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BINOMIAL MEASURES AND THEIR
APPROXIMATIONS

Abstract

In this paper we consider the properties of a family of probability
(continuous and singular) measures, which will be called Binomial mea-
sures because of their relationship with the binomial model in probabil-
ity. These measures arise in many applications with different notations.
Many properties in common with Lebesgue measure hold true for this
family, sometimes unexpectedly.

1 Introduction

In this paper we consider the properties of a family of probability measures
{µα}0<α<1 on an interval of the real line ( [0, 1], for the sake of simplicity)
characterized by the following self similarity property. Let I be a dyadic
subinterval and let I be bisect into the left and right parts I = IL ∪ IR; then

µα(IR) = αµα(I) . (1)

When α = 1/2 we trivially obtain the Lebesgue measure on [0, 1], while in
all the other cases we obtain continuous and singular measures, such that
µα(J) > 0 for every J subinterval of [0, 1]. For this family many properties in
common with the Lebesgue measure hold true, sometimes unexpectedly.

Mathematical Reviews subject classification: Primary: 28A25, 28A80; Secondary: 65D32
Key words: self similar measures, quadrature
Received by the editors April 26, 2010
Communicated by: Emma D’Aniello

61
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This paper intends to highlight several of these properties, since they are
often essential for applications. We do not intend present the results in the
most general way, since they are often partly present in different environments,
all of which are equally important for applications and use completely differ-
ent notation (cf., for example, [8] for some properties of balanced measures,
[10] for integrals used in the computation of wavelet coefficients and refinable
functionals, and [5] for Large Deviation Principles).

The measures that satisfy property (1) are strictly related to, but are topo-
logically different from, the so-called Bernoulli trial measures, as considered
in [19, 14, 13]. Indeed, it can be easily seen by applying equation (1) k times,
that µα

([
j
2k
, j+1

2k

[)
is exactly the probability that in the first k trials of the

Bernoulli process we have a number of occurrences equal to the number of 1s
in the binary expansion of j (see, too, equation (9)). Therefore, by analogy
with the binomial process, we will call these measures binomial, see [2, 3].

The main tools we use in this paper are two different types of approxima-
tion for a measure of the family. The first is obtained by absolutely continuous
measures with constant density on dyadic intervals whereas the second is ob-
tained from a suitable finite linear combination of Dirac delta measures that is
often presented in literature as quadrature formula. The latter was introduced
in order to obtain a more rapidly convergent approximation.

In the next section, we consider different environments where the measures
µα are notable examples. In Section 3 we consider the step constant approxi-
mation and prove that this converges both in the weak-star topology and in a
natural norm (see Proposition 3.1). With this tool, we prove some basic prop-
erties of the measure in Proposition 3.2. In Section 3.1 the strongly mixing
property is reconsidered together with a new result on the characterization
of the set in which the measures are concentrated (see Propositions 3.4 and
3.5). Finally, in Section 4 we introduce the approximation considered when
the numerical procedures are written, as a combination of Dirac measures con-
structed in order to satisfy some moment equations. In this case it is possible
to introduce error estimates. Section 4 also considers the combination of the
two approximations leading to the procedure known in numerical analysis as
the composite rule. The final proposition gives an explicit estimate for the
rate of convergence of the latter approximation.

2 Binomial measures

Let us introduce some notation. For latter convenience, we will define a dyadic
interval Xk

j as follows:
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Xk
j ≡

[
j

2k
,
j + 1

2k

[
∀j, k s.t. k ∈ N , 0 ≤ j ≤ 2k − 1 .

The integer k will be called the order of the interval. It should be noticed
that the set of all possible dyadic intervals is a semi algebra in [0, 1[ which
generates the σ-algebra B of the Borel subsets of [0, 1[ (for definitions see
[8, 18]).
Following [8, P. 2.5], we will denote by M1 the set of Borel regular probability

measures on R supported in [0, 1]. If ν ∈ M1, we will denote ν(φ) ≡
∫ 1

0
φdν

for every φ ∈ L1
ν . We introduce the following distance on M1:

L(ν1, ν2) = sup{ν1(φ)− ν2(φ) s.t. φ : [0, 1]→ IR , Lip(φ) ≤ 1} , (2)

where φ(x) is a Lipschitz function and Lip(φ) is its Lipschitz constant.

Theorem 2.1. There is a unique measure µα ∈ M1 which satisfies the fol-
lowing equivalent conditions:

i

µα(E) = (1− α)µα(S−11 (E)) + αµα(S−12 (E)) for every E ∈ B , (3)

where

S1 = x/2 and S2 = x/2 + 1/2 .

ii

αµα(Xk
j ) = µα(Xk+1

2j ) ∀k ∈ N , j = 1, . . . , 2k − 1 . (1’)

iii

µα(Xk
j ) = αn(j)(1− α)k−n(j) (4)

where:

n(j) = #{1s of the binary expansion of j} .

iv ∫ 1

0

f(x) dµα = (1− α)

∫ 1

0

f
(x

2

)
dµα + α

∫ 1

0

f

(
x

2
+

1

2

)
dµα ,

∀f ∈ C0([0, 1]) .
(5)
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Proof. Firstly, we will prove that a measure which satisfies equation (3)
exists and is unique. Let us call

ρα = [(1− α), α] , α ∈ (0, 1)

and denote by (S, ρα) : M1 → M1 the application defined by the following
equation:

(S, ρα)(ν)(E) = (1− α)ν(S−11 (E)) + αν(S−12 (E)) for every E ∈ B .

¿From [8] (Theorem 1 Section 4.4) we obtain that (S, ρα) is a contraction with
respect to the metric L defined in (2) and therefore has a unique fixed point
for every α ∈ (0, 1).
We shall now prove the following implications (1’) ⇐⇒ (4) ; (4) ⇒ (3) ; (3)
⇒ (1’); (3) ⇐⇒ (5).
The equivalence between (1’) and the relationship (4) is simply proved by
induction in one way and by substitution in the other.
Let us prove (4) ⇒ (3). In order to verify (3) we can limit ourselves to dyadic
intervals because these generate the σ-algebra of Borel sets. Now, we explicitly
notice that ∀k > 1:

S−11 (Xk
j ) =


[

j

2k−1
,
j + 1

2k−1

[
if 1 ≤ j < 2k−1

∅ otherwise

S−12 (Xk
j ) =

 ∅ if 1 ≤ j < 2k−1[
j

2k−1
− 1,

j + 1

2k−1
− 1

[
otherwise

.

Therefore we obtain the required relationship by substitution.
In order to prove that (3) ⇒ (1’), we simply note that S−11 (Xk+1

2j ) = ∅ and

thus µα(S−11 (Xk+1
2j )) = 0.

Finally, the equivalence between (5) and (3) can be proved by observing the
following: that (3) is trivially equivalent to (5) for step functions; that step
functions can be easily approximated by continuous ones (and viceversa) and
that the convergence of integrals is ensured by Lebesgue dominated conver-
gence theorem.

It should be noticed that equation (5) relates the measures µα with the
multifractal properties and also indicates that binomial measures are examples
of Iterated Function Systems (IFS) measures, see [6, 16] for an introduction
and [1] for further developments. In particular, following the notations in
[11, 12], µα is the attractor of the δ-homogeneous linear IFS balanced measure
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with contraction ratio 1/2, probabilities ρα and fixed points {0, 1}.
Let us now recall the definition of refinable linear functionals as given in [10]
and see how the measures µα can be put in this framework. We indicate with
P the set of polynomials p(x) with real coefficients.

Definition 2.2. A linear functional L : P→ R is called refinable if there are
a (N + 1)-uple of positive real numbers (γ0, . . . , γN ) called a mask such that:

1. L[f ] =

N∑
j=0

γj
2
L

[
f

(
x+ j

2

)]
;

2. L[e0(x)] = 1 , where e0(x) ≡ 1.

In [10] (see the Remark in Section 3) it is proved that the functional is
positive definite; i.e., L[f ] > 0 whenever f ∈ P is nonnegative everywhere and
positive on a set of length greater than 0.

Let us consider the case N = 1. Property (1) of the definition is concerned
only with the properties of the function in [0, 1], and for this reason we will
consider the polynomials as functions on [0, 1]. Applying Riesz theorem, the
functional L acts as integration w.r.t. a positive Borel regular measure µ.
Moreover, from the properties of the definition, µ turns out to be a probability
measure with support in [0, 1]. Thus, we can write:

L[f ] =

∫ 1

0

f dµ = 1/2

1∑
j=0

γj

∫ 1

0

f(Ej(x)) dµ , Ej(x) =
x

2
+
j

2

In particular, in equation (5), the only choice of positive linear refinable func-
tional with N = 1 turns out to be integration w.r.t. a binomial measure, and
the possible masks are (2(1− α), 2α) ∀α ∈ (0, 1).
This property relates our family of measures with the study of refinable func-
tions used, for example, in wavelet methods.

3 Approximating measures: measures with constant den-
sities on dyadic level k

For a general ν ∈ M1 we can consider an approximating measure νk defined as
the unique measure which is absolutely continuous with respect to Lebesgue
measure and has constant density on the dyadic intervals of level k satisfying:

νk(Xk
j ) = ν(Xk

j ) , ∀j = 0, . . . , 2k − 1 . (6)
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We observe that:

ν(Xk
j ) = νh(Xk

j ) = νk(Xk
j ) , ∀h ≥ k . (7)

For these measures we can prove the following proposition:

Proposition 3.1. Take ν ∈ M1 and define νk as in equation (6). Then we
have that νk → ν in the metric defined in (2).

Proof. Let φ be in C0([0, 1]), take xkj ∈ Xk
j and observe that:

∣∣∣∣∫ 1

0

φ(x) dν −
∫ 1

0

φ(x) dνk

∣∣∣∣ ≤ 2k−1∑
j=0

∣∣∣∣∣
∫
Xkj

φ(x) dν −
∫
Xkj

φ(x) dνk

∣∣∣∣∣ =

=

2k−1∑
j=0

∣∣∣∣∣
∫
Xkj

[φ(x)− φ(xkj ) + φ(xkj )] dν −
∫
Xkj

[φ(x)− φ(xkj ) + φ(xkj )] dνk

∣∣∣∣∣ =

=

2k−1∑
j=0

∣∣∣∣∣
∫
Xkj

[φ(x)− φ(xkj )] dν −
∫
Xkj

[φ(x)− φ(xkj )] dνk

∣∣∣∣∣ ≤
≤

2k−1∑
j=0

∫
Xkj

∣∣φ(x)− φ(xkj )
∣∣ dν +

∫
Xkj

∣∣φ(x)− φ(xkj )
∣∣ dνk . (8)

Now, apply definition (2) and equation (8) so we have:

L(ν,νk)= sup{ν(φ)−νk(φ)|φ:[0,1]→IR,Lip(φ)≤1} ≤

≤ sup

{∑2k−1
j=0

[∫
Xk
j
|φ(x)−φ(xkj )| dν+

∫
Xk
j
|φ(x)−φ(xkj )| dνk

]
, Lip(φ)≤1

}
.

Now we use the Lipschitz condition on the function φ(x) on each Xk
j and we

obtain that
∣∣φ(x)− φ(xkj )

∣∣ ≤ ∣∣x− xkj ∣∣ ≤ 1/(2k) for x, xkj ∈ Xk
j and thus:

L(ν, νk) ≤ 1

2k

2k−1∑
j=0

2ν(Xk
j ) =

1

2k−1
.

Therefore the distances converge to 0, as required.

We can see that, as has already been noticed in [8], the convergence in the
L-distance implies the usual measure convergence, commonly denoted as weak
convergence, or convergence in the weak-star topology.
When we apply this iterative construction to the measures µα, µα,k denotes
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the approximating measure with constant density on dyadic intervals of order
k. It can be easily seen, with the notations in theorem 2.1, that this density
is:

fα,k(x) = 2kαn(j)(1− α)k−n(j) , x ∈ Xk
j , j = 0 . . . 2k − 1 (9)

In the following we will prove some useful properties of the measures µα.
Some of these properties are known in a more general framework but here we
will give more direct proofs.

Proposition 3.2. The following hold true:

1. Continuity - Fixed α ∈ (0, 1), the measure µα is such that µα({x}) =
0 ∀x ∈ [0, 1].

2. Factorization - We have:

µα(Xk+h
2hj+i

) = µα(Xk
j )µα(Xh

i )

∀i, j such that i = 0 . . . 2h − 1, j = 0 . . . 2k − 1.

3. Change of variables - Let f be in L1
µα . Then, for each dyadic interval

Xk
j we have: ∫ 1

0

f(x) dµα =
1

µα(Xk
j )

∫
Xkj

f(2kx− j) dµα .

4. Recursive calculation of moments - Moments of the measures µα are
connected by the following recursive relationship:∫ 1

0

xs dµα =
α

2s − 1

s∑
q=1

[(
s
q

)∫ 1

0

xs−q dµα

]
.

Moreover, the following holds true:∫
Xkj

xs dµα =
µα(Xk

j )

(2k)s

s∑
q=0

(
s
q

)
jq
∫ 1

0

xs−q dµα .

Proof. 1. This is easily proved taking x ∈ [0, 1] and calling Jn the dyadic
interval of level n such that x ∈ Jn. Now, ∩∞n=0Jn = {x} thus µα({x}) =
limnµα(Jn). Call now λ = max{α, 1 − α}, we have λ < 1. Now, from
the definition of the measures µα,k we have µα(Jn) = µα,n(Jn). But by
(9)µα,n(Jn) ≤ λn, and thus:

µα({x}) = limnµα(Jn) ≤ limnλ
n = 0

as requested.
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2. First consider that by (9) we have:

µα,k+h(Xk+h
2hj+i

) = αn(j2
h+i)(1− α)k+h−n(j2

h+i) .

Now, since i runs from 0 . . . 2h − 1 we have:

n(j2h + i) = n(j2h) + n(i) = n(j) + n(i) .

Thus:

αn(j2
h+i)(1− α)k+h−n(j2

h+i) = [αn(j)(1− α)k−n(j)][αn(i)(1− α)h−n(i)] =

= µα,k(Xk
j )µα,h(Xh

i ) .

Summarizing:

µα,k+h(Xk+h
2hj+i

) = µα,k(Xk
j )µα,h(Xh

i ) .

By equation (7) we immediately get the conclusion.

3. For this result see Lemma 2.3 [2]. Note that the result for the change of
variables cannot be extended to any affine change of variables.

4. The calculation of these moments can be done following [11]. For the
calculation of the same in the dyadic intervals we can combine these
relationships with the previous change of variables.

It should be noticed that, due to continuity, closed dyadic intervals have
the same µα-measure of the one sided open intervals, and we will sometimes
use this property implicitly. It should also be noticed that the self-similarity
property is taken as a characterization of the measure µα in [6].

3.1 Properties related to ergodicity

In this section, we will give an explicit description of a set Fα∞ so that the
measure µα is concentrated on it. In order to achieve this aim we need some
properties of µα related to ergodicity.
We denote the binary shift as T :

T : x ∈ [0, 1]→ [0, 1] , T (x) = 2x− [2x]

where we denote the integer part as [·]. It is known that T is ergodic with
respect to µα for every α ∈ (0, 1). Here we give a proof that T is also strongly
mixing in the same set. Let us first recall some definitions.
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Definition 3.3. i. A measurable transformation T : [0, 1]→ [0, 1] is mea-
sure preserving if ν(T−1(B)) = ν(B) for all B ∈ B.

ii. A measure preserving transformation T of ([0, 1],B, ν) is ergodic if the
sole sets B ∈ B such that T−1(B) = B are such that ν(B) = 0 or
ν(B) = 1.

iii. A measure preserving transformation T of ([0, 1],B, ν) is strongly mixing
whenever ∀B1, B2 ∈ B

lim
n→∞

ν
(
T−n(B1) ∩B2

)
= ν(B1)ν(B2)

It can be easily seen that strongly mixing transformations are ergodic (see
[18] p.40). In this section we will also use a special class of step function: let us
recall that a function s(x) : [0, 1]→ IR is called a level k dyadic step function
if it is a finite linear combination of characteristic functions of level k dyadic
intervals:

s(x) =

N∑
i=0

γiχXki (x) γi ∈ R , for some i = 0, . . . , N ≤ 2k − 1 .

It is trivial to see that each f(x) ∈ C0([0, 1]) can be obtained as the uniform
limit of dyadic step functions.

Proposition 3.4. The transformation of ([0, 1],B, µα) given by the binary
shift T is strongly mixing for every α ∈ (0, 1).

Proof. It has to be proved that the application is measure preserving and
that the limit property holds true. Both of these can be done via [18] (see
Theorem 1.1 and 1.17) restricting ourselves to the case of a semi algebra which
generates the Borel sets, thus we will consider dyadic intervals Xk

j .

Considering T−1(Xk
j ), it can easily be seen that:

T−1(Xk
j ) = Xk+1

j ∪Xk+1
j+2k

.

Now, via proposition 3.2.2:

µα(Xk+1
j ) = µα(Xk

j )µα(X1
0 ) = αµα(Xk

j ) ;

µα(Xk+1
2k+j

) = µα(Xk
j )µα(X1

1 ) = (1− α)µα(Xk
j ) .

Summing up we obtain:

µα(T−1(Xk
j )) = µα(Xk+1

j ) + µα(Xk+1
2k+j

) = µα(Xk
j ) ,
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and thus T is measure preserving.
Let us now set B1 = Xk

j , B2 = Xh
i , and m ∈ N; we thus obtain:

T−m(Xk
j ) =

2m−1⋃
p=0

Xk+m
j+p2k

.

Now, let us write Xh
i as a union of level h+ l dyadic intervals:

Xh
i =

2li+2l−1⋃
q=2li

Xh+l
q .

Let us now take m ≥ h, set l = k + m − h (i.e. k + m = h + l) and consider
T−m(Xk

j ) ∩Xh
i . We then obtain:

T−m(Xk
j ) ∩Xh

i =

(
2m−1⋃
p=0

Xk+m
j+p2k

)
∩

2li+2l−1⋃
q=2li

Xh+l
q

 =

2m−h−1⋃
p=0

Xk+m
i2k+m−h+p2k+j

.

Now, call λ ≡ µα(Xk
j )µα(Xh

i ) so that λ = αn(i)+n(j)(1− α)h+k−n(i)−n(j). We
thereby obtain:

µα(T−m(Xk
j ) ∩Xh

i ) =

2m−h−1∑
p=0

µα

(
Xk+m
i2k+m−h+p2k+j

)
=

=

2m−h−1∑
p=0

αn(i)+n(p)+n(j)(1− α)k+m−n(i)−n(p)−n(j) =

= λ

2m−h−1∑
p=0

αn(p)(1− α)m−h−n(p) = λ ,

where the last step can be easily proved by noticing that αn(p)(1−α)m−h−n(p)

via (9) are the µα,m−h-measures of the level m− h dyadic intervals, and thus
the sum of all possible choices is one due to the fact that µα,m−h is a probability
measure.
We have proved that if m is big enough µα (T−m(B1) ∩B2) = µα(B1)µα(B2)
then this property holds for the limit, as requested.

We can, now, apply the Birkhoff theorem (Theorem 1.14 [18]) and obtain



Binomial Measures and Their Approximations 71

that:

∀f ∈ C0([0, 1]) lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫ 1

0

f dµα µα-almost everywhere.

(10)

Moreover, via lemma 6.13 [18], there is a set Yα such that µα(Yα) = 1 and for
every x ∈ Yα and for every f ∈ C0([0, 1]):

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫ 1

0

f dµα . (11)

It should be noticed that we can state the same result as the latter for the
class of dyadic step functions as shall be seen in the following proposition proof.
In particular, if we take the characteristic function χ[1/2,1](x) in equation (11),
the result is related to the averages of binary digits. There is an extensive
bibliography regarding the Hausdorff dimension of sets defined by means of
the averages of binary digits, see, for example, [4] and the references therein.
Using the notations of this framework, we can better characterize the sets
where one has convergence of the limit in equation (10). Let us call:

Fαk =

{
x ∈ (0, 1) : lim

n→∞

1

n

n∑
i=0

χXkj (T i(x)) = µα(Xk
j ) ∀j 0 ≤ j ≤ 2l − 1

}
.

We can again observe that
∫ 1

0
χXkj dµα = µα(Xk

j ) and thus, more explicitly,

Fαk is the subset of (0, 1) such that the limit property of Birkhoff’s theorem
(10) holds true for level k dyadic step functions.
Now we can state the main result of this section.

Proposition 3.5. If we call Fα∞ = ∩∞k=1F
α
k , we have:

µα(Fα∞) = 1

x0 ∈ Fα∞ ⇐⇒ lim
n→∞

1

n

n∑
i=0

f(T i(x0)) =

∫ 1

0

f dµα ∀f ∈ C0([0, 1]) .

Notice that Fα∞ is the biggest possible set satisfying Lemma 6.13 of [18].

Proof. First of all let us see that if x0 is a point of [0, 1] such that for every
f ∈ C0([0, 1]) it holds that:

lim
n→∞

1

n

n−1∑
i=0

f(T i(x0)) =

∫ 1

0

f dµα ;
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then if s(x) is a dyadic step function it holds that:

lim
n→∞

1

n

n−1∑
i=0

s(T i(x0)) =

∫ 1

0

s dµα . (12)

Given the linearity of the limit and of the integral, we shall restrict ourselves to
the case of one characteristic function s(x) = χXkj (x). For all ε > 0 we can take

two continuous piecewise linear functions f̄ε(x) and fε(x) which coincide with

s(x) up to intervals of length ε/2 and such that f̄ε(x) ≥ s(x) ≥ fε(x) ∀x ∈
[0, 1]. The two functions f̄ε(x) and fε(x) are continuous and thus:

∀x0 ∈ Yα limn→∞
1

n

∑n−1
i=0 f

ε(T i(x0)) =
∫ 1

0
fε dµα

and limn→∞
1

n

∑n−1
i=0 f̄

ε(T i(x0)) =
∫ 1

0
f̄ε dµα

Via the Lebesgue dominated convergence theorem and measure continuity we
obtain:

lim
ε→0

∫ 1

0

fε dµα = lim
ε→0

∫ 1

0

f̄ε dµα =

∫ 1

0

s dµα . (13)

Now:

limn→∞
1

n

∑n−1
i=0 f

ε(T i(x0)) ≤ lim infn→∞
1

n

∑n−1
i=0 s(T

i(x0))

limn→∞
1

n

∑n−1
i=0 f̄

ε(T i(x0)) ≥ lim supn→∞
1

n

∑n−1
i=0 s(T

i(x0)) .

(14)

Summarizing, using (13) and (14), the limit limn→∞
1

n

∑n−1
i=0 s(T

i(x0)) exists

and:

∀x0 ∈ Yα lim
n→∞

1

n

n−1∑
i=0

s(T i(x0)) =

∫ 1

0

s dµα

as requested. From this property we obtain that the set µα(Fαk ) contains the
set Yα provided by the Birkhoff theorem and therefore for every α ∈ (0, 1) and
∀k ≥ 1 we have µα(Fαk ) = 1. Thus the same holds for the intersection and the
first statement of the proposition is proved.
The second implication of the second statement (⇐) is proved by (12). Let us
prove the first implication (⇒) of the second statement. Take ε > 0 and chose
two step functions s1(x) and s2(x) to be constant on dyadic intervals of level
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nε and such that f(x)− ε/2 ≤ s1(x) ≤ f(x) ≤ s2(x) ≤ f(x) + ε/2. They exist
for the uniform continuity of f in [0, 1]. Now:∫ 1

0

f dµα − ε/2 =

∫ 1

0

[f − ε/2] dµα ≤
∫ 1

0

s1 dµα =

= lim
n→∞

1

n

n∑
i=0

s1(T i(x0)) .

Notice that this limit exists because x0 ∈ Fα∞ implies x0 ∈ Fαnε .
Analogously:∫ 1

0

f dµα + ε/2 =

∫ 1

0

[f + ε/2] dµα ≥
∫ 1

0

s2 dµα =

= lim
n→∞

1

n

n∑
i=0

s2(T i(x0)) .

Via monotonicity properties we obtain:

lim
n→∞

1

n

n∑
i=0

s1(T i(x0)) ≤ lim inf
n→∞

1

n

n∑
i=0

f(T i(x0))

lim
n→∞

1

n

n∑
i=0

s2(T i(x0)) ≥ lim sup
n→∞

1

n

n∑
i=0

f(T i(x0)) .

And thus: ∫ 1

0

f dµα − ε/2 ≤ lim inf
n→∞

1

n

n∑
i=0

f(T i(x0))

≤ lim sup
n→∞

1

n

n∑
i=0

f(T i(x0)) ≤
∫ 1

0

f dµα + ε/2 .

The conclusion follows since ε is arbitrary.

Finally, notice that the orthogonality of the measures µαi can be derived
from this proposition in a constructive manner by means of the sets Fαik which
are disjoint due to the uniqueness of the limit.

4 Quadrature rules

In this section we wish to introduce a discrete approximation of the measures
to be used when the numerical integration is considered. We will call an
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integration rule on a dyadic interval J a choice of p+ 1 distinct points ζq ∈ J
(called nodes) and of values βq (called weights). Let f(x) ∈ L1

µα(J) (note that,
besides the integrability condition, we will always apply quadrature rules to
functions with a finite number of discontinuities and defined everywhere), then
we will define lIp(f, J) as:

lIp(f, J) ≡
p∑
q=0

βq · f(ζq) .

When we consider the whole interval J ≡ [0, 1] we will use the notation lIp(f).
Notice that this is equivalent to considering the following combination of Dirac
delta measures

∑p
q=0 βq · δζq as an approximation of the measure µα .

We will call degree of exactness of the formula lIp with respect to µα the
greatest positive integer r such that the considered decomposition maintains
the same moments up to order r:∫ 1

0

xl dµα − lIp(x
l) = 0 ∀ l ≤ r , l ∈ N0 . (15)

This relationship for r = 0 gives a re-normalization on the weights:
∑p
q=0 βq =

1. In all cases the moments can be found via Proposition (3.2.5). If we fix
the nodes of the quadrature rules, from the linearity of equations (15) with
respect to the weights, it is always possible to construct a quadrature rule of
at least r = p degree of exactness. A well-known theorem, valid for general
positive measures (see [7]), states that quadrature rules can have a degree of
exactness up to r = 2p+ 1.
We want to study the convergence of a general sequence of quadrature rules
when applied to a function. This is exactly equivalent to studying the conver-
gence in the weak-∗ norm of the measure approximation.
Given a function f ∈ L1

µ, we will say that a sequence of quadrature rules

{I(n)}n converges to f if I(n)(f)→n Iµ(f).
Given a function f ∈ C0, we will denote by p∗d(x) the polynomial of degree
at most d that gives the best approximation to f on I w.r.t. the supremum
norm. We will also denote its error by E∗d , thus E∗d ≡ ‖f − p∗d‖∞. With these
notations, the following theorem gives the most general error estimate, see [9]
Theorem 5.2.2 or [17] Theorem 4.1.

Proposition 4.1. Let I(n) be a quadrature rule with weights wj , j = 0, . . . , n
of degree of exactness d ≥ 0. Then for all f ∈ C0 we have:∣∣∣∣∫ 1

0

f(x) dµα − lI(n)(f)

∣∣∣∣ ≤ E∗d
 n∑
j=0

|wj |+ 1

 .
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The result is proved by simply applying the definitions and the triangular
inequality.
If we consider a family of rules {I(n)}n of increasing degrees of exactness dn
and such that

∑n
j=0 |wj | ≤ Kn, then we will obtain that the rule converges if

KnE
∗
dn
→n→∞ 0. Notice that for interpolatory quadrature rules the constant

Kn is bounded from above by the Lebesgue constant Λn (see [15] eq. (8.11)).
For further considerations on convergence of families of quadrature rules, see
[17, 3].
Notice that if we consider the quadrature rule on the nodes ζq , q = 0, . . . , p to
have r ≥ p degree of exactness, we obtain that, in particular, the quadrature
rule exactly integrates the unique polynomial Πf,ζq (x) of degree p that inter-
polates the function f(x) on the points ζq , q = 0, . . . , p. Hence all the rules
on p+ 1 points of r ≥ p degree of exactness are called interpolation-based and
for these rules the formula weights can be calculated by integrating, as in the
case of the Lebesgue measure, the so-called Lagrange fundamental polynomi-
als (see equation (9.2) in [15]); in our case this integration is to be made with
respect to the measure µα.
Better estimates of the convergence properties can be attained studying the er-
ror estimates. Recall that if Πf,ζq (x) is the (unique) polynomial whose degree
is exactly p that interpolates the function f(x) ∈ Cp+1 ([0, 1]) at the nodes
ζq , q = 0, . . . , p we have that for all x ∈ [0, 1] (see [15] equation 8.7):

f(x)−Πf,ζq (x) =
f (p+1)(ξx)

(p+ 1)!
ωp(x) for some ξx ∈ [0, 1] , (16)

where ωp is the so-called nodal polynomial:

ωp ≡
p∏
q=0

(x− ζq) .

In order to use this estimate within our quadrature rules, we should explicitly
notice that the function

f (p+1)(ξx) : x→ R , f (p+1)(ξx) =
f(x)−Πf,ζq (x)

ωp(x)
(p+ 1)!

in the previous interpolation error estimate can be taken as continuous. This
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holds true because in each of the points ζi we can compute

lim
x→ζi

f (p+1)(ξx) = lim
x→ζi

f(x)−Πf,ζq (x)

ωp(x)
(p+ 1)! =

= (p+ 1)! lim
x→ζi

f(x)− f(ζi)− (Πf,ζq (x)− f(ζi))

(x− ζi)

[
1∏p

j=0,j 6=i(x− ζj)

]
=

= (p+ 1)!
f ′(ζi)−Π′f,ζq (ζi)∏p
j=0,j 6=i(ζi − ζj)

,

thus the function can be extended continuously in all [0, 1].
In the next proposition we will prove standard error estimates valid for general
positive measures. We will use the following notations:

ω+
p (x) = max{0, ωp(x)} ω−p (x) = max{0,−ωp(x)}

K+ =
∫ 1

0
ω+
p (x) dµ K− =

∫ 1

0
ω−p (x) dµ .

Proposition 4.2. Consider lIp to be a quadrature rule of r ≥ p degree of
exactness with respect to a positive measure µ, then we have:

i. If f(x) ∈ Cp+1([0, 1]), then:∣∣∣∣∫ 1

0

f(x) dµ− lIp(f)

∣∣∣∣ ≤
∣∣f (p+1)(ξ)

∣∣
(p+ 1)!

∫ 1

0

|ωp(x)| dµ

for some ξ ∈ [0, 1].

ii. If f(x) ∈ Cp+2([0, 1]), then:∫ 1

0

f(x) dµ− lIp(f) =
1

(p+ 1)!

[
K+f (p+2)(ξ3)(ξ1 − ξ2) + f (p+1)(ξ2)

∫ 1

0

ωp(x) dµ

]
for some ξ1, ξ2, ξ3 ∈ [0, 1].

Proof. To prove (i) we should notice that:∫ 1

0

f(x) dµ− lIp(f) =

∫ 1

0

[
f(x)−Πf,ζq (x)

]
dµ ,

because, as seen at the beginning of section 3, if the rule lIp is of r ≥ p degree
of exactness, then lIp exactly integrates the interpolating polynomial. Now:∣∣∣∣∫ 1

0

[
f(x)−Πf,ζq (x)

]
dµ

∣∣∣∣ ≤ ∫ 1

0

∣∣f(x)−Πf,ζq (x)
∣∣ dµ =

=

∫ 1

0

∣∣∣∣f (p+1)(ξx)

(p+ 1)!
ωp(x)

∣∣∣∣ dµ =

∫ 1

0

∣∣f (p+1)(ξx)
∣∣

(p+ 1)!
|ωp(x)| dµ .
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We can then apply the mean value theorem with respect to the positive mea-
sure |ωp(x)| dµ to the function f (p+1)(ξx) which can be considered a continuous
function as noticed previously. We thus obtain:∣∣∣∣∫ 1

0

f(x) dµ− lIp(f)

∣∣∣∣ ≤
∣∣f (p+1)(ξ)

∣∣
(p+ 1)!

∫ 1

0

|ωp(x)| dµ

for some ξ ∈ [0, 1]. This completes the proof of (i).
Let us now consider (ii). With simple arguments, we obtain:∫ 1

0

f(x) dµ− lIp(f) =

=
1

(p+ 1)!

[∫ 1

0

f (p+1)(ξx)ω+
p (x) dµ−

∫ 1

0

f (p+1)(ξx)ω−p (x) dµ

]
= (P4.2a)

=
1

(p+ 1)!

[
f (p+1)(ξ1)

∫ 1

0

ω+
p (x) dµ− f (p+1)(ξ2)

∫ 1

0

ω−p (x) dµ

]
= (P4.2b)

=
1

(p+ 1)!

[
K+[f (p+1)(ξ1)− f (p+1)(ξ2)]−

[
K− −K+

]
f (p+1)(ξ2)

]
=

(P4.2c)

=
1

(p+ 1)!

[
K+f (p+2)(ξ3)(ξ1 − ξ2) + f (p+1)(ξ2)

∫ 1

0

ωp(x) dµ

]
(P4.2d)

In (P4.2a) we applied the mean value theorem as in the proof of point i.
It should be noticed that in the same way we could use K− instead of K+ in
equation (P4.2c) and still obtain an analogous estimate.

The usual way in which the quadrature rules are used in a composite man-
ner is to introduce a partition of the initial interval and to consider on each
subinterval the integral to be approximated with a proper quadrature rule. In
this section we will see how to do this in the framework of integration with
respect to binomial measures. Notice that this new approximation of the mea-
sure is the one obtained by the combination of the two previously-considered
ones, where we consider taking an atomic measure as an approximation in all
the subintervals of the dyadic partition.
Let us consider a partition of the initial interval in 2k dyadic subintervals of
level k: Xk

j , j = 0, . . . , 2k − 1. We know how to rescale integrals on dyadic
intervals by means of Proposition 3.2.4. We can thus observe that if we want
to gain the same degree of exactness on Xk

j , if ζq, βq are the nodes and weights
constructed in the interval [0, 1], the nodes and the weights on each subinterval
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are of the kind
ζq + j

2k
, µα(Xk

j )βq.

Summarizing, if lIp is a quadrature rule of nodes ζq and weights βq we will
define lIp(f,X

k
j ) as:

lIp(f,X
k
j ) ≡ µα(Xk

j )

p∑
q=0

βqf

(
ζq + j

2k

)
.

In our notation lIkp(f) will indicate that we are applying the local quadra-

ture rule lIp(f,X
k
j ) in a composite manner on the 2k dyadic subintervals of

level k to the function f ∈ L1
µα :

lIkp(f) ≡
2k−1∑
j=0

lIp(f,X
k
j ) .

In the following we will write the previous error estimates when applied on
a dyadic interval.

Corollary 4.3 (Local error estimates). Let lIp be of r ≥ p degree of exactness
and take f(x) ∈ Cp+2(Xk

j ), then:∫
Xkj

f(x) dµα − lIp(f,X
k
j ) =

=
µα(Xk

j )

2k(p+1)(p+ 1)!

[
K+
α f

(p+2)(ξ3)(ξ1 − ξ2) + f (p+1)(ξ2)

∫ 1

0

ωp(x) dµα

]
;

for some ξi ∈ Xk
j , i = 1, 2, 3.

The simplest procedure for using composite integration rules consists in
considering an increasing order of partitions. For this algorithm we are inter-
ested in convergence properties.

Definition 4.4 (Convergence order). We will say that the composite rule lIkp
has convergence of order γ in the function f if∣∣∣∣∫ 1

0

f(x)dµα − lIkp(f)

∣∣∣∣ ≤ Kf,p

(
1

2k

)γ
.

Applying the Taylor expansion of the function with Lagrange’s remainder,
we find that the formula has an order of convergence that depends on the
degree of exactness in sufficiently-regular functions.
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Proposition 4.5. Let lIp be of r degree of exactness and f ∈ Cr+1([0, 1]).

Then lIkp has at least r + 1 order of convergence in f .

Proof. Let us fix a subinterval Xk
j and consider there the Taylor expansion

of the function up to the power r:

f(x) = P rxj (x) +Rr+1
xj (x).

If we take as initial point the first extreme xj = j/2k we have:

P rxj (x) ≡
r∑

n=0

f (n)(xj)

n!
(x− xj)n ; Rr+1

xj (x) ≡ f (r+1)(ξx)

(r + 1)!
(x− xj)r+1

,

for every x ∈ (xj , xj+1], and with ξx ∈ (xj , x). Observe that f (r+1)(ξx)
converges to f (r+1)(xj) when x converges to xj ; then we can consider the
function x → f (r+1)(ξx) defined also for x = xj and continuous in xj , and so
in all [0, 1].
Let us now take the error of formula lIp(f,X

k
j ):∫

Xkj

f(x) dµα − lIp(f,X
k
j ) =

=

∫
Xkj

P rxj (x) dµα − lIp(P
r
xj , X

k
j ) +

∫
Xkj

Rr+1
xj (x) dµα − lIp(R

r+1
xj , Xk

j ) =

=

∫
Xkj

Rr+1
xj (x) dµα − lIp(R

r+1
xj , Xk

j ) .

Let us manipulate the first term:∫
Xkj

Rr+1
xj (x) dµα =

∫
Xkj

f (r+1)(ξx)

(r + 1)!
(x− xj)r+1

dµα =

=
f (r+1)(ξ)

(r + 1)!

∫
Xkj

(
x− j/2k

)r+1
dµα =

f (r+1)(ξ)

(r + 1)!

µα(Xk
j )

2k(r+1)

∫ 1

0

xr+1 dµα ,

where we have applied the mean value theorem and lemma 3.2.4. For the
second term we have:

lIp(R
r+1
xj , Xk

j ) =

p∑
q=0

µα(Xk
j )βq

f (r+1)(ξq)

(r + 1)!
·
(
ζq + j

2k
− j

2k

)r+1

=

=
µα(Xk

j )

2k(r+1)(r + 1)!

p∑
q=0

βqf
(r+1)(ξq)ζ

r+1
q
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Thus: ∣∣∣∣∫ 1

0

f(x)dµα − lIkp(f)

∣∣∣∣ =

∣∣∣∣∣∣
2k−1∑
j=0

[∫
Xkj

f(x)dµα − lIp(f,X
k
j )

]∣∣∣∣∣∣ ≤
≤

2k−1∑
j=0

∣∣∣∣∣
∫
Xkj

f(x)dµα − lIp(f,X
k
j )

∣∣∣∣∣ =

2k−1∑
j=0

∣∣∣∣∣
∫
Xkj

Rr+1
xj (x) dµα − lIp(R

r+1
xj , Xk

j )

∣∣∣∣∣ =

2k−1∑
j=0

∣∣∣∣∣f (r+1)(ξ)µα(Xk
j )

2k(r+1)(r + 1)!

∫ 1

0

xr+1 dµα −
µα(Xk

j )

2k(r+1)(r + 1)!

p∑
q=0

βqf
(r+1)(ξq)ζ

r+1
q

∣∣∣∣∣ =

=
1

2k(r+1)(r + 1)!

2k−1∑
j=0

µα(Xk
j )

∣∣∣∣∣f (r+1)(ξ)

∫ 1

0

xr+1 dµα −
p∑
q=0

βqf
(r+1)(ξq)ζ

r+1
q

∣∣∣∣∣ ≤

≤ 1

2k(r+1)(r + 1)!

2k−1∑
j=0

µα(Xk
j )

[∣∣∣∣f (r+1)(ξ)

∫ 1

0

xr+1 dµα

∣∣∣∣+

∣∣∣∣∣
p∑
q=0

βqf
(r+1)(ξq)ζ

r+1
q

∣∣∣∣∣
]
≤

≤ 1

2k(r+1)(r + 1)!

[∫ 1

0

xr+1 dµα +

p∑
q=0

|βq| ζr+1
q

]
2k−1∑
j=0

µα(Xk
j )‖f (r+1)(x)‖L∞(Xkj )

≤

≤
‖f (r+1)‖L∞([0,1])

2k(r+1)(r + 1)!

[∫ 1

0

xr+1 dµα +

p∑
q=0

|βq| ζr+1
q

]
.

This estimate gives the requested property.
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82 F. Calabrò, C. Corbo Esposito, and C. Perugia

[17] L.N. Trefethen, Is Gauss quadrature better than Clenshaw Curtis?, SIAM
Review 50(1) (2008), 67–87.

[18] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathe-
matics, vol. 79, Springer-Verlag, New York, 1982.

[19] Andrew Q. Yingst, A characterization of homeomorphic Bernoulli trial
measures, Trans. Amer. Math. Soc. 360(2) (2008), 1103–1131 (elec-
tronic).


