Valeriu Popa, Department of Mathematics, University of Bacău, 5500 Bacău, Romania

Takashi Noiri, Mathematics Department, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866 Japan

ON UPPER AND LOWER β -CONTINUOUS MULTIFUNCTIONS

Abstract

In this paper the authors define a multifunction $F:X\mapsto Y$ to be upper (respectively, lower) β -continuous if $F^+(V)$ (resp. $F^-(V)$) is β -open in X for every open set V of Y. They obtain some characterizations and several properties concerning upper (resp. lower) β -continuous multifunctions. The relationships between these multifunctions and quasi continuous multifunctions are investigated.

1 Introduction

Abd El-Monsef et al. [1] defined β -continuous functions as a generalization of semi-continuity [15] and precontinuity [17]. Recently, Borsík and Doboš [7] have introduced the notion of almost quasi-continuity which is weaker than that of quasi-continuity [16] and obtained a decomposition theorem of quasi-continuity. The authors [26] of the present paper obtained several characterizations of β -continuity and showed that almost quasi-continuity is equivalent to β -continuity. The equivalence of almost quasi-continuity and β -continuity is also shown by Borsík [6] and Ewert [11]. The purpose of the present paper is to define upper (lower) β -continuous multifunctions and to obtain several characterizations of upper (lower) β -continuous multifunctions and several properties of such multifunctions.

Key Words: β -open, β -continuous, almost quasicontinuous, quasicontinuous, multifunctions, nets for multifunctions

Mathematical Reviews subject classification: 54C10; 54C60

Received by the editors September 15, 1995

^{*}The authors would like to thank the referee for providing valuable comments and suggestions.

2 Preliminaries

Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be α -open [19] (resp. semi-open [15], preopen [17], β -open [1] or semipreopen [3]) if $A \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}A))$ (resp. $A \subset \operatorname{Cl}(\operatorname{Int}(A))$, $A \subset \operatorname{Int}(\operatorname{Cl}(A))$, $A \subset \mathrm{Cl}(\mathrm{Int}(\mathrm{Cl}(A)))$. The family of all semi-open (resp. β -open) sets of X containing a point $x \in X$ is denoted by SO(X,x) (resp. $\beta(X,x)$). The family of all α -open (resp. semi-open, preopen, semi-preopen) sets in X is denoted by $\alpha(X)$ (resp. SO(X), PO(X), $\beta(X)$). For these four families, it is shown in [20] (see Lemma 3.1) that $SO(X) \cap PO(X) = \alpha(X)$, and it is obvious that $SO(X) \cup PO(X) \subset \beta(X)$. The complement of an α -open (resp. semi-open, preopen, β -open) set is said to be α -closed (resp. semi-closed [9], preclosed [10], β -closed [1]). The intersection of all β -closed sets of X containing A is called the β -closure [2] of A, and it is denoted by $\beta Cl(A)$. Similarly, $\alpha Cl(A)$, sCl(A) and pCl(A) are defined. The union of all β -open sets of X contained in A is called the β -interior of A and is denoted by $\beta Int(A)$. Abd El-Monsef et al. [1] defined a function to be β -continuous if the inverse image of every open set is β -open.

Throughout this paper, spaces (X,τ) and (Y,σ) (or simply X and Y) always mean topological spaces, and $F:X\mapsto Y$ (resp. $f:X\mapsto Y$) represents a multivalued (resp. single valued) function. For a multifunction $F:X\mapsto Y$, we shall denote the upper and lower inverse of a set G of Y by $F^+(G)$ and $F^-(G)$, respectively, that is $F^+(G)=\{x\in X:F(x)\subset G\}$ and $F^-(G)=\{x\in X:F(x)\cap G\neq\emptyset\}$.

3 Characterizations

Definition 3.1 A multifunction $F: X \mapsto Y$ is said to be

- (a) upper β -continuous [27] (briefly $u.\beta.c.$) at a point $x \in X$ if for each open set V containing F(x), there exists $U \in \beta(X,x)$ such that $F(U) \subset V$;
- (b) lower β -continuous [27] (briefly $l.\beta.c.$) at a point $x \in X$ if for each open set V such that $F(x) \cap V \neq \emptyset$, there exists $U \in \beta(X, x)$ such that $U \subset F^{-}(V)$;
- (c) upper (lower) β -continuous if F has this property at every point of X.

Remark 3.1 According to the referee, the definition of the upper and lower β -continuity at a point can be found in [12], where for the definition it is taken the condition (e) from Theorem 3.1 (resp. Theorem 3.2).

Theorem 3.1 The following are equivalent for a multifunction $F: X \mapsto Y$:

- (a) F is $u.\beta.c.$ at a point $x \in X$;
- (b) for each open neighborhood U of x and each open set V of Y with $x \in F^+(V)$, $F^+(V) \cap U$ is not nowhere dense;
- (c) for each open neighborhood U of x and each open set V of Y with $x \in F^+(V)$, there exists an open set G of X such that $\emptyset \neq G \subset U$ and $G \subset Cl(F^+(V))$;
- (d) for each open set V of Y with $x \in F^+(V)$, there exists $U \in SO(X, x)$ such that $U \subset Cl(F^+(V))$;
- (e) $x \in Cl(Int(Cl(F^+(V))))$ for every open set V of Y with $x \in F^+(V)$.
- **Proof.** (a) \Rightarrow (b) and (b) \Rightarrow (c): The proofs are obvious and are thus omitted. (c) \Rightarrow (d): Let V be an open set of Y containing F(x). By $\mathcal{U}(x)$ we denote the family of all open neighborhoods of x. For each $U \in \mathcal{U}(x)$, there exists an open set G_U of X such that $\emptyset \neq G_U \subset U$ and $G_U \subset \operatorname{Cl}(F^+(V))$. Put $W = \bigcup \{G_U : U \in \mathcal{U}(x)\}$. Then W is an open set of X, $x \in \operatorname{Cl}(W)$ and $W \subset \operatorname{Cl}(F^+(V))$. Moreover, we put $U_o = W \cup \{x\}$. Then $W \subset U_o \subset \operatorname{Cl}(W)$ and $U_o \in SO(X, x)$ and also $U_o \subset \operatorname{Cl}(F^+(V))$.
- (d) \Rightarrow (e): Let V be an open set of Y containing F(x). There exists $U \in SO(X,x)$ such that $U \subset Cl(F^+(V))$. Therefore, we have $x \in U \subset Cl(Int(U)) \subset Cl(Int(Cl(F^+(V))))$.
 - (e) \Rightarrow (a): This is shown in [12]. \Box

Theorem 3.2 The following are equivalent for a multifunction $F: X \mapsto Y$:

- (a) F is $l.\beta.c.$ at a point $x \in X$;
- (b) for any open neighborhood U of x and any open set V of Y with $x \in F^-(V)$, $F^-(V) \cap U$ is not nowhere dense:
- (c) for any open neighborhood U of x and any open set V of Y with $x \in F^-(V)$, there exists an open set G of X such that $\emptyset \neq G \subset U$ and $G \subset Cl(F^-(V))$;
- (d) for any open set V of Y with $x \in F^-(V)$, there exists $U \in SO(X, x)$ such that $U \subset Cl(F^-(V))$;
- (e) $x \in Cl(Int(Cl(F^-(V))))$ for every open set V of Y with $x \in F^-(V)$.

Proof. The proof is similar to that of Theorem 3.1. \Box

Theorem 3.3 The following are equivalent for a multifunction $F: X \mapsto Y$:

- (a) F is $u.\beta.c.,;$
- (b) $F^+(V) \in \beta(X)$ for every open set V of Y;
- (c) $F^-(K)$ is β -closed in X for every closed set K of Y;
- (d) $\beta Cl(F^{-}(B)) \subset F^{-}(Cl(B))$ for every subset B of Y;
- (e) $Int(Cl(Int(F^{-}(B)))) \subset F^{-}(Cl(B))$ for every subset B of Y.
- **Proof.** (a) \Rightarrow (b): Let V be any open set of Y and $x \in F^+(V)$. There exists $U \in \beta(X,x)$ such that $F(U) \subset V$. Therefore, we obtain $x \in U \subset \text{Cl}(\text{Int}(\text{Cl}(U))) \subset \text{Cl}(\text{Int}(\text{Cl}(F^+(V))))$. Then $F^+(V) \subset \text{Cl}(\text{Int}(\text{Cl}(F^+(V))))$ and hence $F^+(V) \in \beta(X)$.
- (b) \Rightarrow (c): This follows immediately from the fact that $F^+(Y \setminus B) = X \setminus F^-(B)$ for every subset B of Y.
- (c) \Rightarrow (d): For any subset B of Y, Cl(B) is closed in Y and $F^-(Cl(B))$ is β -closed in X. Therefore, we obtain $\beta Cl(F^-(B)) \subset F^-(B)$.
- (d) \Rightarrow (e): Let B be any subset of Y. By [3] (see Theorem 2.15), we obtain $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^-(B)))) \subset \beta\operatorname{Cl}(F^-(B)) \subset F^-(\operatorname{Cl}(B))$.
- (e) \Rightarrow (b): Let V be any open set of Y. Then $Y \setminus V$ is closed in Y and we have $X \setminus F^+(V) = F^-(Y \setminus V) \supset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^-(Y \setminus V)))) = \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(X \setminus F^+(V)))) = X \setminus \operatorname{Cl}(\operatorname{Int}(F^+(V))))$. We obtain $F^+(V) \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(F^+(V))))$ and hence $F^+(V) \in \beta(V)$.
- (b) \Rightarrow (a): Let $x \in X$ and V be an open set of Y containing F(x). By (b), we have $x \in F^+(V) \in \beta(X)$. Put $U = F^+(V)$. Then we obtain $U \in \beta(X, x)$ and $F(U) \subset V$. Therefore, F is upper β -continuous. \square

Theorem 3.4 The following are equivalent for a multifunction $F: X \mapsto Y$:

- (a) F is $l.\beta.c.,;$
- (b) $F^-(V) \in \beta(X)$ for every open set V of Y;
- (c) $F^+(K)$ is β -closed in X for every closed set K of Y;
- (d) $\beta Cl(F^+(B)) \subset F^+(Cl(B))$ for every subset B of Y;
- (e) $Int(Cl(Int(F^+(B)))) \subset F^+(Cl(B))$ for every subset B of Y.
- (f) $F(Int(Cl(Int(A)))) \subset Cl(F(A))$ for every subset A of X;
- (g) $F(\beta Cl(A)) \subset Cl(F(A))$ for every subset A of X.

Proof. It is shown similarly to the proof of Theorem 3.3 that the statements (a), (b), (c), (d) and (e) are equivalent. We shall prove only the following implications.

- (e) \Rightarrow (f): Let A be any subset of X. Then we have $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A))) \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^+(F(A))))) \subset F^+(\operatorname{Cl}(F(A)))$. Therefore $F(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))) \subset \operatorname{Cl}(F(A))$.
- (f) \Rightarrow (g): Let A be any subset of X. By [3] (see Theorem 2.15), we have $F(\beta \operatorname{Cl}(A)) = F(A \cup \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))) = F(A) \cup F(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))) \subset \operatorname{Cl}(F(A))$.
- (g) \Rightarrow (c): Let K be any closed set of Y. Then we have $F(\beta \operatorname{Cl}(F^+(K))) \subset \operatorname{Cl}(F(F^+(K))) \subset \operatorname{Cl}(K) = K$. Therefore, we have $\beta \operatorname{Cl}(F^+(K)) \subset F^+(K)$, and hence $F^+(K)$ is β -closed in X. \square

For a multifunction $F: X \mapsto Y$, the graph multifunction $G_F: X \mapsto X \times Y$ is defined as follows: $G_F(x) = \{x\} \times F(x)$ for every $x \in X$.

Lemma 3.1 (Noiri and Popa, [22]) For a multifunction $F: X \mapsto Y$, the following hold:

(a)
$$G_F^+(A \times B) = A \cap F^+(B)$$
 and (b) $G_F^-(A \times B) = A \cap F^-(B)$

for any subsets $A \subset X$ and $B \subset Y$.

Theorem 3.5 Let $F: X \mapsto Y$ be a multifunction such that F(x) is compact for each $x \in X$. Then F is $u.\beta.c.$ if and only if $G_F: X \mapsto X \times Y$ is $u.\beta.c.$.

Proof. Necessity. Suppose that $F: X \mapsto Y$ is $u.\beta.c.$. Let $x \in X$ and W be any open set of $X \times Y$ containing $G_F(X)$. For each $y \in F(x)$, there exist open sets $U(y) \subset X$ and $V(y) \subset Y$ such that $(x,y) \in U(y) \times V(y) \subset W$. The family $\{V(y): y \in F(x)\}$ is an open cover of F(x), and F(x) is compact. Therefore, there exist a finite number of points y_1, y_2, \ldots, y_n in F(x) such that $F(x) \subset \bigcup \{V(y_i): 1 \le i \le n\}$. Set $U = \bigcap \{U(y_i): 1 \le i \le n\}$ and $V = \bigcup \{V(y_i): 1 \le i \le n\}$. Then U and V are open in X and Y, respectively, and $\{x\} \times F(x) \subset U \times V \subset W$. Since F is $u.\beta.c.$, there exists $U_o \in \beta(X,x)$ such that $F(U_o) \subset U$. By Lemma 3.1, we have $U \cap U_o \subset U \cap F^+(V) = G^+_F(U \times V) \subset G^+_F(W)$. Therefore, we obtain $U \cap U_o = \beta(X,x)$ and $G_F(U \cap U_o) \subset W$. This shows that G_F is $u.\beta.c.$.

Strong sufficiency. Suppose that $G_F: X \mapsto X \times Y$ is $u.\beta.c.$. Let $x \in X$ and V be any open set of Y containing F(x). Since $X \times V$ is open in $X \times Y$ and $G_F(x) \subset X \times V$, there exists $U \in \beta(X,x)$ such that $G_F(U) \subset X \times V$. By Lemma 3.1, we have $U \subset G_F^+(X \times V) = F^+(V)$ and $F(U) \subset V$. This shows that F is $u.\beta.c.$. \square

Theorem 3.6 A multifunction $F: X \mapsto Y$ is $l.\beta.c.$ if and only if $G_F: X \mapsto X \times Y$ is $l.\beta.c.$.

Proof. Necessity. Suppose that F is $l.\beta.c.$. Let $x \in X$ and W be any open set of $X \times Y$ such that $x \in G_F^-(W)$. Since $W \cap (\{x\} \times F(x)) \neq \emptyset$, there exists $y \in F(x)$ such that $(x,y) \in W$, and hence $(x,y) \in U \times V \subset W$ for some open sets $U \subset X$ and $V \subset Y$. Since $F(x) \cap V \neq \emptyset$, there exists $G \in \beta(X,x)$ such that $G \subset F^-(V)$. By Lemma 3.1, we have $U \cap G \subset U \cap F^-(V) = G_F^-(U \times V) \subset G_F^-(W)$. Moreover, $x \in U \cap G \subset \beta(X)$ and hence G_F is $l.\beta.c.$.

Sufficiency. Suppose that G_F is $l.\beta.c.$. Let $x \in X$ and V be an open set of Y such that $x \in F^-(V)$. Then $X \times V$ is open in $X \times Y$ and $G_F(x) \cap (X \times V) = (\{x\} \times F(x)) \cap (X \times V) = \{x\} \times (F(x) \cap V) \neq \emptyset$. Since G_F is $l.\beta.c.$, there exists $U \in \beta(X,x)$ such that $U \subset G_F^-(X \times V)$. By Lemma 3.1, we obtain $U \subset F^-(V)$. This shows that F is $l.\beta.c.$. \square

Definition 3.2 A subset A of a topological space X is said to be

- (a) α -paracompact [28] if every cover of A by open sets of X is refined by a cover of A which consists of open sets of X and is locally finite in X;
- (b) α -regular [14] if for each $a \in A$ and each open set U of X containing a there exists an open set G of X such that $a \in G \subset Cl(G) \subset U$.

Lemma 3.2 (Kovacević [14]) If A is an α -regular α -paracompact set of a topological space X and U is an open neighborhood of A, then there exists an open set G of X such that $A \subset G \subset Cl(G) \subset U$.

For a multifunction $F: X \mapsto Y$, by CIF: $X \mapsto Y$ (see [4]) we denote a multifunction defined as follows: (CIF)(x) = Cl(F(x)) for each $x \in X$. Similarly, we can define β CIF: $X \mapsto Y$, β CIF: $X \mapsto Y$, β CIF: $X \mapsto Y$ and β CIF: $X \mapsto Y$.

Lemma 3.3 If $F: X \mapsto Y$ is a multifunction such that F(x) is α -paracompact α -regular for each $x \in X$, then for each open set V of Y, $G^+(V) = F^+(V)$, where G denotes β ClF, β ClF, β ClF, β ClF or ClF.

Proof. Let V be any open set of Y. Let $x \in G^+(V)$. Then $G(x) \subset V$ and $F(x) \subset G(x) \subset V$. We have $x \in F^+(V)$, and hence $G^+(V) \subset F^-(V)$. Conversely, let $x \in F^+(V)$, then $F(x) \subset V$. By Lemma 3.2, there exists an open set H of Y such that $F(x) \subset H \subset \operatorname{Cl}(H) \subset V$; hence $G(x) \subset \operatorname{Cl}(H) \subset V$. Therefore, we have $x \in G^+(V)$ and $F^+(V) \subset G^+(V)$. \square

Theorem 3.7 Let $F: X \mapsto Y$ be a multifunction such that F(x) is α -paracompact and α -regular for each $x \in X$. Then the following are equivalent: a) F is $u.\beta.c.$; b) β ClF is $u.\beta.c.$; c) s ClF is $u.\beta.c.$; d) p ClF is $u.\beta.c.$; e) α ClF is $u.\beta.c.$; f) ClF is $u.\beta.c.$.

Proof. Similarly to Lemma 3.3, we put $G = \beta \text{ClF}$, sClF, pClF, αClF or ClF. Suppose that F is $u.\beta.c.$. Let $x \in X$ and V be any open set of Y containing G(x). By Lemma 3.3, $x \in G^+(V) = F^+(V)$ and there exists $U \in \beta(X,x)$ such that $F(U) \subset V$. Since F(u) is α -paracompact and α -regular for each $u \in U$, by Lemma 3.2 there exists an open set H such that $F(u) \subset H \subset \text{Cl}(H) \subset V$; hence $G(u) \subset \text{Cl}(H) \subset V$ for each $u \in U$. Therefore, we obtain $G(U) \subset V$. This shows that G is $u.\beta.c.$.

Conversely, suppose that G is $u.\beta.c.$. Let $x \in X$ and V be any open set of Y containing F(x). By Lemma 3.3, $x \in F^+(V) = G^+(V)$ and hence $G(x) \subset V$. There exists $U \in \beta(X,x)$ such that $G(U) \subset V$. Thus $U \subset G^+(V) = F^+(V)$, and hence $F(U) \subset V$. This shows that F is $u.\beta.c.$. \square

Lemma 3.4 If $F: X \mapsto Y$ is a multifunction, then for each open set V of Y, $G^-(V) = F^-(V)$, where G denotes β ClF, β ClF, β ClF or ClF.

Proof. Let V be any open set of Y and $x \in G^-(V)$. Then $G(x) \cap V \neq \emptyset$, and hence $F(x) \cap V \neq \emptyset$ since V is open. Thus, we obtain $x \in F^-(V)$ and hence $G^-(V) \subset F^-(V)$. Conversely, let $x \in F^-(V)$. Then we have $\emptyset \neq F(x) \cap V \subset G(x) \cap V$ and hence $x \in G^-(V)$. Thus, we have $F^-(V) \subset G^-(V)$. Consequently, we obtain $G^-(V) = F^-(V)$. \square

Theorem 3.8 For a multifunction $F: X \mapsto Y$, the following are equivalent: a) F is $l.\beta.c.$; b) β ClF is $l.\beta.c.$; c) sClF is $l.\beta.c.$; d) pClF is $l.\beta.c.$; e) α ClF is $l.\beta.c.$; f) ClF is $l.\beta.c.$.

Proof. By using Lemma 3.4, this is shown similarly as in Theorem 3.7. \Box

Theorem 3.9 Let $\{U_{\alpha}: \alpha \in \nabla\}$ be an α -open cover of a topological space X. A multifunction $F: X \mapsto Y$ is $u.\beta.c.$ if and only if the restriction $F/U_{\alpha}: U_{\alpha} \mapsto Y$ is $u.\beta.c.$ for each $\alpha \in \nabla$.

Proof. Necessity. Let $\alpha \in \nabla$ and $x \in U_{\alpha}$. Let V be an open set of Y such that $(F/U_{\alpha})(x) \subset V$. Since F is $u.\beta.c$. and $F(x) = (F/U_{\alpha})(x) \subset V$, there exists $G \in \beta(X,x)$ such that $F(G) \subset V$. Set $U = G \cap U_{\alpha}$, then we have $U \in \beta(U_{\alpha},x)$ (see [1], Lemma 2.5) and $(F/U_{\alpha})(U) = F(U) \subset V$. Therefore, F/U_{α} is $u.\beta.c$.

Sufficiency. Let $x \in X$ and V be any open set of Y such that $F(x) \subset V$. There exists $\alpha \in \nabla$ such that $x \in U_{\alpha}$. Since F/U_{α} is $u.\beta.c.$ and $(F/U_{\alpha})(x) = F(x) \subset V$, there exists $U \in \beta(U_{\alpha}, x)$ such that $(F/U_{\alpha})(U) \subset V$. Thus, we have $U \in \beta(X, x)$ (see [1], Lemma 2.7) and $F(U) = (F/U_a)(U) \subset V$. This shows that F is $u.\beta.c.$. \square

Theorem 3.10 Let $\{U_{\alpha} : \alpha \in \nabla\}$ be an α -open cover of a topological space X. A multifunction $F : X \mapsto Y$ is $l.\beta.c.$ if and only if the restriction $F/U_{\alpha} : U_{\alpha} \mapsto Y$ is $l.\beta.c.$ for each $\alpha \in \nabla$.

Proof. The proof is similar to that of Theorem 3.9. \square

4 Some properties

Definition 4.1 A multifunction $F: X \mapsto Y$ is said to be upper rarely continuous [25] at a point x of X if for each open set G of Y containing F(x), there exists a rare set R_G with $Cl(R_G) \cap G = \emptyset$ and an open set U containing x such that $F(U) \subset G \cup R_G$. A multifunction is said to be upper rarely continuous if it has the property at each point of X.

Theorem 4.1 If a multifunction $F: X \mapsto Y$ is upper rarely continuous at each point $x \in X$ and for each open set G containing F(x), $F^-(Cl(R_G))$ is a β -closed set of X, where R_G is the rare set of Definition 4.1, then F is $u.\beta.c.$.

Proof. Let $x \in X$ and G be an open set such that $F(x) \subset G$. Since F is upper rarely continuous, there exist an open set V of X containing x and a rare set R_G with $Cl(R_G) \cap G = \emptyset$ such that $F(V) \subset G \cup R_G$. Let $U = V \cap (X \setminus F^-(\operatorname{Cl}(R_G)))$. Then we have $U \in \beta(X)$ (see [3], Theorem 2.7) and $x \in U$, since $x \in V$ and $x \in X \setminus F^-(\operatorname{Cl}(R_G))$. If we suppose that $x \in F^-(\operatorname{Cl}(R_G))$ then $F(x) \cap \operatorname{Cl}(R_G) \neq \emptyset$, but $F(x) \subset G$ and $G \cap \operatorname{Cl}(R_G) = \emptyset$. Let $s \in U$. Then $F(s) \subset G \cup R_G$ and $F(s) \cap \operatorname{Cl}(R_G) = \emptyset$. Therefore, we have $F(s) \cap R_G = \emptyset$, and hence $F(s) \subset G$. Since U is a β -open set containing x, it follows that F is $u.\beta.c.$. \square

Definition 4.2 A multifunction $F: X \mapsto Y$ is said to be upper α - continuous [18] if for each $x \in X$ and each open set V of Y containing F(x), there exists an α -open set U containing x such that $F(U) \subset V$.

Theorem 4.2 If $F, G: X \mapsto Y$ are multifunctions and Y is a normal space such that

- a) F and G are punctually closed;
- b) F is $u.\beta.c.$;
- c) G is upper α -continuous,

then the set $\{x \in X : F(x) \cap G(x) \neq \emptyset\}$ is β -closed in X.

Proof. Put $A = \{x \in X : F(x) \cap G(x) \neq \emptyset\}$ and let $x \in X \setminus A$. Then $F(x) \cap G(x) = \emptyset$. Since Y is normal, there exist disjoint open sets V and W such that $F(x) \subset V$ and $G(x) \subset W$. Since F is $u.\beta.c.$, there exists $U_1 \in \beta(X,x)$ such that $F(U_1) \subset V$. Since G is upper α -continuous, there exists an α -open set U_2 containing x such that $G(U_2) \subset W$. Put $U = U_1 \cap U_2$. Then $U \in \beta(X,x)$ (see [3], Corollary 2.14) and $F(U) \cap G(U) = \emptyset$. Therefore, we have $U \cap A = \emptyset$ and hence A is β -closed in X. \square

Definition 4.3 The β -frontier of a subset A of X, denoted by $\beta Fr(A)$, is defined by $\beta Fr(A) = \beta Cl(A) \cap \beta Cl(X \setminus A) = \beta Cl(A) - \beta Int(A)$.

Theorem 4.3 The set of all points x of X at which a multifunction $F: X \mapsto Y$ is not $u.\beta.c.$ $(l.\beta.c.)$ is identical with the union of the β -frontier of the upper (lower) inverse images of open sets containing (meeting) F(x).

Proof. Let x be a point of X at which F is not $u.\beta.c.$. Then there exists an open set V of Y containing F(x) such that $U \cap (X \setminus F^+(V)) \neq \emptyset$ for every $U \in \beta(X,x)$. Therefore, we have $x \in \beta \operatorname{Cl}(X \setminus F^+(V)) = X \setminus \beta \operatorname{Int}(F^+(V))$ and $x \in F^+(V)$. Thus we obtain $x \in \beta \operatorname{Fr}(F^+(V))$. Conversely, suppose that V is an open set containing F(x) and that $x \in \beta \operatorname{Fr}(F^+(V))$. If F is $u.\beta.c$, at x, then there exists $U \in \beta(X,x)$ such that $U \subset F^+(V)$; hence $x \in \beta \operatorname{Int}(F^+(V))$. This is a contradiction, hence F is not $u.\beta.c$. at x. The case for $l.\beta.c$. is similarly shown. \square

5 β -continuity and quasi-continuity

Definition 5.1 A multifunction $F: X \mapsto Y$ is said to be

- (a) upper quasi continuous [23] if for each $x \in X$, each open set U containing x and each open set V containing F(x), there exists a nonempty open set G of X such that $G \subset U$ and $F(G) \subset V$;
- (b) lower quasi continuous [23] if for each $x \in X$, each open set U containing x and each open set V such that $F(x) \cap V \neq \emptyset$, there exists a nonempty open set G of X such that $G \subset U$ and $F(g) \cap V \neq \emptyset$ for every $g \in G$.

Lemma 5.1 (Noiri and Popa [21]) If A is an α -regular set of a topological space X, then for every open set U which intersects A there exists an open set U_A such that $A \cap U_A \neq \emptyset$ and $Cl(U_A) \subset U$.

The set of all points at which a multifunction $F: X \mapsto Y$ is $u.\beta.c.$ and $l.\beta.c.$ (resp. upper quasi continuous and lower quasi continuous) will be denoted by B_F (resp. Q_F).

Theorem 5.1 If a multifunction $F: X \mapsto Y$ is punctually α -regular and α -paracompact, then $B_F \cap Int(Cl(Q_F)) \subset Q_F$.

Proof. Let $x \in B_F \cap \operatorname{Int}(\operatorname{Cl}(Q_F))$. First, we show that F is upper quasi continuous. Let U and V be open sets such that $x \in U$ and $F(x) \subset V$. Since F(x) is α -regular and α -paracompact, by Lemma 3.2 there exists an open set W such that $F(x) \subset W \subset \operatorname{Cl}(W) \subset V$. The upper β -continuity of F at X implies that there exists a nonempty open set $G \subset U \cap \operatorname{Int}(\operatorname{Cl}(Q_F))$ such that $G \subset \operatorname{Cl}(F^+(W))$. It follows from $G \subset \operatorname{Int}(\operatorname{Cl}(Q_F))$ that $G \cap Q_F \neq \emptyset$.

If
$$s \in G \cap Q_F$$
, then $s \in F^+(\operatorname{Cl}(W))$. (1)

Suppose that (1) does not hold. Then there exists $s \in G \cap Q_F$ such that $s \in F^-(Y \setminus \operatorname{Cl}(W))$. The lower quasi continuity of F implies that there exists a nonempty open set $G_1 \subset G$ such that $G_1 \subset F^-(Y \setminus \operatorname{Cl}(W)) \subset F^-(Y \setminus W)$ (see [24], Theorem 2.2). This contradicts that $G \subset \operatorname{Cl}(F^+(W))$. It follows from (1) that if $s \in G \cap Q_F$ then $F(s) \subset \operatorname{Cl}(W) \subset V$. The upper quasi continuity of F at s implies that there exists a nonempty open set $H \subset U$ such that $F(H) \subset V$. Thus F is upper quasi continuous at x. Next, we show that F is lower quasi continuous. Let U and V be open sets such that $x \in U$ and $F(x) \cap V \neq \emptyset$. Since F(x) is α -regular, by Lemma 5.1 there exists an open set W such that $F(x) \cap W \neq \emptyset$ and $\operatorname{Cl}(W) \subset V$. The lower β -continuity of F at x implies that there exists a nonempty open set $G \subset U \cap \operatorname{Int}(\operatorname{Cl}(Q_F))$ such that $G \subset \operatorname{Cl}(F^-(W))$. It follows from $G \subset \operatorname{Int}(\operatorname{Cl}(Q_F))$ that $G \cap Q_F \neq \emptyset$.

If
$$s \in G \cap Q_F$$
 then $s \in F^-(Cl(W))$. (2)

Suppose that (2) does not hold. Then, there exists $s \in G \cap Q_F$ such that $s \in F^+(Y \setminus \operatorname{Cl}(W))$. The upper quasi continuity of F at s implies that there exists a nonempty open set $G_2 \subset G$ such that $G_2 \subset F^+(Y \setminus \operatorname{Cl}(W)) \subset F^+(Y \setminus W)$ (see [24], Theorem 2.1). This is in contradiction with $G \subset \operatorname{Cl}(F^-(W))$. It follows from (2) that if $s \in G \cap Q_F$, then $F(s) \cap \operatorname{Cl}(W) \neq \emptyset$ and hence $F(s) \cap V \neq \emptyset$. The lower quasi continuity of F are s implies that there exists a nonempty open set $H \subset U$ such that $F(H) \cap V \neq \emptyset$ for each $h \in H$. Thus F is lower quasi continuous at x. Consequently we obtain $x \in Q_F$. \square

Corollary 5.1 (Borsik and Doboš [7]) Let Y be a regular space and $f: X \mapsto Y$ be a function. Then $B_f \cap Int(Cl(Q_f) \subset Q_f$.

Corollary 5.2 If a multifunction $F: X \mapsto Y$ is $u.\beta.c.$ and $l.\beta.c.$, and F(x) is α -regular α -paracompact for each $x \in X$, then Q_F is semi-closed in X.

Corollary 5.3 Let Y be a regular space and $F: X \mapsto Y$ an $u.\beta.c.$ and $l.\beta.c.$ multifunction. If F(x) is compact for each $x \in X$, then Q_F is semi-closed in X.

Corollary 5.4 (Borsik and Doboš [7]) If Y is a regular space and $f: X \mapsto Y$ a β - continuous function, then Q_f is semi-closed in X.

Theorem 5.2 Let $F: X \mapsto Y$ be a multifunction such that F(x) is α -regular α -paracompact for each $x \in X$. Then F is upper and lower quasi continuous if and only if F is $u.\beta.c.$ and $l.\beta.c.$ and Q_F is a dense set in X.

Corollary 5.5 (Borsik and Doboš [7]) Let Y be a regular space. Then f: $X \mapsto Y$ is quasi continuous if and only if it is β -continuous and Q_f is dense in X.

Definition 5.2 A multifunction $F: X \mapsto Y$ is said to be upper (resp. lower) s-quasi continuous [13] at a point $x \in X$ if for each open set V of Y containing (resp. meeting) F(x) and having the connected complement, there exists $U \in SO(X,x)$ such that $F(U) \subset V$ (resp. $U \subset F^-(V)$).

By $Q_s(F)$ we shall denote the set of all points of X at which a multifunction $F: X \mapsto Y$ is upper and lower s-quasi continuous.

Theorem 5.3 Let Y be a locally connected regular space. If $F: X \mapsto Y$ is a multifunction such that F(x) is connected and compact for each $x \in X$, then $B_F \cap Int(Cl(Q_s(F))) \subset Q_s(F)$.

Proof. The proof is similar to that of Theorem 5.1 and is thus omitted. \Box

Corollary 5.6 Let Y be a locally connected regular space. If a multifunction $F: X \mapsto Y$ is $u.\beta.c.$ and $l.\beta.c.$ and F(x) is connected compact for each $x \in X$, then $Q_s(F)$ is semi-closed in X.

6 Nets for multifunctions

In what follows (D, >) is a directed set, (F_{α}) is a net of multifunctions F_{α} : $X \mapsto Y$, $\alpha \in D$ and F is a multifunction on X into Y.

- **Definition 6.1** (1) (F_{α}) converges upper pointwise to F on X [8] if for each $x \in X$ and each open set $G \subset Y$ containing F(x), there exists $\beta(x,G) \in D$ such that $F_{\alpha}(x) \subset G$ for all $\alpha > \beta(x,G)$;
- (2) (F_{α}) converges lower pointwise to F on X [8] if for each $x \in X$ and each open set $G \subset Y$ which intersects F(x), there exists $\beta(x,G) \in D$ such that $F_{\alpha}(x) \cap G \neq \emptyset$ for all $\alpha > \beta(x,G)$;
- (3) (F_{α}) converges pointwise to F on X [8] if it converges upper pointwise and lower pointwise to F.

- **Definition 6.2** (1) (F_{α}) converges quasi upper r-uniformly (q.u.r.u.) to F on X [8] if
 - (i) (F_{α}) converges pointwise to F on X,
 - (ii) for each open set G of Y with $F^+(G) \neq \emptyset$ and each $\beta \in D$, there exists $\alpha > \beta$ such that $F_{\alpha}(x) \subset G$ for all $x \in F^+(G)$;
- (2) (F_{α}) converges quasi lower r-uniformly (q.l.r.u.) to F on X [8] if
 - (i) (F_{α}) converges pointwise to F on X,
 - (ii) for each open set G of Y with $F^-(G) \neq \emptyset$ and each $\beta \in D$, there exists $\alpha > \beta$ such that $F_{\alpha}(x) \cap G \neq \emptyset$ for all $x \in F^-(G)$;
- (3) (F_{α}) converges quasi r-uniformly (q.r.u.) to F on X if it converges q.u.r.u. and q.l.r.u..

Theorem 6.1 Let (F_{α}) be a net which converges q.l.r.u. to $F: X \mapsto Y$ and F(x) be compact for each $x \in X$. If Y is regular and F_{α} is $u.\beta.c.$ for each $\alpha \in D$, then F is $u.\beta.c.$.

Proof. We suppose that F is not $u.\beta.c.$ at $x_o \in X$ but all F_α are $u.\beta.c.$ at x_o . Then there exists an open set G of Y containing $F(x_o)$ such that for every β -open set V of X containing x_o , there exists $x_V \in V$ such that $F(x_V)$ is not contained in G. But $F(x_o) \cap (Y \setminus G) = \emptyset$, $F(x_o)$ is compact, $Y \setminus G$ is closed and Y is regular. Therefore, it follows that there exist two disjoint open sets G_1 and G_2 such that $F(x_o) \subset G_1$, $Y \setminus G \subset G_2$. From the pointwise convergence of (F_α) to F it follows that there exists $\alpha_o \in D$ such that $F_\alpha(x_o) \subset G_1$ for all $\alpha > \alpha_o$. But $F^-(G_2) \neq \emptyset$ since $x_V \in F^-(G_2)$ and (F_α) converges q.l.r.u. to F. Therefore, it follows that there exists $\gamma > \alpha_o$ such that $F_\gamma(x) \cap G_2 \neq \emptyset$ for each $x \in F^-(G_2)$; hence $F_\gamma(x_V) \cap G_2 \neq \emptyset$. This implies that $F_\gamma(x_V)$ is not contained in G_1 . Therefore, F_γ is not $u.\beta.c.$ in x_o . This contradicts the hypothesis. \square

Theorem 6.2 Let (F_{α}) be a net which converges q.u.r.u. to $F: X \mapsto Y$. If Y is regular and F_{α} is $l.\beta.c.$ for each $\alpha \in D$, then F is $l.\beta.c.$.

Proof. We suppose that F is not $l.\beta.c.$ at $x_o \in X$, but all F_α are $l.\beta.c.$ at x_o . Then there exists an open set G of Y intersecting $F(x_o)$ such that for every β -open set V of X containing x_o , there exists $x_V \in V$ such that $F(x_V) \cap G = \emptyset$. Let y_o be an arbitrary point of $F(x_o) \cap G$. Then $y_o \in Y \setminus (Y \setminus G)$ and Y is regular. Therefore, it follows that there exist two disjoint open sets G_1 and G_2 such that $y_o \in G_1$, $Y \setminus G \subset G_2$. Hence $F(x_o) \cap G_1 \neq \emptyset$. From the pointwise convergence of (F_α) to F it follows that there exists $\alpha_o \in D$ such

that $F_{\alpha}(x_o) \cap G_1 \neq \emptyset$ for all $\alpha > \alpha_o$. But $F^+(G_2) \neq \emptyset$ since $x_V \in F^+(G_2)$ and (F_{α}) converges q.u.r.u. to F. Therefore, it follows that there exists $\gamma > \alpha_o$ such that $F_{\gamma}(x) \subset G_2$ for each $x \in F^+(G_2)$; hence $F_{\gamma}(x_V) \subset G_2$. This implies that $F_{\gamma}(x_v) \cap G_1 = \emptyset$. Therefore, F_{γ} is not $l.\beta.c$. in x_o . This contradicts the hypothesis. \square

Definition 6.3 Let $(F_{\alpha})_{\alpha \in D}$ be a net of multifunctions on X into Y. A multifunction $F^*: X \mapsto Y$ defined as follows: for each $x \in X$, $F^*(x) = \{y \in Y : \text{for each open neighborhood of } y \text{ and each } \beta \in D$, there exists $\alpha \in D$ such that $\alpha > \beta$ and $V \cap F_{\alpha}(x) \neq \emptyset\}$ is called the upper topological limit [5] of the net (F_{α}) .

Definition 6.4 A net $(F_{\alpha})_{\alpha \in D}$ is said to be equally $u.\beta.c.$ at $x_o \in X$ if for every open set V_{α} containing $F_{\alpha}(x_o)$ there exists a β -open set U containing x_o such that $F_{\alpha}(U) \subset V_{\alpha}$ for all $\alpha \in D$.

Theorem 6.3 Let $(F_{\alpha})_{\alpha \in D}$ be a net of multifunctions from a topological space (X, τ) into a compact topological space (Y, σ) . If the following are satisfied:

- (1) $\cap \{(Y \setminus F_{\beta}(x)) : \beta > \alpha\} \in \sigma \text{ for each } \alpha \in D \text{ and each } x \in X,$
- (2) (F_{α}) is equally $u.\beta.c.$ on X,

then F^* is $u.\beta.c.$ on X.

Proof. It is known that $F^*(x) = \bigcap \{ \text{Cl}(\bigcup \{ F_{\beta}(x) : \beta > \alpha \}) : \alpha \in D \}.$ From (1) we have $F^*(x) = \bigcap \{ [\cup \{F_\beta(x) : \beta > \alpha\}] : \alpha \in D \}$. Since the net $(\bigcup \{F_{\beta}(x) : \beta > \alpha\})_{\alpha \in D}$ is a family of closed sets having the finite intersection property and Y is compact, it follows that $F^*(x) \neq \emptyset$ for each $x \in X$. Now, let $x_o \in X$ and let $V \in \sigma$ such that $V \neq Y$ and $F^*(x_o) \subset V$. Then $F^*(x_o) \cap (Y \setminus X)$ $V = \emptyset$, $F^*(x_o) \neq \emptyset$ and $Y \setminus V \neq \emptyset$. It results that $\cap \{ [\cup \{F_\beta(x_o) : \beta > \alpha\}] : \emptyset \}$ $\alpha \in D \cap (Y \setminus V) = \emptyset$ and hence $\cap \{ [\cup \{F_{\beta}(x_o) \cap (Y \setminus V) : \beta > \alpha \}] : \alpha \in D \} = \emptyset$. Since Y is compact and the family $\{ [\cup \{ F_{\beta}(x_o) \cap (Y \setminus V) : \beta > \alpha \}] : \alpha \in D \}$ is a family of closed sets with the empty intersection, there exists $\alpha \in D$ such that for each $\beta \in D$ with $\beta > \alpha$ we have $F_{\beta}(x_o) \cap (Y \setminus V) = \emptyset$; hence $F_{\beta}(x_o) \subset V$. Since the net $(F_{\alpha})_{\alpha \in D}$ is equally $u.\beta.c.$ on X, it results that there exists a β -open set U containing x_o such that $F_{\beta}(U) \subset V$ for each $\beta > \alpha$; hence $F_{\beta}(x) \cap (Y \setminus V) = \emptyset$ for each $x \in U$. Then we have $\bigcup \{F_{\beta}(x) \cap (Y \setminus V) : \}$ $\beta > \alpha \} = \emptyset$; hence $\cap \{ [\cup \{ F_{\beta}(x) : \beta > \alpha \}] : \alpha \in D \} \cap (Y \setminus V) = \emptyset$. This implies that $F^*(U) \subset V$. If V = Y then it is clear that for each β - open set U containing x_o we have $F^*(U) \subset V$. Hence F^* is $u.\beta.c.$ at x_o . Since x_o is arbitrary, the proof is complete. \Box

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. **12** (1983), 77–90.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud, and E. R. Lashin, β -closure and β -interior, J. Fac. Ed. Ain Shans Univ. **10** (1986), 235–245.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.
- [4] T. Banzaru, Multifunctions and M-product spaces, Bul. St. Tehn. Inst. Politeh. "T. Vuia" Timişoara Mat. Fiz. Mec. Teor. Apl. 17 (31) (1972), 17–23, in Romanian.
- [5] T. Banzaru, On the upper semicontinuity of the upper topological limit for multifunction nets, Semin. Mat. Fiz. Inst. Politeh. "T. Vuia" Timişoara (1983), 59–64.
- [6] J. Borsík, On almost quasicontinuous functions, Math. Bohemica 118 (1993), 241–248.
- [7] J. Borsík and J. Doboş, On decompositions of quasicontinuity, Real Anal. Exchange 16 (1990-1991), 292–305.
- [8] N. Crivat and T. Banzaru, On the quasi continuity of the limit for nets of multifunctions, Semin. Mat. Fiz. Inst. Politeh. "T. Vuia" Timişoara (1983), 37–40.
- [9] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci 22 (1971), 99–112.
- [10] N. El-Deeb, I. A. Hasanein, A. S. Mashhour, and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumaine 27 (75) (1983), 311– 315.
- [11] J. Ewert, On almost quasicontinuity of functions, Tatra Mountains Math. Publ. 2 (1993), 81–92.
- [12] J. Ewert, Almost quasicontinuity of multivalued maps, Math. Slovaka (1996), to appear.
- [13] J. Ewert and T. Lipski, On S-quasi-continuous multivalued maps, Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 20 (1990), 167–183.
- [14] I. Kovacević, Subsets and paracompactness, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fac. Ser. Mat. 14 (1984), 79–87.

- [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70** (1963), 36–41.
- [16] S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Colloq. Math. 8 (1961), 47–53.
- [17] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt **53** (1982), 47–53.
- [18] T. Neubrunn, Strongly quasi-continuous multivalued mappings, General Topology and its relation to Modern Analysis and Algebra (VI) (Prague 1986), Heldermann, Berlin, 1988, 351–359.
- [19] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [20] T. Noiri, On α -continuous functions, Časopis Pěst. Math. **109** (1984), 118–126.
- [21] T. Noiri and V. Popa, On upper and lower weakly quasi-continuous multifunctions, Rev. Roumaine Pure Appl. 37 (1992), 449–508.
- [22] T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math. 26 (1993), 363–380.
- [23] V. Popa, On a decomposition of quasicontinuity for multifunctions, Stud. Cerc. Mat. 27 (1975), 323–328, in Romanian.
- [24] V. Popa, Sur certaines formes faibles de continuite pour les multifonctions, Rev. Roumaine Math. Pure Appl. 30 (1985), 539–546.
- [25] V. Popa, Some properties of rarely continuous multifunctions, Conf. Nat. Geom. Topologie, 1988, Univ. Al. I. Cuza Iași (1989), 269–274.
- [26] V. Popa and T. Noiri, On β -continuous functions, Real Anal. Exchange 18 (1992-1993), 544–548.
- [27] V. Popa and T. Noiri, On upper and lower α -continuous multifunctions, Math Slovaka **43** (1993), 477–491.
- [28] D. Wine, Locally paracompact spaces, Glasnik Mat. 10 (30) (1975), 351–357.