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ON DIFFERENTIABILITY OF FUNCTIONS
OF TWO VARIABLES

Abstract

Some special conditions (equidifferentiability or absolute equiconti-
nuity) implying (or not) the differentiability of functions of two variables
are considered.

1 Equidifferentiability

Let R be the set of all reals. We denote by |x| the absolute value of x ∈ R, by
|(y, z)| the Euclidean norm of (y, z) ∈ R2, and by |I| the length of the interval
I ⊂ R. Let

A = {fs : R→ R; s ∈ S},
where S denotes a set of indexes. We say that the functions of the family A
are equidifferentiable at a point x ∈ R if they are differentiable at x and for
every positive real η there is a positive real δ such that for each function f ∈ A
and for all points t such that 0 < |t− x| < δ the inequality∣∣∣∣f(t)− f(x)

x− t
− f ′(x)

∣∣∣∣ < η.

holds. Now, let F : R2 → R be a function of two variables. It is well known
that the differentiability of all sections Fx(t) = F (x, t) and all sections F y(t) =
F (t, y), x, y, t ∈ R, need not imply the differentiability of F .

Theorem 1. Let a function F : R2 → R be given and let (x, y) ∈ R2 be a
point such that the section Fx is differentiable at y and there is a positive real
r such that the sections F v, v ∈ (y − r, y + r), are equidifferentiable at x. If

(1), lim
v→y

∂F

∂x
(x, v) =

∂F

∂x
(x, y)

then the function F is differentiable at the point (x, y).
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Proof. Let a(v) = ∂F
∂x (x, v), v ∈ (y−r, y+r) and b = ∂F

∂y (x, y). Fix a positive

real η. Since the sections F v, v ∈ (y − r, y + r), are equidifferentiable at the
point x, there is a positive real δ1 such that for each point u ∈ (x− δ1, x+ δ1)
and for each v ∈ (y − r, y + r) we have

(2).

∣∣∣∣F (u, v)− F (x, v)

u− x
− a(v)

∣∣∣∣ < η

2

By (1) and by the differentiability of the section Fx at y there is a positive
real δ2 < r such that for each point v ∈ (y − δ2, y + δ2) the inequalities

(3)

∣∣∣∣F (x, v)− F (x, y)

v − y
− b
∣∣∣∣ < η

4

and

(4) |a(v)− a(y)| < η

4

are valid. Let

δ = min(δ1, δ2), I = (x− δ, x+ δ)× (y − δ, y + δ).

Fix a point (u, v) ∈ I. Then, by (2), (3) and (4) we obtain∣∣∣∣F (u, v)− F (x, y)− a(y)(u− x)− b(v − y)

|(u, v)− (x, y)|

∣∣∣∣ ≤∣∣∣∣F (u, v)− F (x, v)

u− x
− a(v)

∣∣∣∣+ |a(v)− a(y)|+∣∣∣∣F (x, v)− F (x, y)

v − y
− b
∣∣∣∣ < η

2
+
η

4
+
η

4
= η.

So,

lim
(u,v)→(x,y)

F (u, v)− F (x, y)− a(x)(u− x)− b(v − y)

|(u, v)− (x, y)|
= 0,

and F is differentiable at (x, y).

Observe that the function

F (x, y) =

{ xy
x2+y2 for (x, y) 6= (0, 0)

0 for (x, y) = 0, 0)

satisfies the condition (1) for (x, y) = (0, 0), but it is not differentiable at
the point (0, 0). So, for each r > 0 the sections F v, v ∈ (−r, r), are not
equidifferentiable at 0. The next example shows that the condition (1) in
Theorem 1 is essential.
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Example 1. For n = 1, 2, . . . let In = [ 1n −
1

4n2 ,
1
n + 1

4n2 ] = [an, bn], and

fn(y) =


0 if y = an or y = bn
1 if y = an+bn

2 = cn
linear on [an, cn], [cn, bn].

We let

f(y) =

{
fn(y) for y ∈ In, n = 1, 2, . . .

0 on R \
⋃
n In

and F (x, y) = xf(y) for (x, y) ∈ R2. Then F is continuous on R2 \ {(x, 0);x 6=
0}, the section F0 is everywhere differentiable and the sections F y, y ∈ R, are
equidifferentiable at 0. Now we will show that F is not differentiable at the

point (0, 0). Observe that F (0, 0) = 0, F ( 1
n ,

1
n ) = 1

n for n ≥ 1, |( 1
n ,

1
n )| =

√
2
n

for n ≥ 1 and ∂F
∂x (0, 0) = ∂F

∂y (0, 0) = 0. So, for n ≥ 1 we obtain

F ( 1
n ,

1
n )− F (0, 0)

|( 1
n ,

1
n )|

=
1√
2
,

and consequently the function F is not differentiable at the point (0, 0).

Theorem 2. Let F : R2 → R be a function such that all sections F v, v ∈ R,
are continuous and the section Fx is differentiable at a point y. Suppose that
there is a positive real r and a linear set A ⊂ (y−r, y+r) dense in the interval
(y − r, y + r) such the the sections F y, y ∈ A, are equidifferentiable at x and

lim
v→y
v∈A

∂F

∂x
(x, v) =

∂F

∂x
(x, y).

Then F is differentiable at the point (x, y).

Proof. Same as in the proof of Theorem 1 we can show that

lim
u→x,v→y
v∈A

F (u, v)− F (x, y)− a(y)(u− x)− b(v − y)

|(u, v)− (x, y)|
= 0,

where a(y) and b are the same as these in the proof of Theorem 1. By the
continuity of the sections Fx, x ∈ R, we obtain that the above limit is also
equal to 0 if (u, v)→ (x, y), so the function F is differentiable at (x, y).

Theorem 3. Let F : R2 → R be a function such that the section Fx is
differentiable at a point y. Suppose that there is a positive real r such that the
partial derivative ∂F

∂x is continuous on the open circle K((x, y), r). Then F is
differentiable at the point (x, y).
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Proof. It suffices to prove that F satisfies the hypothesis of Theorem
1. Condition (1) follows from the continuity of partial derivative ∂F

∂x at (x, y).

The existence and the boundedness of the partial derivative ∂F
∂x on some neigh-

borhood V ⊂ K((x, y), r) implies, by the LaGrange theorem, the equidiffer-
entiability of the sections F v, v ∈ Vx = {t : (x, t) ∈ V } at the point x.

2 Absolute Equicontinuity

Now, let B be a family of functions fs : I → R, s ∈ S and I = [0, 1]. We say
that the functions of the family B are absolutely equicontinuous if for every
positive real η there is a positive real δ such that for each index s ∈ S and for
each family {Ii = [ai, bi]; i ≤ k} of closed subintervals of I with int Ii∩intIj = ∅
for i 6= j, i, j ≤ k, (int Ii denotes the interior of Ii) and

∑
i≤k(bi − ai) < δ the

inequality
∑
i≤k |fs(bi)− fs(ai)| < η holds.

Theorem 4. Let F : I2 → R be a function such that the sections Fx, x ∈
I, are absolutely equicontinuous and the sections F y, y ∈ I, are absolutely
equicontinuous. Then F has the following property.

(P) For each positive real η there is a positive real δ such that for every family
of closed intervals I1, . . . , Ik; J1, . . . , Jk ⊂ I such that

(5) int Ii ∩ int Ij = ∅,∧ int Ji ∩ int Jj = ∅, i 6= j, i, j ≤ k,

and

(6)
∑
i≤k;

(|Ii|+ |Ji|) < δ

the inequality
∑
i≤k diam(F (Ii × Ji)) < η holds (diam(X) denotes the

diameter of the set X).

Proof. Since the sections Fx, x ∈ I, and F y, y ∈ I, are equicontinuous, the
function F is continuous. Fix a positive real η. There is a positive real δ such
that for every point (x, y) ∈ I2 and for each family of closed intervals

K1,K2, . . . ,Kl ⊂ I

with intKi ∩ intKj = ∅ for i 6= j i, j ≤ l, and
∑
i≤l |Ki| < δ the inequalities∑

i≤l

diam(Fx(Ki)) <
η

2
and

∑
i≤l

diam(F y(Ki)) <
η

2
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hold.
Let I1, . . . , Ik; J1, . . . , Jk ⊂ I be closed intervals satisfying conditions (5)

and (6). Let

F (ai, bi) = max
(x,y)∈Ii×Ji

F (x, y),∧F (ci, di) = min
(x,y)∈Ii×Ji

F (x, y), for i ≤ k.

Then ∣∣∑
i≤k

diam(F (Ii × Ji))
∣∣ =

∑
i≤k

(F (ai, bi)− F (ci, di)) ≤∑
i≤k

|F (ai, bi)− F (ci, bi)|+
∑
i≤k

|F (ci, bi)− F (ci, di)| <
η

2
+
η

2
= η,

and the proof is completed.

Example 2. For n = 1, 2, . . . let In
[
1
n −

1
4n2

]
= [an, bn], Jn =

[
− 1
n ,

1
n

]
=

[cn, dn] and

fn(y) =


0 if y = an or y = bn

1 if y = an+bn
2 = cn

linear on [an, cn], [cn, bn].

We let

f(y) =

{
fn(y) for y ∈ In, n = 1, 2, . . .

0 on R \ ∪nIn

and

F (x, y) =


0 = xf(y) if y ∈ R \ ∪nIn
xf(y) if (x, y) ∈ Jn × In, n = 1, 2, . . .

enf(y) if x ≤ en ∧ y ∈ In, n = 1, 2, . . .

dnf(y) if x ≥ dn ∧ y ∈ In, n = 1, 2, . . . .

Put

G(x, y) =


F (x, y) if y ≥ 0, x ≤ −2y
F (x, y) if y ≥ 0, x ≥ 2y

0 if y < 0

F (−y, y) + F (y,y)−F (−y,y)
x+y if y > 0, x ∈ (−y, y).

Observe that the restricted function g = G|I2 does not satisfy condition (P),
but the sections gy, y ∈ I, are absolutely equicontinuous on I and the sections
gx, x ∈ I, are absolutely continuous.
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The next example shows that there is a function F : I2 → R having
absolutely equicontinuous sections Fx and F y, x, y ∈ I, such that the set of
points where F is not differentiable is of positive measure.

Example 3. Let C ⊂ I be a Cantor set of positive measure and let A = C×C.
Since the set A is compact and the set C is nowhere dense, for each positive
integer n there are points (xn,i, yn,i) ⊂ (I \ C)2 for i ≤ k(n), such that

0 < dist((xn,j , yn,j), A) = inf{|(xn,j , yn,j)− (x, y)|; (x, y) ∈ A}
< min{dist(xn−1,i, yn−1,i), A); i ≤ k(n− 1)}, j ≤ k(n) for n > 1,

xn1,i1 6= xn1,i2 ∧ yn1,i1 6= yn1,i1

for (n1, i1) 6= (n2, i2), n1, n2 = 1, 2, . . ., ij ≤ k(nj), j = 1, 2, and

∀(x,y)∈A∀n∃i≤k(n)|(x, y)− (xn,i, yn,i)| <
1

n2
.

For each pair (n, i), n ≥ 1, i ≤ k(n), we can find a positive real rn,i such that

[xn1,i1 − r(n1, i1), xn1,i1 + r(n1, i1)] ∩ [xn2,i2 − r(n2, i2), xn2,i2 + r(n2, i2)] = ∅

and

[yn1,i1 − r(n1, i1), yn1,i1 + r(n1, i1)] ∩ [yn2,i2 − r(n2, i2), yn2,i2 + r(n2, i2)] = ∅

for (n1, i1) 6= (n2, i2), n1, n2 ≥ 1, ij ≤ knj , j = 1, 2. Let Kn,i be the circle
with center (xn,i, yn,i) and radius r(n, i), let Sn,i be the boundary of the circle
Kn,i and let Fn,i : Kn,i → [0, 1

n2 ], n ≥ 1, i ≤ k(n), be the continuous function
defined by

Fn,i(x, y) =
dist((x, y), Sn,i)

n2r(n, i)
.

Let

F (x, y) =

{
Fn,i(x, y) for (x, y) ∈ Kn,i, n ≥ 1, i ≤ k(n),

0 on I2 \
⋃
n,iKn,i.

For each point (x, y) ∈ A and for each positive integer n there is a point
(xn,i, yn,i) with |(xn,i, yn,i) − (x, y)| < 1

n2 . Clearly, ∂F
∂x (x, y) = ∂F

∂y (x, y) = 0.
So, ∣∣∣∣F (xn,i, yn,i)− F (x, y)

|(xn,i, yn,i)− (x, y)|

∣∣∣∣ ≥ 1
n2

1
n2

= 1,

and thus F is not differentiable at (x, y).
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Now we will show that the sections Fx, x ∈ I, are absolutely equicontinu-
ous. Fix a positive real η. There is an positive integer k with

∑
n>k

1
n2 <

η
2 .

Let δ be a positive real such that

δ <
η

2 maxn≤k;i≤k(n)(
1

r(n,i)n2 )
.

Suppose that closed intervals {Ii = [ai, bi]; i ≤ j} satisfy the following condi-
tions:

int(Ii) ∩ int(Im) = ∅ for i 6= m and i,m ≤ j,
and

∑
i≤j |Ii| < δ. Fix a point x ∈ I and denote by K the set of all positive

integers l ≤ j for which there is a pair (n, i) with n ≤ k such that Ii∩(Kn,i)x 6=
∅ and by L the set {1, . . . , j} \K. Then∑

i≤j

|F (x, bi)− F (x, ai)| =
∑
i∈K
|F (x, bi)− F (x, ai)|+

∑
i∈L
|F (x, bi)− F (x, ai)| <

η

2
+
η

2
= η,

and the sections Fx, x ∈ I, are absolutely equicontinuous. The proof that the
sections F y, y ∈ I, are absolutely equicontinuous is analogous.

3 Other Results.

It is well known that if the sections Fx and F y, x, y ∈ R, of a function
F : R2 → R are polynomials of degree ≤ n, then F is a polynomial of degree
≤ n. By the Baire category method we can show that if the sections Fx and
F y, x, y ∈ R, are polynomials, then F is also a polynomial. In this section we
will solve some analogous problems concerning the differentiability of functions
of two variables.

Let F = {f0, f1, . . . , fn, . . .} be a family of differentiable real functions
defined on R such that for every integer n ≥ 0 and for each collection of
different points y0, . . . , yn ∈ R we have

det[fi(yj)]0≤i,j≤n 6= 0.

Furthermore, for n = 0, 1, . . ., let

Wn(F) = {g =
∑

0≤k≤n

akfk; a0, . . . , an ∈ R}

and suppose that there is a finite collection of points y0, . . . , yk(n) which is a
determining set for the family Wn(F); i.e., for each pair of functions g1, g2 ∈
Wn(F), if g1(yi) = g2(yi) for i = 0, . . . , k(n), then g1(y) = g2(y) for y ∈ R.
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Remark 1. Two important examples of such families F are the following.

fn(y) = yn;n ≥ 0, y ∈ R

and
f2n(y) = cos 2ny, f2n+1(y) = sin (2n+ 1)y, n ≥ 0, y ∈ R.

We shall say that F : R2 → R has locally differentiable sections F y if for
each (x0, y0) ∈ R2 there is an η > 0 such that the family {F y; y ∈ (y0−η, y0 +
η)} is equidifferentiable at x0.

Theorem 5. Let F : R2 → R be a function with locally equidifferentiable
sections F y, y ∈ R. If all sections Fx, x ∈ R are in W(F) =

⋃
n≥0Wn(F),

then for every nonempty perfect set A ⊂ R there is an open interval I such
that I ∩ A 6= ∅ and F is differentiable (as the function of two variables) at
each point of the set (A ∩ I)× R.

Proof. Let A ⊂ R be a nonempty perfect set. For each integer n ≥ 0 let

An = {x ∈ A;Fx ∈ Wn(F)}.

Since A =
⋃
n≥0An and since the set A is a complete space, by the Baire

category theorem we obtain that there is an integer i ≥ 0 such that the set Ai
is of the second category in A. So there is an open interval I such that I∩A 6= ∅
and I∩Ai is dense in I∩A. There is a finite determining set {y0, y1, . . . , yk(i)}
for the family Wi(F). We can obviously assume that k(i) ≥ i. Observe that
for each point x the system of equations∑

0≤n≤k(i)

fn(yj)hn(x) = F (x, yj), 0 ≤ j ≤ k(i),

is a Cramer’s system and it has unique solution {h0(x), . . . , hk(i)(x)}. Since
the functions x→ F (x, yj), j = 0, 1, . . . , k(i), are differentiable, the functions
x→ hn(x) for n = 0, 1, . . . , k(i), are also differentiable.

For (x, y) ∈ R2 let G(x, y) =
∑

0≤n≤k(i) hn(x)fn(y). Fix a point x ∈ Ai
and observe that we have Gx, Fx ∈ Wk(i)(F) and G(x, yn) = F (x, yn) for
n = 0, 1, . . . , k(i). Since {yn; 0 ≤ n ≤ k(i)} is a determining set for the family
Wk(i)(F), the equality F (x, y) = G(x, y) holds for all points (x, y) ∈ Ai × R.
But since the sections F y and Gy, y ∈ R, are differentiable (and hence contin-
uous) and the set Ai is dense in I ∩A, the equality F (x, y) = G(x, y) holds for
all points (x, y) ∈ (I ∩ A) × R. Let H(x, y) = F (x, y) −G(x, y), (x, y) ∈ R2.
Clearly H(x, y) = 0, (x, y) ∈ (A ∩ I) × R, and all sections Hy, y ∈ R, are
differentiable. So, for each point (x, y) ∈ (A ∩ I)× R we have

∂H

∂x
(x, y) =

∂H

∂y
(x, y) = 0.
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Since G obviously has locally equidifferentiable sections Gy, the function H
has that property too. Now the differentiability of H at (x, y) ∈ (A ∩ I) × R
follows immediately by Theorem 1.

Since the function G is differentiable at each point (x, y) ∈ R2 and F =
G+H, the function F is differentiable at each point (x, y) ∈ (A∩ I)×R.

For a function F : R2 → R let S(F ) denote the set of points (x, y) at which
F is not differentiable.

Remark 2. Let F be the function from Theorem 3. If there is an integer
n ≥ 0 such that Fx ∈ Wn(F), x ∈ R, then S(F ) = ∅

Proof. We can repeat the proof of Theorem 3 taking A = I = R.

Corollary 1. If a function F : R2 → R satisfies the hypothesis of Theorem
3, then the projection Pr(S(F )) = {x ∈ R;∃y(x, y) ∈ S(F )} of the set S(F )
is a countable set such that the closure of each nonempty subset of Pr(S(F ))
contains an isolated point.

Proof. If there is a nonempty set A ⊂ PrS(F )) such that the closure
cl(A) is a perfect set, then by Theorem 3 there is an open interval I such that
I ∩ cl(A) 6= ∅ and (I ∩ cl(A))× R ⊂ R2 \ S(F ). So, we obtain a contradiction
with A ∩ I 6= ∅ ∧A ⊂ Pr(S(F )). If Pr(S(F )) is not countable, then there is a
nonempty set A ⊂ Pr(S(F )) such that cl(A) is a perfect set.

In the next example we will show that there are functions F satisfying the
hypothesis of Theorem 3 for which the set D(F ) of discontinuity points of F
is not countable.

Example 4. Let C ⊂ [0, 1] be the ternary Cantor set and let {In = (an, bn);n ≥
1} be an enumeration of all components of the set [0, 1]\C such that In∩Im = ∅
for n 6= m and n,m ≥ 1. For each integer n ≥ 1 we find squares

Kn,m = [an,m, bn,m]× [cn,m, dn,m], m ≤ n,

such that

• [an1,m1 , bn1,m1 ] ∩ [an2,m2 , bn2,m2 ] = ∅,

• [cn1,m1
, dn1,m1

] ∩ [cn2,m2
, dn2,m2

] = ∅, for (n1,m1) 6= (n2,m2) satisfying
n1,m1, n2,m2 ≥ 1,

• [cn,m, dn,m] ⊂ Im, m ≤ n, n ≥ 1,

• ∀m limn→∞ cn,m = am and
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• ∀n∀m≤n0 < an,m < bn,m < 1
n .

For n ≥ 1 and m ≤ n let (xn,m, yn,m) be the center of the square Kn,m, let

fn,m(y) =


0 if y ∈ (−∞, cn,m] ∪ [dn,m,∞)

1 if y = yn,m

linear on [cn,m, yn,m] ∧ [yn,m, dn,m],

and let

gn,m(x) =

{
4(min(|x−an,m|,|x−bn,m|))2

|bn,m−an,m|2 on [an,m, bn,m]

0 on (−∞, an,m] ∪ [bn,m,∞).

By the well known Weierstrass theorem, for m ≤ n and n ≥ 1 there is a
polynomial hn,m such that ∀y∈[0,n]|fn,m(y) − hn,m(y)| < 1

4n . For (x, y) ∈ R2

define

F (x, y) =

{
gn,m(x)hn,m(y) for x ∈ [an,m, bn,m], n ≥ 1, m ≤ n
0 for x ∈ R \

⋃
n≥1,m≤n[an,m, bn,m].

Clearly, the sections Fx, x ∈ R, are polynomials and the sections F y, y ∈ R,
are differentiable. Since F (0, y) = 0, y ∈ R, and

F (xn,m, yn,m) > 1− 1

4n
, n ≥ 1, m ≤ n,

the function F is not continuous at each point (0, y) where y ∈ C.
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