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ON RIEMANN SUMS

Abstract

If a sum of the form

n∑
i=1

f(ξi)(xi − xi−1)

is used without the familiar requirement that the sequence of points a =
x0, x1, . . . , xn = b is increasing, do we still get a useful approximation
to the integral? With a suitable set of hypotheses the answer is yes.
We give applications to change of variable formulas and the problem of
characterizing derivatives.

1 A theorem of H. E. Robbins

In discussions of an integral ∫ b

a

f(x) dx

(in a variety of different senses) one often employs Riemann sums

n∑
i=1

f(ξi)(xi − xi−1).

If one drops the usual requirement that the sequence of points

a = x0, x1, x2, . . . , xn = b
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must be chosen to be increasing, but places instead an upper bound on the
variation of the sequence, then the resulting sums can still be used in a familiar
manner.

This is probably well-known and likely can be found even in early literature.
The only reference I was able to find is a note of Robbins [7] in a 1943 issue
of the Monthly. Robbins1 assumes the function f is continuous and gives
an unnecessarily awkward proof. We reproduce his theorem here with a more
natural proof that would be accessible to beginning students of integration
theory.

Theorem 1 (Robbins). Let f : [c, d]→ R be a continuous function and let a,
b ∈ [c, d], ε > 0, and C > 0 be given. Then there exists a positive number δ
with the property that∣∣∣∣∣

∫ b

a

f(x) dx−
n∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε

for any choice of points x0, x1, . . . , xn and ξ1, ξ2, . . . , ξn from [c, d] with these
four properties:

1. a = x0 and b = xn.

2. 0 < |xi − xi−1| < δ for all i = 1, 2, . . . , n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i = 1, 2, . . . , n.

4.
∑n
i=1 |xi − xi−1| ≤ C.

Proof. Take δ sufficiently small that

|f(x)− f(y)| < ε/C

whenever x and y are points of [c, d] for which |y − x| < δ. Write

F (x) =

∫ x

c

f(t) dt (c ≤ x ≤ d)

and observe that, if c ≤ x ≤ ξ ≤ y ≤ d and 0 < y − x < δ, then∣∣∣∣F (y)− F (x)

y − x
− f(ξ)

∣∣∣∣ =

∣∣∣∣ 1

y − x

∫ y

x

f(t) dt− f(ξ)

∣∣∣∣
1Herbert E. Robbins (1915-2001) had a long and distinguished career as a mathematical

statistician. He started as a pure mathematician, obtaining a Harvard PhD in 1938 under
Hassler Whitney, and then turned to statistics during the war while he was in the Navy.
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=

∣∣∣∣ 1

y − x

∫ y

x

[f(t)− f(ξ)] dt

∣∣∣∣ < ε

C

so that
|F (y)− F (x)− f(ξ)(y − x)| < ε

C
(y − x).

Then, for any choice of points x0, x1, . . . , xn and ξ1, ξ2, . . . , ξn from [c, d]
with the four properties in the statement of the theorem,

∣∣∣∣∣
∫ b

a

f(x) dx−
n∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ =

∣∣∣∣∣F (b)− F (a)−
n∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

[F (xi)− F (xi−1)− f(ξi)(xi − xi−1)]

∣∣∣∣∣
≤

n∑
i=1

|F (xi)− F (xi−1)− f(ξi)(xi − xi−1)| < ε

C

n∑
i=1

|xi − xi−1| ≤ ε.

By the same methods one can prove a similar result that uses an infinite
sequence of points {xn}. The conclusion would be∣∣∣∣∣

∫ b

a

f(x) dx−
∞∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε

and the assumptions would include

a = x0, b = lim
n→∞

xn, and

∞∑
i=1

|xi − xi−1| ≤ C.

This is not likely, however, to be of any great interest.

2 A pointwise version of Robbins’s theorem

The theorem of Robbins is true for all derivatives, not just continuous ones,
if one uses a familiar refined version of closeness for the points. For our
second closely-related theorem the integral must exist at least in the Henstock-
Kurzweil sense (although it is possible for F ′ here to be integrable also in a
narrower sense). Note that it is equally elementary as Robbins’s uniform
version with an equally trivial proof.
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Theorem 2. Let F : [c, d]→ R be a differentiable function and let a, b ∈ [c, d],
ε > 0, and C > 0 be given. Then there is a positive function δ : [c, d] → R+

with the property that∣∣∣∣∣
∫ b

a

F ′(x) dx−
n∑
i=1

F ′(ξi)(xi − xi−1)

∣∣∣∣∣ < ε

for any choice of points x0, x1, . . . , xn and ξ1, ξ2, . . . , ξn from [c, d] with these
four properties:

1. a = x0 and b = xn.

2. 0 < |xi − xi−1| < δ(ξi) for all i = 1, 2, . . . , n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i = 1, 2, . . . , n.

4.
∑n
i=1 |xi − xi−1| ≤ C.

Proof. Note that the integral∫ b

a

F ′(x) dx = F (b)− F (a)

exists in the sense of the Henstock-Kurzweil integral, although it may also be
integrable in the Riemann sense, the improper Riemann sense or the Lebesgue
sense. For each point ξ in [c, d] take δ(ξ) sufficiently small that∣∣∣∣F (y)− F (x)

y − x
− F ′(ξ)

∣∣∣∣ < ε

C

whenever x and y are points in [c, d] for which x ≤ ξ ≤ y and 0 < y−x < δ(ξ).
This gives us

|F (y)− F (x)− F ′(ξ)(y − x)| < ε

C
(y − x).

Then, for any choice of points x0, x1, . . . , xn and ξ1, ξ2, . . . , ξn from [c, d]
with the four properties of the statement of the theorem,∣∣∣∣∣

∫ b

a

F ′(x) dx−
n∑
i=1

F ′(ξi)(xi − xi−1)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

[F (xi)− F (xi−1)− F ′(ξi)(xi − xi−1)]

∣∣∣∣∣
≤

n∑
i=1

|F (xi)− F (xi−1)− F ′(ξi)(xi − xi−1)| < ε

C

n∑
i=1

|xi − xi−1| ≤ ε.
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3 Converses

We now show that these two statements have converses. Our first theorem
(the converse of Robbin’s theorem) shows that the assumption of continuity
in the theorem is essential. Thus continuity can be characterized as a kind
of strong integrability requirement, a super-Riemann integrability as we might
perhaps express it.

Theorem 3. A function f : [a, b]→ R is continuous if and only if it has the
following strong Riemann integrability property: there is a number I so that,
for any choice of numbers ε > 0 and C > 0, there exists a positive number δ
such that ∣∣∣∣∣I −

n∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε

for any choice of points x0, x1, . . . , xn and ξ1, ξ2, . . . , ξn from [a, b] fulfilling
these conditions:

1. a = x0 and b = xn.

2. 0 < |xi − xi−1| < δ for all i = 1, 2, . . . , n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i = 1, 2, . . . , n.

4.
∑n
i=1 |xi − xi−1| ≤ C.

Proof. Robbin’s theorem shows that every continuous function does have
this stronger version of the Riemann integrability property. Let us then sup-
pose that f is a function possessing this property. Note first that such a
function f with these properties would have to be Riemann integrable and
that the number I in the statement would necessarily be

I =

∫ b

a

f(x) dx.

Suppose that there is a point z of discontinuity of f in the interval. Then there
must be a positive number η > 0 so that any interval [z, z+ t] (or any interval
[z − t, z]) has points z1 and z2 for which f(z1)− f(z2) > η. We suppose it is
the former case and from this we will obtain a contradiction to the statement
in the theorem.

We give the details assuming this and that a < z < b. Now we apply
the strong Riemann integrability property, using ε < η/4 and C = b − a + 4,
to obtain a choice of δ that meets the conditions of the theorem. Choose a
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number 0 < t < 1 smaller than δ and so that z + t < b. Let r be the least
integer so that rt > 1. Note that, consequently,

1 < rt = (r − 1)t+ t ≤ 1 + t < 2.

Using these values of t and r, we construct a sequence that takes advantage
of our assumption about the point z, i.e., the assumption that the function f
is discontinuous on the right at z. Begin by choosing points c1, c2 from the
interval [z, z + t] so that

f(c1)− f(c2) > η.

Then write

u0 = z, u1 = z + t, u2 = z, u3 = z + t, . . . , u2r = z

and υ2i−1 = c1 and υ2i = c2 for each i. Note that

2r∑
i=1

|ui − ui−1| = 2rt < 4

and
2r∑
i=1

f(υi)(ui − ui−1) =

r∑
i=1

[f(c1)− f(c2)]t > ηrt > η.

Now construct a sequence

a = z0 < z1 < . . . zp = z

along with associated points ζi so that 0 < zi − zi−1 < δ and so that∣∣∣∣∣
∫ z

a

f(x) dx−
p∑
i=1

f(ζi)(zi − zi−1)

∣∣∣∣∣ < η/4.

We also need a sequence

z = w0 < w1 < . . . wq = b

along with associated points ωi so that 0 < wi − wi−1 < δ and so that∣∣∣∣∣
∫ b

z

f(x) dx−
q∑
i=1

f(ωi)(wi − wi−1)

∣∣∣∣∣ < η/4.

Both of these just use the Riemann integrability of f .
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We put these three sequences together in this way

a = z0 < z1 < · · · < zp = z = u0, u1, . . . , u2r = z = w0 < w1 < . . . wq = b

to form a new sequence a = x0, x1, . . . , xN = b for which |xi − xi−1| < δ and
for which

N∑
i=1

|xi − xi−1| = (z − a) + 2rt+ (b− z) = b− a+ 2rt < b− a+ 4 = C.

We use ξi in each case as the appropriate intermediate point used earlier: thus
associated with an interval [zi−1, zi] we had used ζi; associated with an interval
[wi−1, wi] we had used ωi; while associated with a pair (ui−1, ui) we had used
c1 or c2 depending on whether the interval goes forward or backwards.

Consider the sum
N∑
i=1

f(xi)(xi − xi−1)

taken over the entire sequence thus constructed. Because the points satisfy
the conditions of the theorem for the δ selected we must have∣∣∣∣∣

∫ b

a

f(x) dx−
N∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε < η/4.

On the other hand[∫ z

a

f(x) dx+

∫ b

z

f(x) dx−
N∑
i=1

f(ξi)(xi − xi−1)

]

=

[∫ z

a

f(x) dx−
p∑
i=1

f(ζi)(zi − zi−1)

]

+

[∫ b

z

f(x) dx−
q∑
i=1

f(ωi)(wi − wi−1)

]

+

[
r∑
i=1

f(υi)(ui − ui−1)

]
.

From this we deduce that

r∑
i=1

f(υi)(ui − ui−1) < 3η/4.
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and yet we recall that

r∑
i=1

f(υi)(ui − ui−1) > ηrt > η.

This contradiction completes the proof.

Our second theorem (the converse of Theorem 2) shows that the assump-
tion that f is an exact derivative in the theorem is essential. A single point
where this fails would not be allowed. In fact then the property of being
an exact derivative can be characterized as a kind of strong integrability re-
quirement, a super-Henstock-Kurzweil integrability as we would be inclined to
express it.

Theorem 4. A function f : [a, b] → R is an exact derivative if and only
if it has the following strong integrability property: there is a number I so
that, for any choice of ε > 0 and C > 0, there must exist a positive function
δ : [a, b]→ R+ with the property that∣∣∣∣∣ I −

n∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε

for any choice of points x0, x1, . . . , xn and ξ1, ξ2, . . . , ξn from [c, d] with these
four properties:

1. a = x0 and b = xn.

2. 0 < |xi − xi−1| < δ(ξi) for all i = 1, 2, . . . , n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i = 1, 2, . . . , n.

4.
∑n
i=1 |xi − xi−1| ≤ C.

Proof. The proof is structured so as to be similar in many details to the proof
of Theorem 3. First we observe that Theorem 2 shows that every derivative
does have this stronger version of the Henstock-Kurzweil integrability prop-
erty. Let us then suppose that f is a function possessing this property. Under
the hypotheses here, f is evidently Henstock-Kurzweil integrable on this in-
terval and so there is an indefinite integral F with the property that

F (b)− F (a) =

∫ b

a

f(t) dt = I

where I is the number stated in the theorem.
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Suppose that there is a point z in the interval at which it is not true that
F ′(z) = f(z). One possibility is that this is because the upper right-hand
(Dini) derivative at z exceeds f(z) by some positive value η > 0. Another
is that the value f(z) exceeds the upper right-hand (Dini) derivative at z by
some positive value η > 0. There are six other possibilities, corresponding
to the other three Dini derivatives under which F ′(z) = f(z) might fail. It
is sufficient for a proof that we show that this first possibility cannot occur.
From this we will obtain a contradiction to the statement in the theorem.

Thus we will assume that there must be a positive number η > 0 so that we
can choose an arbitrarily small positive number t so that the interval [z, z+ t]
has this property:

F (z + t)− F (z)

t
> f(z) + η

and hence so that
F (z + t)− F (z) > f(z)t+ ηt.

We give the details assuming this and that a < z < b. Now we apply the
theorem using ε < η/4, and C = b−a+6 to obtain a choice of positive function
δ that meets the conditions of the theorem. Choose a number 0 < t < 1 for
which t < δ(z) and z + t < b and with the property that

F (z + t)− F (z) > f(z)t+ ηt.

Let s be the least integer so that st > 2. Note that, consequently,

2 < st = (s− 1)t+ t ≤ 2 + t < 3.

We first select a sequence of points

z = u0 < u1 < u2 < · · · < uk−1 = z + t

and points υi from [xi−1, xi] so that 0 < ui − ui−1 < δ(υi) and∣∣∣∣∣F (z + t)− F (z)−
k−1∑
i=1

f(υi)(ui − ui−1)

∣∣∣∣∣ < ηt/2

This is possible simply because f is Henstock-Kurzweil integrable on the in-
terval [z, z + t]. Now we add in the point uk = z and υk = z.

We compute that

k∑
i=1

f(υi)(ui − ui−1) = −f(z)t+

k−1∑
i=1

f(υi)(ui − ui−1)
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> −[F (z + t)− F (z)− ηt] +

k−1∑
i=1

f(υi)(ui − ui−1) > ηt/2.

while at the same time
k∑
i=1

|xi − xi−1| = 2t.

Repeat this sequence

z = u0 < u1 < · · · < uk−1 > uk = z

exactly s times so as to produce a sequence

z = u0, u1, . . . ur−1, ur = z

with the property that

r∑
i=1

f(υi)(ui − ui−1) > ηst/2 > η

while at the same time

r∑
i=1

|ui − ui−1| = 2st < 6.

Now construct a sequence

a = z0 < z1 < · · · < zp = z

along with associated points ζi so that 0 < zi − zi−1 < δ(ζi) and so that∣∣∣∣∣
∫ z

a

f(x) dx−
p∑
i=1

f(ζi)(zi − zi−1)

∣∣∣∣∣ < η/4.

We also need a sequence

z = w0 < w1 < . . . wq = b

along with associated points ωi so that 0 < wi − wi−1 < δ(ωi) and so that∣∣∣∣∣
∫ b

z

f(x) dx−
q∑
i=1

f(ωi)(wi − wi−1)

∣∣∣∣∣ < η/4.



On Riemann Sums 231

Both of these just use the Henstock-Kurzweil integrability of f .
Now we put these three sequences together in this way

a = z0 < z1 < · · · < zp = z = u0, u1, . . . , ur = z = w0 < w1 < . . . wq = b

to form a new sequence a = x0, x1, . . . , xN = b for which |xi − xi−1| < δ(ξi)
and for which

N∑
i=1

|xi − xi−1| = (z − a) + 2st+ (b− z) = b− a+ 2st < b− a+ 6 = C.

We use ξi in each case as the appropriate intermediate point used earlier: thus
associated with an interval [zi−1, zi] we had used ζi; associated with an interval
[wi−1, wi] we had used ωi; while associated with a pair (ui−1, ui) we use υi.

Consider the sum
N∑
i=1

f(ξi)(xi − xi−1)

taken over the entire sequence thus constructed. Because the points satisfy
the conditions of the theorem for the δ function selected we must have∣∣∣∣∣

∫ b

a

f(x) dx−
N∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε < η/4.

On the other hand[∫ z

a

f(x) dx+

∫ b

z

f(x) dx−
N∑
i=1

f(ξi)(xi − xi−1)

]

=

[∫ z

a

f(x) dx−
p∑
i=1

f(ζi)(zi − zi−1)

]

+

[∫ b

z

f(x) dx−
q∑
i=1

f(ωi)(wi − wi−1)

]

+

[
r∑
i=1

f(υi)(ui − ui−1)

]
.

From this we deduce that

r∑
i=1

f(ξi)(ui − ui−1) < 3η/4
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and yet we recall that
r∑
i=1

f(ξi)(ui − ui−1) > ηst/2 > η.

This contradiction completes the proof.

Characterizing derivatives? Theorem 4 could be considered to be a char-
acterization of the property that a function is the exact derivative of some other
function. Since we are imposing a condition that transparently is stronger
than integrability then this answers (formally at least and expressed in terms
of Riemann sums) the question of what integrable functions are derivatives.
We can interpret Theorem 4 as providing a necessary and sufficient that a
given function f on an interval would be the derivative of some other function
there.

But does this indeed constitute a characterization of derivatives? It was an
old problem of W. H. Young to determine, if possible, necessary and sufficient
conditions on a function f in order that it should be the derivative of some
other function. Elementary students know only one sufficient condition (that f
might be continuous) and perhaps one necessary condition (that f should have
the intermediate value property). Advanced students know a number of others
but there is to date no completely satisfactory statement of a condition that is
both necessary and sufficient. (See the discussion in Bruckner and Thomson [1]
for further background and history and the full quote from Young.)

The characterization of Theorem 4 is closely related to a similar one given
by Chris Freiling [3]. The discussion the author gives in that paper as to what
constitutes a logical and meaningful characterization should be consulted for
its clarity and insight. As Chris has put it:

“We also argue that the only way to characterize derivatives is by
using some object or procedure which is at least as complicated as
an integral.”

That certainly applies to Theorem 4 which is essentially an integration method.

4 Change of variables

We include now a discussion of change of variables formulas for integrals on the
real line. Theorems 1 and 2 give particularly easy and transparent versions.

The traditional change of variables formula is

F (G(b))− F (G(a)) =

∫ G(b)

G(a)

f(s) ds =

∫ b

a

f(G(t))dG(t) =

∫ b

a

f(G(t))g(t) dt
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where

F (x) =

∫ x

G(a)

f(s) ds and G(t) =

∫ t

a

g(u) du.

All or part of this formula may be given and only some of the integrals are
assumed or proved to exist in some sense (either Riemann, improper Riemann,
Lebesgue, or Henstock-Kurzweil).

Our first lemma shows that the part of this identity that asserts that∫ b

a

f(G(t))dG(t) =

∫ b

a

f(G(t))g(t) dt

is available trivially in most cases. This is most likely well-known, but we
supply the simple proof for convenience.

Lemma 5. Let g be a Henstock-Kurzweil [Riemann] integrable function with
an indefinite integral G on an interval [a, b] and suppose that f is a real-valued
function on G([a, b]). Then∫ b

a

f(G(x))dG(x) =

∫ b

a

f(G(t))g(t) dt

where if one of the integrals exists in the Henstock-Kurzweil [Riemann] sense
so too does the other and the stated identity is valid.

Proof. If f is assumed to be bounded then a rather simple proof can be given
(both for the Riemann and Henstock-Kurzweil integrals). For unbounded func-
tions we first partition the interval [a, b] as follows. For each m = 1, 2, 3, . . .
let

Xm = {t ∈ [a, b] : m− 1 ≤ |f(G(t))| < m}.

Let ε > 0 and, for each m = 1, 2, 3, . . . , choose a positive function δm on [a, b]
so that for any points a = t0 < t1 < · · · < tn = b and ti−1 ≤ τi ≤ ti for which
0 < ti − ti−1 < δm(τi) we must have

n∑
i=1

|G(ti)−G(ti−1)− g(τi)(xi − xi−1)| < εm−12−m.

This just uses the fact that G is an indefinite Henstock-Kurzweil integral of g.
Define, for each t ∈ [a, b], δ∗(t) = δm(t) provided G(t) ∈ Xm. Suppose now

that we have any points a = t0 < t1 < · · · < tn = b and ti−1 ≤ τi ≤ ti for
which 0 < ti − ti−1 < δ∗(τi).
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Note that

n∑
i=1

|f(G(τi))[G(ti)−G(ti−1) ]−f(G(τi))g(τi)[xi − xi−1 ]| <
∞∑
m=1

ε2−m = ε

by summing separately the terms for which τi belongs to Xm. We also have
then ∣∣∣∣∣

n∑
i=1

f(G(τi)) [G(ti)−G(ti−1)]−
n∑
i=1

f(G(τi))g(τi) [xi − xi−1]

∣∣∣∣∣ < ε.

This means the Riemann sums for the two integrals are arbitrarily close to-
gether and this can be used to prove that the two integrals∫ b

a

f(G(x))dG(x) and

∫ b

a

f(G(t))g(t) dt

exist as Henstock-Kurzweil integrals if one of them exists and that they are
equal.

This completes the proof for the Henstock-Kurzweil integral. For the Rie-
mann case one assumes that f is bounded and uses a constant δ in place of a
function. Otherwise the proof is unchanged.

We now apply Theorem 1 to give what may be the simplest nontrivial
version of a change of variables formula. Robbins gave no applications of his
adjusted Riemann sums result in [7], contenting himself with a brief statement
and proof amounting to little more than a single page. His paper alludes,
however, to this idea occurring during an investigation of change of variables
formulas. Thus, no doubt, the theorem which follows uses the method he had
in mind.

Lemma 6. Let G be a continuous function of bounded variation on an interval
[a, b] and suppose that f is continuous on G([a, b]). Then∫ G(b)

G(a)

f(x) dx =

∫ b

a

f(G(t))dG(t)

where the integrals exist in the Riemann and Riemann-Stieltjes senses respec-
tively.

Proof. Let ε > 0 and define C = Var(G, [a, b]). Choose δ > 0 so that the
conditions in Theorem 1 are met on the interval G([a, b]). Choose δ1 > 0 so
that

|G(s)−G(t)| < δ



On Riemann Sums 235

if s and t are points in [a, b] with |s − t| < δ1. Choose any points a = t0 <
t1 < · · · < tn = b and ti−1 ≤ τi ≤ ti for which 0 < ti − ti−1 < δ1 and consider
the Riemann-Stieltjes sum

n∑
i=1

f(G(τi))[G(ti)−G(ti−1)].

Consider the points xi = G(ti), ξi = G(τi). Note that x0 = G(a), xn =
G(b), |xi − xi−1| < δ and

n∑
i=1

|xi − xi−1| =
n∑
i=1

|G(ti)−G(ti−1)| ≤ Var(G, [a, b]) = C.

In order to apply Theorem 1 we would need to know that ξi is between the
points xi−1 and xi, i.e., that G(τi) is between G(ti−1) and G(ti). This may
not be the case. Should one of these fail we return to our original Riemann-
Stieltjes sum and replace the offending term by using

f(G(τi))[G(ti)−G(ti−1)] = f(G(τi))[G(τi)−G(ti−1)]+f(G(τi))[G(ti)−G(τi)].

Having prepared our sum in this way we can then proceed as described and
claim, that in each case, ξi is between the points xi−1 and xi.

Consequently, applying Theorem 1, we have∣∣∣∣∣
∫ G(b)

G(a)

f(t) dt−
n∑
i=1

f(G(τi)[G(ti)−G(ti−1)]

∣∣∣∣∣
=

∣∣∣∣∣
∫ G(b)

G(a)

f(t) dt−
n∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε.

This proves the existence of the Riemann-Stieltjes integral and establishes the
formula.

Lemma 6 holds for all continuous f , but does not hold for Riemann in-
tegrable functions. Take G as the Cantor singular function on [0, 1] which is
continuous, increasing, and with a zero derivative almost everywhere. The
corresponding Riemann-Stieltjes integral does not exist for all Riemann inte-
grable f .

Exactly the same method used in Lemma 6 gives another elementary ver-
sion of a change of variables formula for the Henstock-Kurzweil integral.
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Theorem 7. Let G be a continuous function of bounded variation on an
interval [a, b] and suppose that F is differentiable on G([a, b]). Then

F (G(b))− F (G(a)) =

∫ G(b)

G(a)

F ′(x) dx =

∫ b

a

F ′(G(t))dG(t)

where the integrals exists in the Henstock-Kurzweil sense.

Finally we give a more formal version that continues the theme and uses
a recognizably similar argument.

Theorem 8. Let g and G be functions defined on an interval [a, b] for which
G′(t) = g(t) for a.e. point t in [a, b] and suppose that f and F are functions
defined on an interval [c, d] that includes G([a, b]) for which F ′(x) = f(x) for
a.e. point x in [c, d]. Then

F (G(b))− F (G(a)) =

∫ b

a

f(G(t))g(t) dt (1)

where

1. the identity (1) holds in the sense of the Henstock-Kurzweil integral if
and only if the composition F ◦G is ACG∗ on [a, b].

2. the identity (1) holds in the sense of the Lebesgue integral if and only if
the composition F ◦G is absolutely continuous on [a, b].

Proof. There are a number of different characterizations of the concept
ACG∗ that plays such an important role in the study of the Henstock-Kurzweil
integral (see [8, Chapter VII]). The simplest (the one that we use) merely re-
quires that the function have zero variation on all sets of measure zero. Specif-
ically H is ACG∗ on [a, b] if and only if for all ε > 0 and all sets N ⊂ [a, b] of
measure zero there is a positive function δ on N so that

k∑
i=1

|H(qi)−H(pi)| < ε

if [p1, q1], . . . [pk, qk] are nonoverlapping subintervals of [a, b] satisfying, for
some choice of τi ∈ N ∩ [pi, qi], the inequalities

0 < qi − pi < δ(τi) (i = 1, 2, 3, . . . , k).

For the second part of the theorem we need, also, to remember that a function
is absolutely continuous if and only if it is ACG∗ and has bounded variation.
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The proof uses only one idea that is not a near trivial manipulation of
Riemann sums. We need to know that a function H that has a derivative
H ′(t) at each point of a set E for which H(E) is of measure zero must have
H ′(t) = 0 at a.e. point of E. See, for example, [9] who also use this fact to
prove their version of this theorem.

The condition that the composition F ◦G should be ACG∗ is clearly nec-
essary since all indefinite Henstock-Kurzweil integrals have this property. We
shall show that it is also sufficient. Thus let us assume that F ◦ G is ACG∗
on [a, b].

Let N1 ⊂ [a, b] be the measure zero set of points t ∈ [a, b] at which G′(t)
does not exist. Let M be the measure zero set of points x ∈ [c, d] at which
F ′(x) = f(x) fails. Let N2 be the set of points t in [a, b] at which G′(t) exists,
is not equal to zero and for which G(t) is in M . Since M has measure zero it
follows (from our remark above) that N2 also has measure zero.

Let g1(t) = 0 if t is in either of the sets N1 or N2 and let g1(t) = g(t) at
all other values of t. Since g and g1 agree almost everywhere it is enough to
prove the theorem using g1 instead of g.

Let ε > 0 and for each point t in [a, b] but not in N1 ∪N2 choose δ(t) > 0
so that

|F (G(p))− F (G(q))− f(G(t))g(t)(q − p)| < ε

2(b− a)
(q − p)

if t ∈ [p, q] and 0 < q − p < δ(t). This just uses the fact that we can compute
the derivative of F ◦G at each such point.

For all points t in N1 ∪N2 choose δ(t) > 0 so that

k∑
i=1

|F (G(qi))− F (G(pi))| <
ε

2

if the intervals [p1, q1], . . . [pk, qk] are nonoverlapping and satisfy

0 < qi − pi < δ(τi)

for some choice of τi ∈ (N1 ∪N2) ∩ [pi, qi]. This just uses the fact that F ◦G
is ACG∗ on [a, b] which we have assumed.

Choose any partition of [a, b] that is finer than δ, i.e., take any points
a = t0 < t1 < · · · < tn = b and ti−1 ≤ τi ≤ ti for which 0 < ti − ti−1 < δ(τi).
We must have∣∣∣∣∣F (G(b))− F (G(a))−

n∑
i=1

f(G(τi))g1(τi)(ti − ti−1)

∣∣∣∣∣
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≤
n∑
i=1

|F (G(ti))− F (G(ti−1))− f(G(τi))g1(τi)(ti − ti−1)|

≤
∑

τi∈N1∪N2

|F (G(ti))− F (G(ti−1))|

+
∑

τi 6∈N1∪N2

|F (G(ti))− F (G(ti−1))− f(G(τi))g1(τi)(ti − ti−1)|

<
ε

2
+

ε

2(b− a)

n∑
i=1

(ti − ti−1) ≤ ε.

By definition then the identity

F (G(b))− F (G(a)) =

∫ b

a

f(G(t))g1(t) dt

and hence also the identity (1) holds in the sense of the Henstock-Kurzweil
integral.

For the second part of the theorem it is enough to recall that a function
is absolutely continuous if and only if it is ACG∗ and has bounded variation.
Since indefinite Lebesgue integrals are absolutely continuous part two follows
from part one.

Theorem 8 is a more general version of a theorem on change of variables
given by Serrin and Varberg [9]. In a sense it appears definitive but, on
inspecting the proof, it is clear that it is not deep and merely gives a formal
condition for the formula. The formula itself is then essentially always true
provided one can establish integrability. But, in any application, it might not
be so easy or straightforward to determine properties of the composition F ◦G.

In general, it is possible for two function F and G to be absolutely con-
tinuous and yet the composition F ◦ G is not (see [8, p. 286]). When F is
Lipschitz (as Corollaries 9 and 10 now illustrate) this is not a difficulty. It is
easy to establish that the composition F ◦G is absolutely continuous when F
is Lipschitz and G is absolutely continuous.

Corollary 9. Let g be Lebesgue integrable on [a, b], let G be its indefinite
integral, and suppose that F is a Lipschitz function defined on the interval
G([a, b]). Then

F (G(b))− F (G(a)) =

∫ b

a

F ′(G(t))g(t) dt

where the integral exists as a Lebesgue integral.
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Corollary 10. Let g be Henstock-Kurzweil integrable on [a, b], let G be its
indefinite integral, and suppose that F is a Lipschitz function defined on the
interval G([a, b]). Then

F (G(b))− F (G(a)) =

∫ b

a

F ′(G(t))g(t) dt

where the integral exists as a Henstock-Kurzweil integral.

5 Theorem of Kestelman, Preiss, and Uher

Theorem 8 can also be used to clarify the situation for the Riemann integral.
The complete picture is available in Kestelman [4] and Preiss and Uher [6].
We reproduce this result here with a somewhat new proof.

Theorem 11 (Kestelman-Preiss-Uher). Suppose that g is Riemann integrable
on an interval [a, b] with an indefinite integral

G(t) =

∫ t

a

g(u) du (a ≤ t ≤ b)

and that f is a bounded function on G([a, b]). Then the identity∫ G(b)

G(a)

f(s) ds =

∫ b

a

f(G(t))dG(t) =

∫ b

a

f(G(t))g(t) dt

holds with all integrals interpreted in the Riemann sense provided either f is
Riemann integrable on G([a, b]), or the second integral exists as a Riemann-
Stieltjes integral, or finally the function (f ◦ G)g is Riemann integrable on
[a, b].

Proof. Suppose first that f is Riemann integrable on G([a, b]) and that F is
its indefinite integral. By Corollary 9 we have immediately that

F (G(b))− F (G(a)) =

∫ G(b)

G(a)

f(s) ds =

∫ b

a

f(G(t))g(t) dt

where the function (f ◦G)g must be Lebesgue integrable on [a, b].
Thus it is sufficient that we prove that this function is also Riemann in-

tegrable as well. Clearly the function is bounded so it is enough to prove
that it is continuous a.e. on [a, b] (i.e., to use Lebesgue’s criterion for Riemann
integrability).
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Our analysis2 is similar to the methods in Kestelman [4]. Roy Davies [2]
gave an alternative proof that directly uses Riemann’s criterion for integrabil-
ity.

Let S1 be the set of points in [a, b] at which g is not continuous. Let N be
the set of points in G([a, b]) at which f is not continuous. Let S2 be the set
of points t in [a, b] \ S1 at which G(t) ∈ N and g(t) 6= 0.

The function (f ◦G)g is continuous at any point t that is not in S1 ∪ S2.
The set S1 is a set of measure zero because g is Riemann integrable. The
set S2 maps by G into the zero measure set N and G is differentiable with a
nonzero derivative at each point of S2.

Recall that we previously used (in the proof of Theorem 8) the fact that
a function H that has a derivative H ′(t) at each point of a set E for which
H(E) is of measure zero must have H ′(t) = 0 at a.e. point of E. This implies
here that S2 must be a measure zero set. Consequently (f ◦G)g is continuous
a.e. in [a, b] as we require.

Let us now suppose that the function (f ◦ G)g is Riemann integrable on
[a, b] and prove that f must also be Riemann integrable. Then it must follow
that ∫ G(b)

G(a)

f(s) ds =

∫ b

a

f(G(t))g(t) dt

by what we just proved. It is sufficient, then, simply to show that f is contin-
uous a.e. in G([a, b]).

Our proof is similar to the analysis given in the first part of the theorem.
Preiss and Uher [6] directly use the Riemann criterion for integrability. There
is also a proof of this fact in Navrátil [5] where he uses the Darboux integral
instead. (Both of these papers are in Czech which presents difficulties to some
of us.)

Let A be the set of points in [a, b] at which either g is not continuous or
(f ◦ G)g is not continuous. This is a set of measure zero since both of these
functions are Riemann integrable. It is also true that G(A) is a set of measure
zero in G([a, b]) since G is Lipschitz.

Let B be the set of points t in [a, b] at which g is continuous and g(t) = 0.
This need not be a set of measure zero but G(B) is a set of measure zero in
G([a, b]) since G′ vanishes on B.

Finally let C be the set of points t in [a, b] at which g is continuous and
(f ◦ G)g is continuous and g(t) 6= 0. We show that f is continuous at every

2This is harder than one might think. If f(G(t)) is itself Riemann integrable on [a, b]
then certainly so too is f(G(t))g(t). Kestelman [4] includes an example to show that even
if f(G(t))g(t) is integrable on [a, b] and f is integrable on G([a, b]) it may well happen that
f(G(t)) is not Riemann integrable on [a, b]. This, he remarks, is the source of the difficulty
for the problem.
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point of G(C). Since [a, b] = A ∪B ∪ C and since both G(A) and G(B) have
measure zero we will have proved that f is a.e. continuous in G([a, b]).

Suppose x = G(t) for some t ∈ C and that G′(t) = g(t) > 0. Then G is
strictly increasing on an interval containing the point t. If f is discontinuous
at x then (f ◦G)g would have to be discontinuous at t which is not the case.
The same argument works if G′(t) = g(t) < 0.

This completes the proof except for mention of the Riemann-Stieltjes in-
tegral in the statement of the theorem. But we have already established in
Lemma 5 that ∫ b

a

f(G(t))dG(t) =

∫ b

a

f(G(t))g(t) dt

where the existence of one integral in the Riemann sense implies the existence
of the other.
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