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ON DIFFERENTIABILITY OF FUNCTIONS
OF TWO VARIABLES

Abstract
Some special conditions (equidifferentiability or absolute equiconti-
nuity) implying (or not) the differentiability of functions of two variables
are considered.

1 Equidifferentiability

Let R be the set of all reals. We denote by |z| the absolute value of x € R, by
|(y, )| the Euclidean norm of (y,2) € R?, and by |I| the length of the interval
I CR. Let
A={fs :R—>R;se€ S},

where S denotes a set of indexes. We say that the functions of the family A
are equidifferentiable at a point x € R if they are differentiable at z and for
every positive real i) there is a positive real § such that for each function f € A
and for all points ¢ such that 0 < |t — z| < § the inequality

f(t) = fl=z)

x—t

— fl(z)| <.

holds. Now, let F': R? — R be a function of two variables. It is well known
that the differentiability of all sections F,(t) = F(z,t) and all sections F¥(t) =
F(t,y), z,y,t € R, need not imply the differentiability of F.

Theorem 1. Let a function F : R? — R be given and let (z,y) € R? be a
point such that the section F,, is differentiable at y and there is a positive real
r such that the sections FV, v € (y — r,y +r), are equidifferentiable at x. If

(1), tim 57 (2,0) = 5 (2,0)

then the function F is differentiable at the point (z,y).
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ProOOF. Leta(v) = 2E(z,v),v € (y—r,y+r) and b= %—Z(@ y). Fix a positive
real 7. Since the sections F¥, v € (y — r,y + r), are equidifferentiable at the
point z, there is a positive real d; such that for each point v € (x — 1,2 + 1)

and for each v € (y —r,y + ) we have

‘F(u,v) ~ F(z,v)

(2)-

u—2x

By (1) and by the differentiability of the section F, at y there is a positive
real do < r such that for each point v € (y — d2,y + d2) the inequalities

(3) ‘F(x7vz:5(x’y)_b’<z
and
(1) la(v) - a(y)| < 7

are valid. Let

0 =min(dy,02), I=(zx—3d,z+0) x (y—34y+9).
Fix a point (u,v) € I. Then, by (2), (3) and (4) we obtain
F(u,v) = Fz,y) — a(y)(u—z) = b(v —y)

|(u,v) = (z,y)]
F(u,v) — F(x,v)

V2@ o) + la(w) — atu) 1+
F(a,v) = F(z,y) nom.,n_
vy b<§+1+1—7}
So,
P00 = Fly) —al)u—5) ~bo—y) _
(u.0) = (2.) |(w,0) = (,9)]
and F' is differentiable at (z,y). O

Observe that the function

F(w):{%;% for (z,) # (0.0)

for  (z,y) =0,0)

satisfies the condition (1) for (x,y) = (0,0), but it is not differentiable at
the point (0,0). So, for each r > 0 the sections F¥, v € (—r,r), are not
equidifferentiable at 0. The next example shows that the condition (1) in
Theorem 1 is essential.
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Example 1. Forn=1,2,... let I, = [% - n27 = L 4n2] [an,by], and
0 if y=a, or y=>5,
fuly) = 1 if y= a"+b” =cp

linear on [an,cn] [Cn, bn].

We let W)
| faly for yel,,n=12,...

y) = { 0 on R\U,I
and F(z,y) = zf(y) for (z,y) € R%. Then F is continuous on R?\ {(z,0);z #
0}, the section Fj is everywhere differentiable and the sections FY, y € R, are
equidifferentiable at 0. Now we will show that F' is not differentiable at the
point (0,0). Observe that F(0,0) =0, F(1, 1) =1 forn > 1,|(L, 1) =2
forn > 1 and aF(O 0) = aF 7 (0,0) = 0. So, for n > 1 we obtain

F(1, 1) - F(0,0) 1

[C3)] V2

and consequently the function F' is not differentiable at the point (0, 0).

Theorem 2. Let F': R? = R be a function such that all sections F¥, v € R,
are continuous and the section Fy, is differentiable at a point y. Suppose that
there is a positive real v and a linear set A C (y—r,y+7r) dense in the interval
(y —r,y + 1) such the the sections FY, y € A, are equidifferentiable at x and

oF oF

tim O, 0) = O ().
veEA

Then F is differentiable at the point (x,y).
PRrROOF. Same as in the proof of Theorem 1 we can show that

Fu,v0) = F(z,y) — a(y)(u — ) = b(v —y)

ugtfeﬂjq;)y |(’LL, 'U) - (LC, y)|

:0’

where a(y) and b are the same as these in the proof of Theorem 1. By the
continuity of the sections F,, x € R, we obtain that the above limit is also
equal to 0 if (u,v) — (z,y), so the function F is differentiable at (z,y). O

Theorem 3. Let F' : R?> — R be a function such that the section F is
differentiable at a point y. Suppose that there is a positive real v such that the
partial derivative %F is continuous on the open circle K((x,y),r). Then F is

differentiable at the point (x,vy).
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PROOF. It suffices to prove that F' satisfies the hypothesis of Theorem

1. Condition (1) follows from the continuity of partial derivative %—5 at (z,y).

The existence and the boundedness of the partial derivative %—5 on some neigh-
borhood V' C K((x,y),r) implies, by the LaGrange theorem, the equidiffer-

entiability of the sections F¥, v € V, = {t : (x,t) € V'} at the point . O

2 Absolute Equicontinuity

Now, let B be a family of functions fs : I — R, s € S and I = [0,1]. We say
that the functions of the family B are absolutely equicontinuous if for every
positive real n there is a positive real § such that for each index s € S and for
each family {I; = [a;, b;];7 < k} of closed subintervals of I with int I;NintI; = ()
for i # j, i,j <k, (int I; denotes the interior of I;) and >, , (b —a;) < ¢ the
inequality >, |fs(bi) — fs(a;)| < n holds.

Theorem 4. Let F : I? = R be a function such that the sections Fy, x €
I, are absolutely equicontinuous and the sections FY, y € I, are absolutely
equicontinuous. Then F' has the following property.

(P) For each positive real n) there is a positive real 0 such that for every family
of closed intervals I, ..., Ix; J1,...,Jx C I such that

(5) intI; Nint I; = 0, Aint J; Nint J; =0, i # 74, i,j <k,
and
(6) DAL+ <6

i<k;

the inequality », . diam(F(I; x J;)) < n holds (diam(X) denotes the
diameter of the set X ).

PRrROOF. Since the sections F,,, x € I, and FY, y € I, are equicontinuous, the
function F' is continuous. Fix a positive real n. There is a positive real § such
that for every point (x,y) € I? and for each family of closed intervals

Ki,Ky,...,.K;C1I

with int K; Nint K; = 0 for i # ji,j <1, and >, |K;| < 0 the inequalities

3 diam(F, (K;)) < g and Y diam(FY(K;)) <

i<l i<l

N3
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hold.
Let I,...,Ix; J1,...,Ji, C I be closed intervals satisfying conditions (5)
and (6). Let

F(a;,b;)) = max F(x,y),AF(¢;,d;) = min  F(x,y), for i <k.

(z,y)el; x J; (z,y)el; x J;
Then
1> diam(F(1; x J;)| = > (F(ai, bi) — F(ei, di)) <
i<k i<k
n,n_
Z |F(ai, b;) — F(ci, bi)| + Z |F(ci, bi) — Fei, di)| < 2T ="n
i<k i<k
and the proof is completed. O

Example 2. For n = 1,2,... let I,[1 — 5] = [an,b,], Jn = [-2,2] =
[en,dy] and

0 ify=a, ory=>b,
faly) = {1 if y = atbe — ¢,
linear on [ay, ¢y), [cn, bn]-
We let
foly) foryel,, n=12,...
fly) = )
0 on R\ U,TI,
and
O0==zf(y) ifyeR\U,I,
zf(y if (z,y) € Jy xIp,n=1,2,...
Play) =W @)
e’fbf(y) lfﬂﬁﬁen/\yEIn,n:l,Z...
dn f(y) ifr>d,ANyel,,n=12....
Put
F(z,y) if y>0,2<-2y
F(x,y) it y>02>2
Gla,y) = 0 if y<0
F(_yvy)'k%w if y>0,z¢€(—y,y).

Observe that the restricted function g = G|I? does not satisfy condition (P),
but the sections g¥, y € I, are absolutely equicontinuous on I and the sections
gz, € I, are absolutely continuous.
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The next example shows that there is a function F : I? — R having
absolutely equicontinuous sections F, and FY, x,y € I, such that the set of
points where F' is not differentiable is of positive measure.

Example 3. Let C' C I be a Cantor set of positive measure and let A = C'xC.
Since the set A is compact and the set C' is nowhere dense, for each positive
integer n there are points (2, i,yn:) C (I'\ C)? for i < k(n), such that

0 < dist((#n,j, Yn.j), A) = nf{|(@n j, yn.j) — (2, 9)]; (z,y) € A}
< min{dist(zn—1,4, Yn—1,), 4);3 < k(n — 1)}, j < k(n) forn > 1,

LTny iy 7é Tniis N Ynii 7& Yni,ig
for (n1,41) # (n2,i2), ni,ne =1,2,..., 1; < k(n;), j =1,2, and

1
v(m,y)eAvnEigk(n)Kxay) - (xn,ia yn,i)l < ﬁ

For each pair (n,i), n > 1, ¢ < k(n), we can find a positive real r,_; such that
[y — 1(n1581), Ty iy + 701, 00)] O [Ty i, — T(12,82), Ty iy + 7(R2,42)] = 0
and

Yny,in — (01, 01), Yny iy +7(101,51)] 0 Wi — T(N2592)s Yng iy + 7(n2,12)] =0

for (n1,i1) # (n2,i2), n1,ne > 1,45 < kyy, j = 1,2. Let Ky, ; be the circle
with center (x4, yYn,i) and radius r(n, i), let S,, ; be the boundary of the circle
K, ;andlet F,;: K,; — [0, #], n > 1,1 < k(n), be the continuous function
defined by
dist((z,y), Sn.i)
Fni ) = .
i@, y) n2r(n,i)
Let
Fla,y) = F,i(z,y) for (zx,y) € K,i,n>11i<k(n),
0 on I°\ U, ; Kn,i-

For each point (z,y) € A and for each positive integer n there is a point

(@nis Yn,i) With |(Tni,Yni) — (2,9)] < # Clearly, %(x,y} = %—g(x,y) =0.
So,

> o
|(xn,iayn,i) - (xay)| L

and thus F is not differentiable at (x,y).

)

’F(-Tn,iayn,i) - F(x,y) #
)
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Now we will show that the sections F),, x € I, are absolutely equicontinu-
ous. Fix a positive real 1. There is an positive integer k& with - _, # < 2.
Let 6 be a positive real such that
n

0 < .
2max, <psi<k(n) (7m0 )

Suppose that closed intervals {I; = [a;, b;];i < j} satisfy the following condi-
tions:

int(Z;) Nint(1,,) = 0 for ¢ # m and i,m < j,
and 3, [I;| < 6. Fix a point x € I and denote by K the set of all positive
integers [ < j for which there is a pair (n, i) with n < k such that I; (K, ;). #
0 and by L the set {1,...,5} \ K. Then

D oIF(bi) = Fla,a)| = ) |F(a,by) = F(,a:)|+

i<j icK
n.n
Z|F($,bl) —F(x,a¢)| < 5 + 5 =,
icL
and the sections F,,, x € I, are absolutely equicontinuous. The proof that the
sections FY, y € I, are absolutely equicontinuous is analogous. O

3 Other Results.

It is well known that if the sections F, and FY, x,y € R, of a function
F :R? — R are polynomials of degree < n, then F is a polynomial of degree
< n. By the Baire category method we can show that if the sections F, and
FY z,y € R, are polynomials, then F' is also a polynomial. In this section we
will solve some analogous problems concerning the differentiability of functions
of two variables.

Let = {fo, f1,---,[n,...} be a family of differentiable real functions
defined on R such that for every integer n > 0 and for each collection of
different points yq, ...,y € R we have

det[fi(y;)]lo<ij<n # 0.

Furthermore, for n = 0,1, ..., let
Wi(F)={g9= Z ai fr; ao, - - ., an € R}
0<k<n
and suppose that there is a finite collection of points yo, ..., yx(n) Which is a

determining set for the family W, (F); i.e., for each pair of functions g1, g» €
Wi (F), if g1(y;) = go(y;) for i = 0,...,k(n), then g1(y) = g2(y) for y € R.
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Remark 1. Two important examples of such families F are the following.

faly) =y"n>0, yeR
and
fon(y) = cos2ny, fopqi1(y) =sin(2n+1)y, n>0, yeR.

We shall say that F : R? — R has locally differentiable sections FY if for
each (20, 10) € R? there is an 1 > 0 such that the family {F¥;y € (yo —n, yo +
1)} is equidifferentiable at xg.

Theorem 5. Let F : R? — R be a function with locally equidifferentiable
sections FY, y € R. If all sections F,, v € R are in W(F) = ;50 Wn(F),
then for every nonempty perfect set A C R there is an open interval I such
that INA # 0 and F is differentiable (as the function of two variables) at
each point of the set (ANT) x R.

PROOF. Let A C R be a nonempty perfect set. For each integer n > 0 let
A, ={x e A;F, e W, (F)}.

Since A = |J,;»¢ An and since the set A is a complete space, by the Baire
category theorem we obtain that there is an integer ¢ > 0 such that the set A;
is of the second category in A. So there is an open interval I such that TNA # ()
and INA; is dense in TN A. There is a finite determining set {yo, y1, . . . ,yk(i)}
for the family W;(F). We can obviously assume that k(i) > i. Observe that
for each point = the system of equations

> fai)he(@) = F(z,y;), 0<j < ki),

0<n<k(3)
is a Cramer’s system and it has unique solution {ho(z),...,hyy)(z)}. Since
the functions « — F(z,y;), j=0,1,...,k(i), are differentiable, the functions
x = hp(z) for n =0,1,...,k(4), are also differentiable.

For (z,y) € R? let G(z,y) = 20<n<k() () fa(y). Fix a point € A;
and observe that we have G, F, € Wy (F) and G(x,y,) = F(z,y,) for
n=0,1,...,k(7). Since {y,;0 <n < k(i)} is a determining set for the family
W) (F), the equality F(z,y) = G(z,y) holds for all points (z,y) € 4; x R.
But since the sections F¥ and GY, y € R, are differentiable (and hence contin-
uous) and the set A; is dense in TN A, the equality F(z,y) = G(x,y) holds for
all points (z,y) € (INA) x R. Let H(x,y) = F(x,y) — G(x,y), (z,y) € R%
Clearly H(xz,y) =0, (z,y) € (ANI) xR, and all sections HY, y € R, are
differentiable. So, for each point (z,y) € (ANI) x R we have

oOH OH
%(x’y) = afy(l“,y) =0.
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Since G obviously has locally equidifferentiable sections GY, the function H
has that property too. Now the differentiability of H at (z,y) € (ANI) xR
follows immediately by Theorem 1.

Since the function G is differentiable at each point (z,y) € R? and F =
G + H, the function F is differentiable at each point (z,y) € (ANI)xR. O

For a function F : R? — R let S(F) denote the set of points (,y) at which
F is not differentiable.

Remark 2. Let F' be the function from Theorem 3. If there is an integer
n >0 such that F, € Wy (F), z € R, then S(F) =0

PrOOF. We can repeat the proof of Theorem 3 taking A = I = R. O

Corollary 1. If a function F : R? — R satisfies the hypothesis of Theorem
3, then the projection Pr(S(F)) = {z € R;3y(x,y) € S(F)} of the set S(F)
is a countable set such that the closure of each nonempty subset of Pr(S(F))
contains an isolated point.

PrOOF.  If there is a nonempty set A C PrS(F)) such that the closure
cl(4) is a perfect set, then by Theorem 3 there is an open interval I such that
INcl(A) # 0 and (INcl(A)) x R c R?\ S(F). So, we obtain a contradiction
with ANT #OANACPr(S(F)). If Pr(S(F)) is not countable, then there is a
nonempty set A C Pr(S(F')) such that cl(A) is a perfect set. O

In the next example we will show that there are functions F' satisfying the
hypothesis of Theorem 3 for which the set D(F) of discontinuity points of F
is not countable.

Example 4. Let C' C [0, 1] be the ternary Cantor set and let {I,, = (an,by,);n >
1} be an enumeration of all components of the set [0, 1]\ C such that I,,NI,, = 0
for n # m and n,m > 1. For each integer n > 1 we find squares

Kn,m = [an,mv bn,m] X [Cn,m»dn,mL m < n,
such that

b [am,mubm,ml] N [anz,mgvbng,mz] )

=0
® [Cnymys @y my] N [Cngmas Ang.my] = 0, for (n1,m1) # (n2, ma) satisfying

ny,mi,n2,ms > 17
4 [Cn,m;dn,m] C Im, m S n, n Z 1,

o VYV, limy, o0 Cpym = am and
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® Vi Vim<n0 < Gnym < bpm < L.
For n > 1 and m < n let (Zy,m,Yn,m) be the center of the square K, ,,, let
0 if y € (=00, cnm] U [dn,m,0)

fn,m(y) =491 if ¥y = Yn,m
linear  on [Cn.m, Yn,m) A [Yn,ms Dn,m),

and let

ON (@15 Uy

0 on (7003 an,m] U [bn,ma OO)

[br,m —Gn,m

4(min(\a:—an,mHlﬂ—bn,m‘))2
gn,m(x) =

By the well known Weierstrass theorem, for m < n and n > 1 there is a
polynomial hy ., such that Vyepon)|fro,m(¥) — hnm(y)| < 4%. For (z,y) € R?
define

F(J? ) o gn,m(x)hn,m(y) for x € [an,ma bn,m], n Z ]-7 m S n
= 0 for € R\ U,>1 m<nl@n,m: bnm]-

Clearly, the sections F, © € R, are polynomials and the sections FY, y € R,
are differentiable. Since F(0,y) =0, y € R, and

1
F(xn,mayn,m> >1- n n>1 m<n,

the function F' is not continuous at each point (0,y) where y € C.
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