobolev
space, when n tends to infinity, f satisfies (1.6) at x. So f belongs to Fλj

.
So the set of functions in Bs,q

p satisfying (2.5) with γ fixed is a Borel set.
We will now prove that it is a Haar null set.

Let f be an arbitrary function in Bs,q
p with wavelet coefficients cλ. Con-

sider the affine subspace of dimension M composed of the functions

fβ = f +
M∑
i=1

βigi

where β = (β1, . . . , βM). Let x0 ∈ R
d and γ > 0. If fβ satisfies (1.6) at x0

then, inside the cone of width 2l above x0,

(2.6)

∣∣∣∣cλ +
M∑
i=1

βidi
λ

∣∣∣∣ ≤ C c(M)2−γj.

Denote by Eα
j the set of points x0 such that

∃k :
∣∣∣x0 − k

2j

∣∣∣ ≤ 1

2αj
.

(Note that x0 is α-approximable if x0 ∈ Eα := lim supj→∞Eα
j ).

The set Eα
j is the union of 2dj cubes of width 2 · 2−αj. Suppose that x

and y are two points in the same cube and suppose furthermore that fβ

satisfies (1.6) at x and fβ̃ satisfies (1.6) at y. Then |x − y| ≤ 2 · 2−αj and
∀i = 1, . . . ,M

(2.7)

∣∣∣∣ci(λ′)+
M∑
i=1

βidi
i(λ′)

∣∣∣∣ ≤ Cc(M)2−γj′ ,

∣∣∣∣ci(λ′)+
M∑
i=1

β̃idi
i(λ′)

∣∣∣∣ ≤ Cc(M)2−γj′

for any dyadic cubes λ′ at scale j′ inside the cone of width 2 above x and y.
But, since |x−y| ≤ 2 ·2−αj, we can find such a λ′ satisfying j′ = [αj]. Using
Lemma 3 and (2.4) it follows from (2.7) that

‖β − β̃‖ ≤ 2Cc(M)2−(γ−H)j′(j′)a(:= A(j′))

(where ‖β‖ = supi=1,...,M |βi|). Therefore the set of β satisfying

∃x ∈ Eα
j such that fβ is (C,α) smooth at x

is included in the union of 2dj balls with radii A(j′).
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It follows that the Lebesgue measure of the M -uples β satisfying

∃x ∈ Eα such that fβ is (C,α) smooth at x

is bounded by

(2.8)
∞∑

j=J

(Cc(M)[αj]a)M2−(γ−H)M [αj]2dj

(where J can be chosen arbitrary large); for γ > H, we can choose M large
enough so that d − (γ − H)Mα < 0; thus, when J tends to ∞, (2.8) goes
to 0, so that it vanishes. Therefore, the set of M -uples β = (β1, . . . , βM)
such that f +

∑
βigi satisfies (1.6) at a point in Eα has measure zero. Since

it is true for all C > 0, the set of β such that

∃x ∈ Eα : f +
∑

βigi is Cγ

also has measure zero. Therefore

∀α > 1, ∀γ > H(α), a.s. in Bs,q
p , ∀x ∈ Eα hf (x) ≤ γ.

Taking γn → H(α) (with γn > H(α)) it follows by countable intersection,
that

(2.9) ∀α > 0, a.s. ∀x ∈ Eα hf (x) ≤ H(α).

Therefore, if αn is a dense sequence in ]1,∞[, using the same argument, one
obtains that

(P) a.s. in Bs,q
p , ∀n, ∀x ∈ Eαn , hf (x) ≤ H(αn) .

Let f be a function such that (P) holds. Let α be fixed and αϕ(n) a subse-
quence of αn such that αϕ(n) is non decreasing and tends to α. The subsets

Eαϕ(n) are decreasing and their intersection (:= Ẽα) contains Eα. Therefore
∀x ∈ Ẽα, hf (x) ≤ H(α) and thus

(2.10) ∀x ∈ Eα, hf (x) ≤ H(α).

But (see [9]) there exists a measure mα supported on Eα such that any set E
of dimension less than d/α satisfies mα(E) = 0, and mα(Eα) > 0. Moreover,
if GH = {x : hf (x) ≤ H}, then

(2.11) ∀f ∈ Bs,q
p dimH(GH) ≤ Hp− sp+ d

(see [8] if s− d/p > 0 or [13] if s− d/p = 0 and q ≤ inf(p, 1)).
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In particular, if Fα denotes the set of points where hf (x) < H(α), Fα

can be written as a countable union of sets with dimension less than d/α
(because H(α) = s − d

p
+ d

αp
, so that d

α
= pH(α) − sp + d). It follows that

mα(Fα) = 0 and mα(Eα −Fα) > 0; but Eα −Fα is a set of point where the
Hölder exponent is exactly H(α). Thus

∀H ∈
[
s− d

p
, s

]
df (H) = Hp− sp+ d,

and (1.3) holds on a prevalent set.

Moreover E1 = [0, 1]d, so that we can take m1 equal to the Lebesgue
measure, and (2.10) yields, if α = 1,

(2.12) a.s. ∀x ∈ [0, 1]d, hf (x) ≤ s.

Furthermore, as before, almost every function f of Bs,q
p satisfies

meas
({x : hf (x) < s}) = 0,

so that

(2.13) a.s. for almost every x in [0, 1]d hf (x) = s.

Results (2.12) and (2.13) are not specific to the unit cube, but they also
hold for any cube. By countable intersection, it follows that, almost surely,
∀x ∈ R

d, hf (x) ≤ s and, almost surely, a.e., hf (x) = s. Therefore the second
point of Theorem 1 holds in the case of Bs,q

p . The proof for the Sobolev
case is similar: The functions gi are defined by picking q = 1 in (2.1).
Since Bs,1

p ↪→ Lp,s, the gi belong to Lp,s and the remaining of the proof is
unchanged.

2.2. Regularity at a fixed point

The last point of Theorem 1, and the corresponding result for Bs,∞
p , will be

the consequence of a more precise result concerning the pointwise modulus
of continuity at a given point for a prevalent set of functions. Let us recall
some definitions (see [12]).

Definition 4. A function θ : R
+ → R

+ is a modulus of continuity if

• θ(0) = 0

• θ is increasing

• ∃c > 0 θ(2x) ≤ cθ(x).
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θ is a modulus of continuity of f at x0 if there exists a polynomial P and a
constant c such that

(2.14) |f(x) − P (x− x0)| ≤ c θ(|x− x0|);
θ is a uniform modulus of continuity if (2.14) holds for all x0, and if the
constant c does not depend on x0.

Let Dj(f) = supk |cj,k|. The characterization of moduli of continuity
using decay conditions on the Dj(f), see [12], immediately implies the fol-
lowing result.

Proposition 1. Let f ∈ Lp,s (or f ∈ Bs,q
p with q 	= ∞):

• If s− d/p ∈ R
+ − N then, for all x0, there exists a polynomial P with

degree less than s− d/p such that

(2.15) |f(x) − P (x− x0)| = o
(|x− x0|s−d/p

)
( if f ∈ Bs,∞

p , the o has to be replaced by a O).

• If s− d/p ∈ N
+ (and q 	= ∞ in the Besov case)

(2.16) |f(x) − P (x− x0)| = o
(|x− x0|s−d/p log |x− x0|

)
(and if f ∈ Bs,∞

p the o has to be replaced by a O).

• If s− d/p = 0, and q ≤ 1 (Besov case), f is continuous at x0.

We will prove the following theorem which implies the last point of The-
orem 1 and the corresponding point of Theorem 2.

Theorem 3. Let x0 ∈ R
d be an arbitrary fixed point and let s > d/p; if θ is

a modulus of continuity which is a o(xs−d/p), then the set of functions f in
Lp,s or in Bs,q

p such that

|f(x) − P (x− x0)| = O(θ(|x− x0|))
is a Haar-null set.

Furthermore, if s−d/p = 0, the same result holds for every given modulus
of continuity θ.

Remark. Consider, for instance, the case s − d/p ∈ R
+ − N and q 	= ∞.

Every function of Lp,s satisfies (2.15), but Theorem 3 states that there exists
no modulus of continuity which is a o(|x− x0|s−d/p) and which will work for
a prevalent set of functions. Thus Theorem 3 together with Proposition 1
show that, at a given point the worst possible irregularity behavior is almost
sure.
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Proof. Consider first the case of Bs,q
p with s− d/p ≤ 0. Let θ be a modulus

of continuity which is a o(xs−d/p); therefore

θ(2−j) = aj2
−(s−d/p)j

with aj → 0 when j → ∞. We will use the following lemma.

Lemma 4. There exists (bj) ∈ lq and an increasing sequence jn such that

ajn = o(bjn).

Proof. One can take a subsequence jn such that |ajn | ≤ 2−n and pick
bjn = 2−n/2 and bj = 0 if j is not one of the jn. �

Using wavelet decomposition, the set of function with a smaller modulus
of continuity than the one provided by Proposition 1 is included in a Haar
null Borel set. To show this, we use the following condition on wavelet
coefficients, given in [12].

Proposition 2. If θ is a modulus of continuity of f at x0 then:

(2.17) ∃ c > 0 ∀j, k |cj,k| ≤ c

(
θ(2−j) + θ

(∣∣∣x0 − k

2j

∣∣∣))
.

Since x0 and θ are fixed, the set of function whose wavelet coefficients
satisfy (2.17) is clearly a countable union of closed sets.

We define a function g by its wavelet coefficients as follows

• dj,k = 0 if j 	= jn.

• if j = jn only one dj,k does not vanish, and the corresponding kn is
such that |2jnx0 − kn| ≤ 2, in which case

djn,kn = 2−(s−d/p)jnbjn .

The sequence bj belongs to lq so that g ∈ Bs,q
p . The probe used is the one-

dimensional subspace spanned by g. Let f be an arbitrary function in Bs,q
p .

Let us assume that there exist λ1 and λ2 such that f + λ1g and f + λ2g
share θ as modulus of continuity at x0. Using Proposition 1.1 of [12], the
wavelet coefficients of f +λ1g and of f +λ2g are a O(θ(2−j)) inside the cone
|2jx0 − k| ≤ 2. Therefore, there exist constants c, c′ such that, inside this
cone,

|cj,k + λ1dj,k| ≤ cθ(2−j) and |cj,k + λ2dj,k| ≤ c′θ(2−j).

In particular

|λ1 − λ2||djn,kn | ≤ (c+ c′)θ(2−jn) ≤ (c+ c′)ajn2−(s− d
p
)jn .
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It follows that ∀n ≥ 0, |λ1 − λ2| ≤ 2−
n
2 so that λ1 = λ2. Thus, each line

f + λg has at most one λ such that the modulus of continuity of f + λg at
x0 is a O(θ).

The case Lp,s can be proved the same way using the function g build
for Bs,1

p . �

2.3. The irregular case

We will now consider the Besov spaces Bs,q
p with s − d

p
< 0 or s − d

p
= 0

and q > 1 and the Sobolev spaces Lp,s with s − d
p
≤ 0. Those spaces share

the following property: In each of them, there exists a function g which is
nowhere locally bounded, see [15] or [16], i.e.

∀x ∈ R
d, ∀r > 0 g.1B(x,r) /∈ L∞.

In order to prove prevalent results of nowhere boundedness, we need to con-
struct such functions defined by explicit values of their wavelet coefficients.

We assume that s = d/p and q > 1 (this is the hardest case; if s < d/p,
the cases of Bs,q

p or Lp,s are easier to handle). We use in the following
compactly supported smooth wavelets issued from a multiresolution analysis
such that the associated function ϕ is also compactly supported, see [14].
Let Pj(f) denote the orthogonal projection on the space Vj. We have

Pj(f)(x) =
∑
k∈Zd

2dj

∫
f(t)ϕ(2jt− k)dtϕ(2jx− k).

Recall that f is bounded at x if

∃r > 0 f.1B(x,r) ∈ L∞.

The following lemma follows immediately from the hypothesis of compact
support for ϕ.

Lemma 5. If f ∈ L1 and if f is bounded at x0, then there exists r > 0 such
that the sequence Pj(f) is uniformly bounded on B(x0, r).

We now start the construction of nowhere bounded functions. Since the
2d − 1 wavelets are continuous we can pick one of them (which we denote
by ψ) which (after perhaps an integer translation) satisfies the following
condition: There exist µ0 dyadic subcube of [0, 1]d, and a constant C > 0
such that

∀x ∈ µ0, ψ(x) ≥ C.

Furthermore, we can assume that the support of ψ(2lx) is supported in a
dyadic cube of width less than 1/2. We first construct a function f which
is not bounded at a point x0 ∈ [0, 1]d.
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Denote by l the scale of µ0 (|µ0| = 2−l); f has all its wavelet coefficients
vanishing except for the scales which are nonnegative multiples of l, in which
case, f will have only one nonvanishing wavelet coefficient. If j = 0 it
corresponds to k = 0 and has value 1. It follows that P0(f) ≥ C on µ0.
At scale l, the nonvanishing wavelet coefficient corresponds to the wavelet
indexed by µ0. The corresponding wavelet coefficient has size 1/2. There
exists a subcube µ1 of scale 2l where ψµ0 is larger than C. We continue this
procedure, thus constructing a sequence of nested dyadic cubes µn such that
the associated wavelet coefficient has size 1/k so that

∀x ∈ µn, Pnl(f)(x) ≥ C
n∑

k=1

1

k
.

Therefore f is not bounded at x0, but one immediately checks that f ∈Bd/p,q
p .

We now deduce from f another function g which is nowhere locally
bounded on [0, 1]d. The function f − Pj(f) is supported inside a dyadic
cube of width 1/2 included in [0, 1]d. We denote by f̃i its 2d translates by
translations of vectors in (1/2)Zd which are also supported inside [0, 1]d.
The supports of these functions do not intersect.

Let J1 be such that PJ1f(x) ≥ 1 on µJ1 . Up to the scale 1, g has the
same wavelet coefficients as f . We consider now PJ1(f) + 4−d

∑
f̃i. There

exists an index J2 such that this function is larger than 2 on 2d dyadic
subcubes of each of the subcubes of width 1/2. The function g has the same
wavelet coefficients as this function up to the index J2. This construction
is continued and clearly yields the required example. For every x ∈ (0, 1)d

and for every r > 0, B(x, r) intersect one of dyadic cubes µj where Pj(g) is
greater than j.

Now, using Lemma 5, we show that the set M of function f such that
there exists x ∈ R

d, r > 0 and (Pj(f))j is uniformly bounded on B(x, r) is
Haar null. Since Pj(f) is a continuous function, M is included in a countable
union over a dense sequence (xn)n and countable rn > 0 of functions f such
that the sequence (Pj(f)) is uniformly bounded on B(x, r). Since Pj is a
continuous linear operator, this set is Borelian, as a countable union of the
continuous inverse of closed sets.

We take for probe the subspace spanned by g. Let f be an arbitrary
given function in Lp,s or in Bs,q

p , and let

A={λ : ∃x ∈ R
d, ∃r > 0 (Pj(f +λg))j is uniformly bounded on B(x, r)}.

If A is not a countable set there exist λ1 	= λ2 such that the two correspond-
ing balls B(x1, r1) and B(x2, r2) have an intersection (denoted by I) with a
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non-empty interior. But Pj(f+λ1g) and Pj(f+λ2g) are uniformly bounded
on I, and therefore (λ1 − λ2)Pj(g), is also bounded in I which contradicts
the fact that Pj(g) is nowhere locally bounded. Hence the first point of
Theorem 1 holds, as well as the corresponding result in the Besov case.

Remark. The last part of the argument would work using any nowhere
locally bounded function; but the first part requires the explicit wavelet
construction.

2.4. The critical Besov case

The case of the Besov spaces with critical exponents s = d/p and p ≤ q ≤ 1
still has to be considered. Functions in these spaces are bounded (and even
continuous). Let GH = {x, hf (x) ≤ H}; then

if p ≤ q ≤ 1, d(H) ≤ qH,

see [13]. The proof of the second point of Theorem 2 will essentially follow
the proof of the third point (where s − d/p > 0). As in this proof, the set
of point with a given Hölder exponent is included in a Haar null Borel set.
Namely, we will prove that the set of function satisfying (1.6) at a point x
(with an given Hölder exponent γ which will be fixed later), is a Haar null
Borel set. We have already proved it is a Borel set and the use of a probe
implies that the measure is implicitly compactly supported.

We construct a number M large enough of functions gi defined by their
wavelet coefficients as follows: The gi are lacunaries wavelet series; they have
at most one coefficient different from zero at each scale, of size

(2.18) a(j) = [j(log j)2]−1/q;

we define

(2.19) gi(x) =
∞∑

j=1

εja(j)ψ(2jx−mi,j)

with εj = 0 or 1 (these values will be fixed later), and mi,j satisfy the
following conditions: Let (rn) be the sequence defined by r1 = 1 and rn+1 =
drn + 1. When j is such that

2rn < j ≤ 2rn + 2drn,

for each i,
mi,j

2j takes all 2drn values k
2rn ∈ [0, 1]d. We choose mi,j such that

(2.20) ∀j i 	= i′ ⇒ mi,j 	= mi′,j but |mi,j −mi′,j | ≤M.

Note that our choice for the rn implies that the intervals [2rn + 1, 2rn + 2drn]
do not intersect. In (2.19) we take εj = 1 if there exists n such that j ∈
[2rn + 1, 2rn + 2drn] and εj = 0 else. The functions gi clearly belong to Bs,q

p .
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A point x0 is said to be α-approximable by dyadics at the scales rn if
there exists an infinite number of values of n and a sequence (kn) such that,
for these values of n,

(2.21)

∣∣∣∣ x0 − kn

2rn

∣∣∣∣ ≤ c

2αrn

If such is the case, by definition of mi,j,

(2.22) ∀i ∃j ∈]2rn + 1, 2rn + 2drn], ∃mi,j :
kn

2rn
=
mi,j

2j

and the corresponding wavelet coefficient is such that

(2.23) di
j,mi,j

= a(j) =
1

(j(log j)2)
1
q

≥ c

2drn/q(drn)2/q

(since j ≤ 2drn + 2rn).

As usual, let

fβ = f +

M∑
i=1

βigi,

where f is an arbitrary function in Bs,q
p .

Recall that Eα
rn

is the set of points x0 such that

(2.24) ∃k :

∣∣∣∣x0 − k

2rn

∣∣∣∣ ≤ 1

2αrn
.

Assume that x and y are in the same cube defined by (2.24) and that,
simultaneously, fβ satisfies (1.6) at x and fβ̃ satisfies (1.6) at y, with γ >
d/qα. We will use the following smoothness criterium from [7].

Lemma 6. If f is (C, γ) smooth at x0, then

∀j, k |cj,k| ≤ CC ′
(

2−j +
∣∣∣x0 − k

2j

∣∣∣)γ

where C ′ depends only the wavelet chosen.

Therefore, at the scale j defined in (2.22)

∀k,
∣∣∣∣ cj,k +

M∑
i=1

βidi
j,k

∣∣∣∣ ≤ C

(
2−j +

∣∣∣∣ x− k

2j

∣∣∣∣
)γ

.
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and

∀k,
∣∣∣∣ cj,k +

M∑
i=1

β̃idi
j,k

∣∣∣∣ ≤ C

(
2−j +

∣∣∣∣ y − k

2j

∣∣∣∣
)γ

.

Taking k = mi,j, the right hand sides are bounded by

c(2−j + 2−αrn)γ ≤ c′2−αγrn

(as j ≥ 2rn). Following the argument already developed above, it follows
that

‖β‖a(j) ≤ c′2−αγrn

so that, using (2.23), and since γ > d/qα,

‖β‖ ≤ c2−δrn for a δ > 0.

We conclude as usual that, for M large enough, the Lebesgue measure of
the set of β considered is zero. The end of the proof follows, using the fact
that points α-approximable at scale rn have a d/α-dimensional Hausdorff
measure which is strictly positive, see [9].

2.5. Almost everywhere modulus of continuity

Proposition 3. Let s > d/p and let θ be a modulus of continuity such that

(2.25) θ(2−j) = 2−sjωj with ωj ∈ lq;

(which is well defined if q < ∞); then, almost every function f in Bs,q
p ,

or Lp,s, satisfies the following property (in the Sobolev case, q = 1 must be
picked in (2.25)):

For a.e. x0, the modulus of continuity of f at x0 is not a o(θ).

Proof. First note that the set of functions which is considered clearly is a
closed set so that it is a Borelian set. If q 	= ∞, the measure defined by the
following stochastic process is clearly compactly supported. Indeed, it can
be seen as the continuous image of a compact set. On [0, 1]d we consider the
stochastic process

Xx =
∞∑

j=0

∑
λ∈[0,1]d

εj,k2
−sjωjψ(2jx− k)

where {εj,k}j,k is a Rademacher sequence, that is the εj,k are I.I.D. random
variables such that

P(εj,k = 1) = P(εj,k = −1) =
1

2
.

One checks immediately that Xx ∈ Bs,q
p and Xx ∈ Lp,s if q = 1.
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Let f be an arbitrary function in Bs,q
p (or Lp,s). Following the second

remark after Definition 1, we will prove that, almost surely the following
result holds:

For almost every x0 fixed, f(x)+Xx has not at x0 a modulus of continuity
which is a o(θ). Using Fubini’s theorem, it is sufficient to prove that, if f
and x0 are arbitrary and fixed, with probability 1, f(x) + Xx has not a
modulus of continuity which is a o(θ). Indeed, if such was the case, using
Proposition 1.1 of [12], it would follow that

cj,k + εj,k2
−sjωj = o(θ(2−j))

inside the cone |2jx− k| ≤ 2. Since θ is a modulus of continuity, ωj 	= 0 so
that

εj,k =
−cj,k2−sj

ωj

+ o(1).

Since the cj,k are fixed (deterministic), this result implies that for j large
enough all εj,k inside the cone have a fixed, deterministic value, which is of
probability zero. The case of [0, 1]d or R

d follows using countable intersec-
tion. �
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