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TOPOLOGIES GENERATED BY THE
-SPARSE SETS

Abstract

We study the notion of w-sparse point and i-sparse topology for
nondecreasing continuous function . We show that i-sparse topology
is stronger then the 1-density topology and weaker than the density

topology.

1 Introduction

We shall use the following notations: R denotes the set of all real numbers,

N - the set of all positive integers, m* - the outer Lebesgue measure, £ - the

o-algebra of Lebesgue measurable sets, m - the Lebesgue measure and C - the

family of all continuous, nondecreasing functions v : (0,00) — (0, 1) such that
For E C R and z € R, we let

o omA(EN e~ hx o+ h)
AE ) =t ==

and

_ “(E _
d(E,x):limsupm (Efz—hz+h])
h—0t 2h
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as the lower and upper outer density of a set E at a point x, respectively.
Analogously, for any ¢ € C, E C R and z € R let

e em*(EN [z —h,x+h])
N TUET)

nd (EN[x—h,z+h)
- m*(ENlzx—h,z+
—d(FE,z) =limsu
v (B x) = e = o)

denote the lower and upper outer y-density of a set F at a point x, respectively.

Definition 1.1. [1] We say that € R is a density point of a set E € L if
d(E,x) =1. We say that x € R is a dispersion point of a set E € L if x is a
density point of the set R\ E.

Set, for each F € L,
®(E) = {x € R: z is a density point of E}.

Then the family d = {E € £L: E C ®(FE)} is a topology on the real line called
the density topology [1].
Let ¢ € C.

Definition 1.2. [3] We say that x € R is a 1-dispersion point of a set E € L
if v —d(E,z) = 0. We say that x € R is a ¢¥-density point of a set E € L if
x s a P-dispersion point of the set R\ E.

For E € L, let
O, (E) ={z € R: zis a ) — density point of E}

and
Ty ={E€L: EC®y(E)}

Theorem 1.1. [3] The family Ty is a topology on the real line, stronger than
the Euclidean topology and weaker than the density topology d.

Definition 1.3. [2] We say that a set E C R is sparse at a point x € R
on the right if there exists, for every € > 0, § > 0 such that every interval
(a,b) C (z,z +0), with m((z,a)) < dm((z,b)), contains at least one point y
such that m*(E N (x,y)) < em((z,y)).

The family of sets sparse at « on the right is denoted by S(z+), and E is
said to be sparse at z if E € S(z) = S(z+) N S(x—), where S(x—) denotes,
by convention, the family of sets sparse at = on the left.

Let So(z) = {E C R : d(E,z) = 0}. Then by [2], for each z € R
So(z) C S(z).
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Theorem 1.2. [2] Let x € R and E C R. The following conditions are
equivalent:

(i) E € S(x),
(ii) for each F C R, if d(F,z) =0 then d(EU F,x) = 0.

2 1-sparse sets

In this chapter ¥ will be an arbitrary fixed function from C and

f 2zy(2z) if
g(.’[?) - { 0 if

Then the function g is continuous and increasing. Moreover, g(z) < 2z and
g(az) < ag(z) for any = € (0,1] and a € (0,1).

Definition 2.1. We say that a set E C R is y-sparse at a point x € R if for
each F C R, the following holds:

if v —d(F,x)=0 then v —d(EUF,z)=0.

For each € R, we denote by 1 — S(x) the family of all sets which are
y-sparse at z. Put, for each z € R, ¢ — Sp(z) ={E CR: ¢ —d(E,z) = 0}.
Then the following proposition and two theorems are obvious.

Proposition 2.1. Let ACR, BCR and x € R. Then

1. if Ae ¢ —S(x) and B € yp — S(z), then AUB € ¢p — S(x),
2. if A€y — S(x) and B C A, then B € ¢ — S(x).
Theorem 2.1. For each xz € R, ¢ — Sp(x) C ¢ — S(z).

Theorem 2.2. For any E C R and z € R, E € ¢ — S(z) if and only if
{y—x: ye E} €y —S8(0).

Theorem 2.3. Let E C R and let A be a measurable cover of E. Then the
following conditions are equivalent:

() E €y —8(0).

(i) For each € € (0,1), there exists § € (0,1) such that, for each interval
[a,b] C (0,6), if g(a) < g (x — Sg(x)) for each x € [b,1], then there
exists y € (a,b) such that m*(E N (—y,v)) < eg(y).
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(iii) A €1 — S(0).
0

Proof. (i) = (ii) For any £,§ € (0,1), denote by W(e,d) the family of
all intervals [a,b] C (0,6) such that, for each x € [b,1], g(a) < dg (z — $g(z))
and, for each y € (a,b), m*(EN(—y,y)) > eg(y).

Proceeding by contradiction, assume that E € 1) — S(0) and (i7) is false.
From our assumption it follows that there is e € (0,1) such that W(e, §) # 0,
for each § € (0,1).

Let &, € (0,1) be such that 1(26;) < 1 and [a1,b1] € W (g,6;). For each

n €N, let 0 < d,11 < min {7#17 %g(an)} and [ap41,bnt1] € W(e, 0pt1)-
By the above we have defined the sequence of disjoint intervals {[a,, b, ] }nen
and the sequence of real positive numbers {d,, },en such that

(1) ¥(26,) < 1 and 61 € (0,1),
(2) for each n € N, [an,by] € W(e,dy),

(3) foreachn € N, 0< d,41 < min {n%rl, %g(an)} and 0 < dp41 < ap, < d7,
(4) lim a, = lim b, =0.

n— o0 n— o0
Let n € N and z,, € [b,+1,a,] be such that

€ . €
Ty — §g(xn) = min {x — Eg(x) T re [bn-i-laan]} :

Set Yny1 = Tn — 59(xn) and zn41 = Yny1 + g(an). We shall show that

(5) g(anJrl) < %ﬂg(yvrkl))
(6) py1 < Ynt1 < bn+1 < Zp41 < 2g(an) < Qp.

By (2) and (3), we have that g(an41) < dnt19 (zn — 59(z0)) < n%rlg(ynﬂ).
Therefore the monotonicity of function g implies a,41 < y,11. By the defini-
tion of the point x,,, we have y,11 = 2, — 59(25) < bpy1 — §9(bng1) < bry1.
By the above and (2),(3) we get 2,41 < b1+ 9(an) < dnt1+9(an) < 29(an).
Additionally, by (3) and (1) 2¢g(a,) = 4a,¥(2a,) < 4ap(261) < a,. Besides
that 2,41 > Yni1 +9(xn) = 2n — 59(2n) + 9(2n) > 25 > byg1. Therefore the
conditions (5) and (6) are satisfied.

Let F = U [Un+1, 2n+1]- By (6) and (5), we observe that, for each n € N,

n=1

m(FO [7yn+1ayn+1]) < Zpt2 < 29(an+1) < g(yn+1)~

n+1
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Hence,

=0.

T T oo 2Yn+19(2Yn+1)

Now, we shall show that ¢ — d(E U F,0) > 0. Let h € (0,b1). Then there
exists n € N such that h € [b,,11,b,). There are three cases to consider.

() h € (an,by). Then by (2),
W ((BUF) 0 [~h, B]) > m* (B [=h,B]) > eq(h).
(B) h € [zn+t1,an]. Then by the definition of 2,41,

m*((EUF) O [=h,h]) > m(F N[0, h]) > znt1 = Yns1 = g(an) = g(h).

(7) h € [bus1,2ns1). Then by h—5g(h) >z — 59(2n) = Yny1, we have that
h = Yny1 > 59(h). Hence

m*((EUF)N[=h,h]) >m(FN[0,h]) >h—ypt1 > gg(h).

Therefore

.. .m*(EUF)N[-h,h)) _ ¢

| f =.

e 2hip(2h) 2
We have shown that there exists a set ' C R such that ¢ — d(F,0) = 0 and
Y —d(EUF,0)>0. Thus E ¢ ¢ — §(0), a contradiction.

(#4) = (#i1) Suppose that (ii) is fulfilled. First we show that ¢)—d(A4,0) = 0.
Let n € N. By our assumption, there exists d,, € (0,1) such that, for each
interval [a,b] C (0,0y,), if g(a) < dpg (w - mg(x)) for each z € [b,1], then
there exists y € (a,b) such that

>

m(AN (-y,y)) =m"(EN(-y,y)) < 9(y).

n+1
Let 0 < b, < min {(5n, %} and z, = min{5ng (m — Wﬂ_l)g(x)) D x € [by, 1]}
By the continuity of g at 0, there exists a,, € (0,b,) such that g(a,) < z,.
Therefore, g(a,) < dng (m - mg(xw for each x € [by,, 1] and by our as-
sumption there exists ¥, € (an,by) such that m(A N (—yn,yn)) < %_Hg(yn)

Thus

Y= d(A,0) < tim TAOEI YD

n—00 2ynw(2yn)
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Let F' C R be such that ¢ — d(F,0) = 0. It is sufficient to show that for
each n € N\ {1} there exists v, € (0, +) such that

m* (AU F) N [~on, va]) < —g(vn).
Let n € N\ {1} and
1
A, = {h € (0,1): m(AN[=h,h]) > ng(h)}.

Observe that (0,1)\ A, # 0. If there exists v, € (0,2)\ A, such that
m*(F N [—v,, vp]) < %g(vn)7 then

\o}

m*((AUF) N [~vp,vn]) < Eg(vn)~

We assume that m*(F N (—z,z)) > 2g(z) for each 2 € (0, 1)\ 4,.
By our assumption there exists § € (0,1) such that for each closed interval
[a,b] C (0,0), if g(a) < 6g (z — 59(x)) for each x € [b, 1], then there exists
(a,b) such that m(AN (—=y,y)) < 2g(y). Let 61 = min {6, ~}. By ¢ —

Yy €
d(A,0) = 0 there exists yg € (0,d1) such that

(AR (90, 30)) < ~9(0)

and, by ¢ — d(F,0) = 0, there exists a sequence {t; }ren tending to zero, such
that 1
m(F 0 [~ te]) < 0—g(tx)

and tj, < yo for each k € N. Then t; € (0,2) and m*(F N [~tx, t]) < +g(tx)
so we have t, € A, for each k € N.

Let k be a fixed positive integer number. Since ¢, € A, it follows that
there exists a component (ag, bx) of the open set A,,, such that t;, € (ax, by).
We observe that

m(AN[—=z,z]) > %g(x)
for each = € (ag, by),
m(AN [—ak,ar]) = %g(ak)

and
(AN b, bel) = Sg(be)
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So yo ¢ [ak, bi] and as t < yo, we have by < yo < 9.
We have proven that [ay,bx] C (0,6) and m(AN [~z,z]) > Lg(z) for each
x € (ag, by). Therefore, there exists zj € [by, 1] such that

glar) > dog (xk - 21ng(xk)) .

Moreover, ar ¢ A, and a; € (0,21), hence m*(F N [—a,ax]) > Zg(ak).
Therefore

1 1 1
Eég (xk — Qng(xk)> < ﬁg(ak) <m*(FN[—ak,ax))
. 1
< m (F n [—tk,tk}) < (559(@@)
and, by the monotonicity of the function g, we have

1
T — %g(xk) < tp < b < xp.
Thus

m(A N [—.Z‘k, xk])

IN

m(AN [~bg, bk]) + 2(zx — br)

1 1 2
Za(b - < Z
~gtn) + glon) < -

IN

g(xk),
and
m*(F n [71’[6,5616]) < m*(F n [7tk,tk}) + 2(:Ck — tk)
1 1 2
< 0—g(t — < - .
~9(te) + —g(zx) < —g(ak)
Hence, m*((AU F) N [—zy, 2x]) < 2g(x).
Moreover, lim sup (wk — %g(mk)) < lim t;, =0, so lim z; = 0. Now we
k—00 n k—o0 k—o0

put v, = xp, where z;, € (0, %)
(#91) = (i) Assume that (i49) is fulfilled. Let F' C R be a set such that
¥ — d(F,0) = 0. Then
T ((EUF)N[—h,h]) < limint ™ ((AUF)N[=h,h])
h—0+ g(h) h—0+ g(h)

Hence E € ¢ — S(0).

=0.

Lemma 2.1. For each real number o € (0,1), there exists an open interval
(a,b) C (0,) such that b —a = 2by(2b) and 2ay)(2a) > bi)(2b).
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PROOF. Let o € (0,1) and 6 > 0 be such that, for each x € (0,6), we have
¥(2z) < . Put v = min{a, 8}, by € (0,7) and, for each n € N, by, 41 be such
that by419(2bn41) = 3wb11(2b1). Then lim b, = 0.

Suppose that b, — b, 1 < 2b,0(2b,,) for each n € N. Then

b= (bn = buy1) < D7 2uth(2ba) = 4by1h(2b1) < by,
n=1 n=1

which is impossible. Thus there exists n € N such that b,, — b, 11 > 2b,1(2b,,).
Let b = b, and a = b,, — 2b,1(2b,). Then b — a = 2by)(2b), a > b, 41 and
2a1)(2a) > 2b, 119 (2bp11) = bh(2D). O

Theorem 2.4. There exists an open set H such that H € 1 —S(0)\ ¢ —Sp(0).

PROOF. By Lemma 2.1, we can defined a sequence of disjoint open intervals
{(¢n,dn)}nen C (0,1) such that for each n € N,

1. dp —cn = g(dy),
2. glen) > %g(dn),
3. dpt1 <min {+, Frg(cn) }-

Put H = | (¢p,dy). Then m(H N [—dy,,dy,]) > dy, — ¢, = g(dy) for each
neN
n € N. Therefore H ¢ ¢ — Sp(0).

We shall show that H € ¢ —S(0). Let € € (0,1). Choose ng € N such that
max {cno, 2%} < §. Then, for each n > ng, the inequality

5 €

§g(dn+1) < g(dn+1) <2dpy1 < ig(cn)

implies that there exists y, € (dn11,¢,) such that g(dn11) = 59(yn)-
Let xy € [0, 1] be such that

€ €
m=xg— ig(:ro) = sup {x — ig(x) :xe|o, 1]} .
It is easily seen that xg # 0 and m > 0. Choose ny > ng such that ¢,;, < m
and ¢,, < xg. Put 6 = ¢,,. Let [a,b] C (0,6) be an interval such that, for each
z € [b1], g(a) < dg(x — §g(x)). If there exists n > ny such that ¢, € (a,b),
then

1
m(H N [—cn,cp]) < dpi1 < Q—ng(cn) <eg(ep).
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Now let as assume that for each n > n; ¢, ¢ (a,b). Then there exists
n > ny such that (a,b) C (¢p41,¢n). Suppose (a,b) C (¢ht1,Yn). Then, by
0 < Yn—59Un) < Yn < cn, <mandy, <z, there exists € (yn,z0) C [b,1]
such that  — $g(x) = y,,. Therefore, by 2

9 3

19Wn) 2 0g(z = 59(2))-

9(dny1) = )

9(a) = g(ent1) =

DN =

But this contradicts the definition of the interval [a,b], so (a,b) N (yn,cn) # 0.
Let h € (a,b) N (yn, cn). Then

m(H O [~h 1) < sty o(ensa) +o(dnin) < So(h) + Sg(u) < (k).

We have shown that, for each € € (0,1), there exists 6 € (0,1) such that, for
each interval [a,b] C (0,9), if g(a) < dg(z — §g(x)) for each x € [b,1], then
there exists y € (a,b) such that m(H N (—y,y)) < eg(y). Thus, by Theorem
2.3, H € ¢ — 5(0). O

Theorem 2.5. For each z € R, ¢ — S(z) N L C Sp(x).

PrROOF. We may assume that x = 0. We suppose that there exists a set
Aep—5(0)NL\Sp(0). Then there exists a real number o € (0,1) such that

(7) lmsup 7oA T2
z—0t 2x

and, by Theorem 2.3, there exists a real number § € (0,1) such that

(8) for each interval [a,b] C (0,6), if g(a) < 6g (z — 2g(x)) for each z € [b, 1],
then there exists y € (a,b) such that m(AN (—y,y)) < 39(y).

Let v be a real positive number such that v < ¢ and, for each z € (0,7),
¥(2z) < a. By the continuity of the function # — g(x), for each b € (0,1),
there exists a point ¢(b) € [b, 1] such that

1 1 1
1) = Jo(00) =min {z ~ 9(0): 2 € P11} <b - Jg0)
Then, by bl_i)r([)1+ (t(b) — $9(t(b)) = 0 and by the definition of the function g, we

see that
g9(t(b))
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Thus there exists a real positive number §; < 7 such that, for any b € (0, 1)
and x € [b, 1],

g(b) < g(t(b)) < 2a <t(b) - ig(t(b))) < 2a0 (x - ig(x)) )

Consequently,
(9) for any b€ (0,d1) and = € [b, 1],

g (210[9(6)> <y (5 (m - ig(x)» <dg (x - ig(:v)) :

By A € ¢ — §(0), there exists z1 € (0,d1) such that m(AN [—z1,21]) < g(z1)
and, by (7), there exists z2 € (0,21) such that m(A N [—z2,x2]) > 20z;.
Put

E={x€[xg,1]: m(AN[—z,2]) < g(z) }.

Then z1 € E. Set b= min E. Since ¥(2x2) < a, we have that
m(AN [—z2,x2]) > 20we > g(x2)
and o < b < x1. Put @ = 5. Then
(10) g(b) = m(AN[=b,b]) > m(AN[-a,a]) > 2aa

and
(11) for each t € (a,b), m(AN(—t,t)) > g(t).

Let z € [b,1]. By (10) and (9),

gla) <g (21069(1))) < dg (x - ig(w)> :

for each = € [b, 1]. Therefore, by (8), there exists y € (a,b) such that

(AN [-y,3) < 59(9)

contrary to (11). O
Theorem 2.6. There exists an open set H such that H € Sy(0) \ v — S(0).

PROOF. Let by € (0,1) be such that ¥(2by) < 15 and, for cach n € N, b, =
2%bo. We choose a; as an arbitrary point of an interval (by,b) and, for each

n > 2, put a, = b, — g(bn—2). We observe that, for each n > 2,

a, = b, — g(bn_g) = an+1(1 — 877/}(217”_2)) > bn+1.
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Put H = U (an,by). We shall show that H ¢ ¢ — S(0). Let h € (0, az]. Then
there ex1sts n > 3 such that h € (ay, an—1]. Therefore
m(H N [=h,h]) > b1 — ant1 = g(bn-1) > g(h).

Now we shall show that H € Sy(0). Let € > 0. Then there exists ng € N

such that, for each n > ng, ¥(2b,) < 5. Put 0 = an,41 and let h € (0,9).

Then there exists n > ng + 1 such that h € [a,,a,—1), and

o0 o0 6 o0
HnN[-h,h]) < b — = brp_9) < = br—o = €2b,11 < €2h.
m(H N[ ) kg%( K — ak) kz:%g( k—2) 8;:; k-2 +1
Thus H [ N h])
m —_
i .
hg{)lJr 2h 0

3 1-sparse topology

Let v € C. For E € L, put
I'y(E)={x €R: zis a1 — sparse point of R\ E}.

Let A€ L and B € L. We denote A ~ B, if m(AAB) = 0, where AAB is the
symmetric difference of A and B.

It is easy to see that the following theorem is true.
Theorem 3.1. Let i) € C. Then for each A, B € L
1. if AC B, thenT'y(A) CT'y(B);
2. if A~ B, then F¢(A) r'y(B);
3. Dy(0) =0, Dy(R) =
4. Ty(ANB)=Tyu(A)N Fw(B).

By theorems 3.1, 2.1, 2.4, 2.5 and 2.6, we have the following
Theorem 3.2. Let i) € C and

Ty ={E€L: ECTy(E)}

Then Ty is a topology on the real line, stronger than the 1-density topology Ty
and weaker than the density topology d.
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