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Abstract

In this article we generalize Taylor’s theorem, using the local systems
introduced by B. S. Thomson in [8].

We shall denote by C the class of all continuous functions, by D the class
of all Darboux functions, by B; the class of all Baire one functions, and by
DBy the class of all Darboux Baire one functions.

Definition 1 (Thomson). ([8], p. 3). A family S = {S(z)}.cr is said to be a
local system if each S(z) is a collection of sets with the following properties:

(i) {z} ¢ S(z);

(i) If o, € S(x) then x € oy
(iii) If o, € S(x) and o, C A then A € S(x);
(iv) If o, €S

Definition 2. Let S = {S(z)},er and S = {S'(2)}4er be local systems and
let z e R, ACR.

(z
(z) and § > 0 then o, N (z — 6,z + J) € S(x).

e (Thomson, [8], p. 5) We define the following local system: S A S =
{(§ NS )(z)}zer, where (SAS )(x) =S(z) NS (x) (it is easy to verify
that this is a local system).

e (Thomson, [8], p. 37). S is said to be bilateral at z if o, has z as a
bilateral accumulation point, whenever o, € S(x). S is bilateral on A if
it is bilateral at each point of A.
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(Thomson, [8], p. 18). Let Soo = {Soo(x) : & € R} denote the local
system defined at each point x as Soo(2) = {0 : o contains x and has
x as an accumulation point }. We can define right and left versions
of this, by writing: S& (z) = {0 : o contains  and has = as a right
accumulation point } and S (z) = {0 : o contains z and has z as a left
accumulation point }.

o Let Soooo = SE NS5 Clearly Sw o(z) = {0 : o contains z and has =
as a bilateral accumulation point }.

e Sissaid to be 8'-filtering at z if o, N0, € S () whenever o, 0, € S(z).
S is said to be S -filtering on A if it is so at each point of A.

e S is said to be filtering at = if S is S-filtering at = (this is in fact
Thomson’s definition of [8], p. 10).

Remark 1. If S is Sy o-filtering on a set A then it is a bilateral local system
on A.

Definition 3. Let S = {S(x)}.er be a local system. Let F : [a,b] — R and
t € [a,b]. F is said to be S-continuous at t if for every e > 0 there exists
ot € S(t) such that |F(z) — F(t)] < €, whenever x € o:N[a,b]. F is said to be
S-continuous on a set A C [a,b] if it is so at each point t € A.

Remark 2. For t € (a,b), Definition 3 is a reformulation of Thomson’s Defi-
nition 31.1 of [8] (p. 70). However, our definition considers ¢ € [a, b].

Lemma 1. Let § = {S(z)}ser be a local system Soo oo-filtering. Let F :
[a,b] = R and t € [a,b]. Suppose that there exists ¢ € R with the following
property: for every neighborhood U, of ¢ there is a set oy € S(t) such that
(F(z) — F(t)/(x —t) € U., whenever z € o, N [a,b] and x # t. Then the
number c is unique.

PROOF. Suppose that there exists a number d, d # ¢, with the same properties
as c. Let U, and Uy be neighborhoods for ¢ respectively d such that U.NUy = ().
Let 0,0, € S(t), such that (F(z)—F(t))/(z—t) € U,, whenever z € 0;N[a, b],
x#t, and (F(y) — F(t))/(y —t) € Uy, whenever y € o, N [a,b], y # t. Since
S is Suo co-filtering it follows that o Moy \ {t} # 0, a contradiction. O

Definition 4. Let S = {S(z)},cr be a local system So oo-filtering. Let
F:la,b] > R and t € [a, b].

(1) We denote the unique number ¢ of Lemma 1 by SDF(t) (the S-derivative
of F at t).
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(2) The function F is said to be S-derivable on [a,b] if SDF(t) exists and is
finite at each t € [a, b].

(3) If F is S-derivable on [a,b] and the S-derivative of SDF exists (finite or
infinite) at ¢ then we denote this derivative by SDF®?)(t).

(4) F is said to be S®-derivable on [a,b] if SDF®)(t) exists and is finite at
each ¢ € [a,b].

(5) Inductively we may define SDF(®(t) and the S"-derivability on [a, ],
i=1,2,.... Let SDFO)(t) = F(t).

Remark 3. For t € (a,b), Definition 4, (1) is a reformulation of a part of
Definition 7.1 of [8] (p. 14). Of course, Definition 4, (1) is less general,
because Thomson’s definition does not impose any conditions on the local
system. However, our definition considers ¢ € [a, b].

Lemma 2. Let § = {S(z)}ser be a local system Soo oo-filtering. Let F :
[a,b] — R. If F is S%W-derivable on [a,b] then SDFU~Y is S-continuous on
[a,b,i=1,2,....

Definition 5. We define the following local systems:

o Si1 = {S11(x)}ser, where Sii(z) = {S : z € S and dl(S,:r) =
d' (S,z) = 1}. (Here d, and d" are the interior right respectively
left densities of S at x — see for example [8], p. 22). Let Fé;)(:zz) =
S1.1DF9 (z).

o For o, 8 € (0,1), let So.3 = {Sa,5(x)}wer, where Sq g(x) ={S : z € S
and d" (S,z) > a, d'.(S,x) > B}. Let ES(z) = S%’%DF(i)(x).

Remark 4. The S;; and S, g local systems are slight modifications of some

systems introduced in [6] (pp. 81, 85), [7] (I, p. 75, 76) and [2] (p. 99).

Definition 6 (Preiss). ([5] or [3], p. 35). Let F : [a,b] — R. F is said to
be lower internal*, if F(z+) > F(x), whenever x € [a,b) and F(z+) exists,
and F(z—) < F(x), whenever z € (a,b] and F(x—) exists. F is said to be
upper internal* if —F is lower internal*. F is said to be internal® if it is
simultaneously upper and lower internal®.

Definition 7 (C.M.Lee). ([4], [3], p- 35). Let F' : [a,b] — R. F is said to
be uCM if it is increasing on [c,d] C [a,b], whenever it is so on (¢,d). F is
said to be (CM if —F is uCM. Let CM = (CM NuCM and sCM = {F :
F(z)+ Ax € CM for each ) € R}.
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Remark 5. ([3], p. 36). Let F : [a,b] = R. Then we have:
(i) C + internal* = internal*;
(i) C € DBy C D C internal* C sCM C CM C uCM,

Theorem 1 (Thomson). (A special case of Theorem 35.1 of [8], p. 74). LetS
be a local system satisfying an intersection condition of the form o, Noy, # 0,
and let F : [a,b] — R. If F'is S-continuous then F € By.

Theorem 2 (Thomson). (/8/, p. 77). Let S be a bilateral local system, and
let F:[a,b] = R. If F is By and S-continuous on [a,b] then F € D on [a,b].

PrOOF. See [1] (Theorem 1.1, (1), (2), pp. 8-9). O

Theorem 3. ([3], p. 30.) Let F : [a,b] — R and let S = {S()}rcr be a
local system satisfying the following conditions:

o S is Soo 00-filtering on [a,b];

e 0, NoyN(—o0,z] #0;

e o, NoyN[y,+oo) #0;

o S DF(x) exists (finite or infinite) at each point x € [a, b].
Then S DF(x) is By on [a,b].

Theorem 4. ([3], p. 149-150). Let S be a local system Sso o0-filtering, sat-
isfying intersection condition oy N oy N [z,y] # 0, and let F : [a,b] — R be a
function satisfying the following conditions:

(1) F € sCM on [a,b];

(2) S-derivative S DF(x) exists (finite or infinite) at each x € [a,b] (respec-
tively x € [a,b); x € (a,b));

(3) S DF(z) is By on [a,b] (respectively [a,b); (a,b)).
Then we have:
(i) SDF(z) is D and

(i) F fulfills the Mean Value Theorem.
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Lemma 3. Let S be a local system So oo-filtering, satisfying intersection
condition o, NoyN[x,y] #0. Let F,G,H : [a,b] = R, H(z) = (F(b) — F(a))-
G(z) — (G(b)—G(a))-F(x) such that SDF (x) exists finite or infinite on (a,b),
G’ exists finite on (a,b) and H € sCM on [a,b]. Then there exists & € (a,b)
such that ,

(F(5) - F(a)) - G (€) = (G(8) — G(a)) - SDF(E).

PrROOF. We have H(b) = H(a) = F(b)G(a) — G(b)F(a). Clearly SDH(x)
exists finite or infinite on (a,b). By Theorem 4, (ii), there exists £ € (a, b) such
that SDH(§) = 0. Now the conclusion of our lemma follows immediately. O

Corollary 1. Let S be a local system Soc oo-filtering, satisfying intersection
condition o, Noy N[z,y] #0. Let F,G : [a,b] — R. If

(i) F € internal* and G € C on [a,b],

(ii) S-derivative SDF(x) exists finite or infinite on (a,b) and G (x) ewists
finite on (a,b),

then there exists £ € (a,b) such that
(F(b) = F(a)) - G (§) = (G(b) — G(a)) - SDF(§).

PROOF. Let H be the function defined in Lemma 3. Since C + internal* =
internal® C sCM (see Remark 5) it follows that H € sCM on [a,b]. Now the
proof follows by Lemma 3. O

Remark 6. In Lemma 3 and Corollary 1 we may put SDG instead of G if
S is supposed to be filtering.

Theorem 5. (A strong form of Taylor’s Theorem). Let S be a local system
Sco,00-filtering, satisfying the following intersection conditions:

e o, Noy N[z, yl #0;
L4 O—mﬂo—ym(fooaz] 7&07
e 0, Nay N[y, +00) # 0.

Let F : [a,b] — R such that F(b—) = F(b) if F(b—) exists, and let n > 1 be
an integer. If

(i) F is SW-derivable on [a,b), i =1,2,...,n and

(ii) SDF™ ) (z) exists finite or infinite on (a,b),
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then there exists £ € (a,b) such that

n (@) (q , (n+1)
Fo) =3 smz! (@) (5 — oy 3D(5+ 1)!(6) (b—a)" L.

n @) (q ,
R(z) = F(z) — Z w(x —a)’ and G(z) = (z — a)"*L.

il

=0
Clearly R(a) = SDR(a) = ... = SDR™(a) = 0 and SDR"V(z) =
SDF ) (z) for each = € (a,b). But G(a) = G'(a) = ... = G™(a) = 0

and Gt (z) = (n+1)! on (a,b). By Theorem 3, SDF® is B; on [a,b),
i=1,2,...,nand SDF"*Y is B; on (a,b). By Theorem 4, (i) it follows that
SDF® € Don [a,b),i=1,2,...,n, and SDF™+1) € D on (a,b). By Lemma
2, F' is S-continuous on [a, b), so by Theorem 1, F' € B; on [a,b). By Theorem
2, F € Don [a,b). By Remark 5, (ii) and the fact that F'(b—) = F(b) if F'(b—)
exists, it follows that F' € internal® on [a,b]. Then R € internal® on [a,b] (see
Remark 5, (i)). Applying Corollary 1, it follows that there exists ¢; € (a,b)
such that R(b)/G(b) = SDF(c1)/G (¢1). Since SDF € DBy C internal* on
[a,c1] (see Remark 5), applying Corollary 1 again, it follows that there exists
o € (a,¢1) such that SDF(¢1)/G (¢1) = SDF®(¢y)/G®(¢z). Continuing,
we obtain b > ¢; > co > ... > ¢, > cpy1 > a such that

R(b) SDR(c;) SDR™(c,)
G)  Ga) T GW(en)
SDR(7L+1) (Cn+l) B SDF(7L+1) (Cn—i-l)
(n+1)! N (n+1)!
Putting & = ¢,, 41 the assertion of the theorem follows. O

Corollary 2. Let F : [a,b] = R and let n > 1 be an integer. Suppose that
(1) F(b—) = F(b) if F(b—) exists;

(2) Fé;,) () (respectively F,gﬁ)(x)) exists and is finite on [a,b), for each i =
1,2,...,n and

(3) Féz+1)(x) (respectively FZS?H)(x)) exists finite or infinite on (a,b).
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Then there exists £ € (a,b) such that

n

(@ a ) (n+1)
F(b):ZFaiﬂ( )(b—a)2+Fap (g)(b_a)n+1

1! (n+1)!

(respectively
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