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TOPOLOGIES GENERATED BY THE
ψ-SPARSE SETS

Abstract

We study the notion of ψ-sparse point and ψ-sparse topology for
nondecreasing continuous function ψ. We show that ψ-sparse topology
is stronger then the ψ-density topology and weaker than the density
topology.

1 Introduction

We shall use the following notations: R denotes the set of all real numbers,
N - the set of all positive integers, m∗ - the outer Lebesgue measure, L - the
σ-algebra of Lebesgue measurable sets, m - the Lebesgue measure and C - the
family of all continuous, nondecreasing functions ψ : (0,∞)→ (0, 1) such that
lim
x→0+

ψ(x) = 0.

For E ⊂ R and x ∈ R, we let

d(E, x) = lim inf
h→0+

m∗(E ∩ [x− h, x+ h])

2h

and
d(E, x) = lim sup

h→0+

m∗(E ∩ [x− h, x+ h])

2h
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as the lower and upper outer density of a set E at a point x, respectively.
Analogously, for any ψ ∈ C, E ⊂ R and x ∈ R let

ψ − d(E, x) = lim inf
h→0+

m∗(E ∩ [x− h, x+ h])

2hψ(2h)

and
ψ − d(E, x) = lim sup

h→0+

m∗(E ∩ [x− h, x+ h])

2hψ(2h)

denote the lower and upper outer ψ-density of a set E at a point x, respectively.

Definition 1.1. [1] We say that x ∈ R is a density point of a set E ∈ L if
d(E, x) = 1. We say that x ∈ R is a dispersion point of a set E ∈ L if x is a
density point of the set R \ E.

Set, for each E ∈ L,

Φ(E) = {x ∈ R : x is a density point of E}.

Then the family d = {E ∈ L : E ⊂ Φ(E)} is a topology on the real line called
the density topology [1].
Let ψ ∈ C.

Definition 1.2. [3] We say that x ∈ R is a ψ-dispersion point of a set E ∈ L
if ψ − d(E, x) = 0. We say that x ∈ R is a ψ-density point of a set E ∈ L if
x is a ψ-dispersion point of the set R \ E.

For E ∈ L, let

Φψ(E) = {x ∈ R : x is a ψ − density point of E}

and
Tψ = {E ∈ L : E ⊂ Φψ(E)}.

Theorem 1.1. [3] The family Tψ is a topology on the real line, stronger than
the Euclidean topology and weaker than the density topology d.

Definition 1.3. [2] We say that a set E ⊂ R is sparse at a point x ∈ R
on the right if there exists, for every ε > 0, δ > 0 such that every interval
(a, b) ⊂ (x, x + δ), with m((x, a)) < δm((x, b)), contains at least one point y
such that m∗(E ∩ (x, y)) < εm((x, y)).

The family of sets sparse at x on the right is denoted by S(x+), and E is
said to be sparse at x if E ∈ S(x) = S(x+) ∩ S(x−), where S(x−) denotes,
by convention, the family of sets sparse at x on the left.

Let S0(x) = {E ⊂ R : d(E, x) = 0}. Then by [2], for each x ∈ R
S0(x) ⊂ S(x).
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Theorem 1.2. [2] Let x ∈ R and E ⊂ R. The following conditions are
equivalent:

(i) E ∈ S(x),

(ii) for each F ⊂ R, if d(F, x) = 0 then d(E ∪ F, x) = 0.

2 ψ-sparse sets

In this chapter ψ will be an arbitrary fixed function from C and

g(x) =

{
2xψ(2x) if x ∈ (0, 1],
0 if x = 0.

Then the function g is continuous and increasing. Moreover, g(x) < 2x and
g(ax) ≤ ag(x) for any x ∈ (0, 1] and a ∈ (0, 1).

Definition 2.1. We say that a set E ⊂ R is ψ-sparse at a point x ∈ R if for
each F ⊂ R, the following holds:

if ψ − d(F, x) = 0 then ψ − d(E ∪ F, x) = 0.

For each x ∈ R, we denote by ψ − S(x) the family of all sets which are
ψ-sparse at x. Put, for each x ∈ R, ψ − S0(x) = {E ⊂ R : ψ − d(E, x) = 0}.
Then the following proposition and two theorems are obvious.

Proposition 2.1. Let A ⊂ R, B ⊂ R and x ∈ R. Then

1. if A ∈ ψ − S(x) and B ∈ ψ − S(x), then A ∪B ∈ ψ − S(x),

2. if A ∈ ψ − S(x) and B ⊂ A, then B ∈ ψ − S(x).

Theorem 2.1. For each x ∈ R, ψ − S0(x) ⊂ ψ − S(x).

Theorem 2.2. For any E ⊂ R and x ∈ R, E ∈ ψ − S(x) if and only if
{y − x : y ∈ E} ∈ ψ − S(0).

Theorem 2.3. Let E ⊂ R and let A be a measurable cover of E. Then the
following conditions are equivalent:

(i) E ∈ ψ − S(0).

(ii) For each ε ∈ (0, 1), there exists δ ∈ (0, 1) such that, for each interval
[a, b] ⊂ (0, δ), if g(a) < δg

(
x− ε

2g(x)
)

for each x ∈ [b, 1], then there
exists y ∈ (a, b) such that m∗(E ∩ (−y, y)) < εg(y).
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(iii) A ∈ ψ − S(0).

Proof. (i) ⇒ (ii) For any ε, δ ∈ (0, 1), denote by W (ε, δ) the family of
all intervals [a, b] ⊂ (0, δ) such that, for each x ∈ [b, 1], g(a) < δg

(
x− ε

2g(x)
)

and, for each y ∈ (a, b), m∗(E ∩ (−y, y)) ≥ εg(y).
Proceeding by contradiction, assume that E ∈ ψ − S(0) and (ii) is false.

From our assumption it follows that there is ε ∈ (0, 1) such that W (ε, δ) 6= ∅,
for each δ ∈ (0, 1).

Let δ1 ∈ (0, 1) be such that ψ(2δ1) < 1
4 and [a1, b1] ∈ W (ε, δ1). For each

n ∈ N, let 0 < δn+1 < min
{

1
n+1 ,

1
2g(an)

}
and [an+1, bn+1] ∈W (ε, δn+1).

By the above we have defined the sequence of disjoint intervals {[an, bn]}n∈N
and the sequence of real positive numbers {δn}n∈N such that

(1) ψ(2δ1) < 1
4 and δ1 ∈ (0, 1),

(2) for each n ∈ N, [an, bn] ∈W (ε, δn),

(3) for each n ∈ N, 0 < δn+1 < min
{

1
n+1 ,

1
2g(an)

}
and 0 < δn+1 < an < δ1,

(4) lim
n→∞

an = lim
n→∞

bn = 0.

Let n ∈ N and xn ∈ [bn+1, an] be such that

xn −
ε

2
g(xn) = min

{
x− ε

2
g(x) : x ∈ [bn+1, an]

}
.

Set yn+1 = xn − ε
2g(xn) and zn+1 = yn+1 + g(an). We shall show that

(5) g(an+1) < 1
n+1g(yn+1),

(6) an+1 < yn+1 < bn+1 < zn+1 < 2g(an) < an.

By (2) and (3), we have that g(an+1) < δn+1g
(
xn − ε

2g(xn)
)
< 1

n+1g(yn+1).
Therefore the monotonicity of function g implies an+1 < yn+1. By the defini-
tion of the point xn, we have yn+1 = xn − ε

2g(xn) ≤ bn+1 − ε
2g(bn+1) < bn+1.

By the above and (2),(3) we get zn+1 < bn+1+g(an) < δn+1+g(an) < 2g(an).
Additionally, by (3) and (1) 2g(an) = 4anψ(2an) ≤ 4anψ(2δ1) < an. Besides
that zn+1 ≥ yn+1 + g(xn) = xn − ε

2g(xn) + g(xn) > xn ≥ bn+1. Therefore the
conditions (5) and (6) are satisfied.

Let F =
∞⋃
n=1

[yn+1, zn+1]. By (6) and (5), we observe that, for each n ∈ N,

m(F ∩ [−yn+1, yn+1]) < zn+2 < 2g(an+1) <
2

n+ 1
g(yn+1).
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Hence,

ψ − d(F, 0) ≤ lim
n→∞

m(F ∩ [−yn+1, yn+1])

2yn+1ψ(2yn+1)
= 0.

Now, we shall show that ψ − d(E ∪ F, 0) > 0. Let h ∈ (0, b1). Then there
exists n ∈ N such that h ∈ [bn+1, bn). There are three cases to consider.

(α) h ∈ (an, bn). Then by (2),

m∗((E ∪ F ) ∩ [−h, h]) ≥ m∗(E ∩ [−h, h]) ≥ εg(h).

(β) h ∈ [zn+1, an]. Then by the definition of zn+1,

m∗((E ∪ F ) ∩ [−h, h]) ≥ m(F ∩ [0, h]) > zn+1 − yn+1 = g(an) ≥ g(h).

(γ) h ∈ [bn+1, zn+1). Then by h− ε
2g(h) ≥ xn− ε

2g(xn) = yn+1, we have that
h− yn+1 ≥ ε

2g(h). Hence

m∗((E ∪ F ) ∩ [−h, h]) ≥ m(F ∩ [0, h]) > h− yn+1 ≥
ε

2
g(h).

Therefore
lim inf
h→0+

m∗((E ∪ F ) ∩ [−h, h])

2hψ(2h)
≥ ε

2
.

We have shown that there exists a set F ⊂ R such that ψ − d(F, 0) = 0 and
ψ − d(E ∪ F, 0) > 0. Thus E /∈ ψ − S(0), a contradiction.

(ii)⇒ (iii) Suppose that (ii) is fulfilled. First we show that ψ−d(A, 0) = 0.
Let n ∈ N. By our assumption, there exists δn ∈ (0, 1) such that, for each
interval [a, b] ⊂ (0, δn), if g(a) < δng

(
x− 1

2(n+1)g(x)
)
for each x ∈ [b, 1], then

there exists y ∈ (a, b) such that

m(A ∩ (−y, y)) = m∗(E ∩ (−y, y)) <
1

n+ 1
g(y).

Let 0 < bn < min
{
δn,

1
n

}
and zn = min

{
δng

(
x− 1

2(n+1)g(x)
)

: x ∈ [bn, 1]
}
.

By the continuity of g at 0, there exists an ∈ (0, bn) such that g(an) < zn.
Therefore, g(an) < δng

(
x− 1

2(n+1)g(x)
)
for each x ∈ [bn, 1] and by our as-

sumption there exists yn ∈ (an, bn) such that m(A ∩ (−yn, yn)) < 1
n+1g(yn).

Thus
ψ − d(A, 0) ≤ lim

n→∞

m(A ∩ [−yn, yn])

2ynψ(2yn)
= 0.
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Let F ⊂ R be such that ψ − d(F, 0) = 0. It is sufficient to show that for
each n ∈ N \ {1} there exists vn ∈ (0, 1

n ) such that

m∗((A ∪ F ) ∩ [−vn, vn]) ≤ 4

n
g(vn).

Let n ∈ N \ {1} and

An =

{
h ∈ (0, 1) : m(A ∩ [−h, h]) >

1

n
g(h)

}
.

Observe that (0, 1
n ) \ An 6= ∅. If there exists vn ∈ (0, 1

n ) \ An such that
m∗(F ∩ [−vn, vn]) ≤ 1

ng(vn), then

m∗((A ∪ F ) ∩ [−vn, vn]) ≤ 2

n
g(vn).

We assume that m∗(F ∩ (−x, x)) > 1
ng(x) for each x ∈ (0, 1

n ) \An.
By our assumption there exists δ ∈ (0, 1) such that for each closed interval

[a, b] ⊂ (0, δ), if g(a) < δg
(
x− 1

2ng(x)
)
for each x ∈ [b, 1], then there exists

y ∈ (a, b) such that m(A ∩ (−y, y)) < 1
ng(y). Let δ1 = min

{
δ, 1
n

}
. By ψ −

d(A, 0) = 0 there exists y0 ∈ (0, δ1) such that

m(A ∩ (−y0, y0)) <
1

n
g(y0)

and, by ψ− d(F, 0) = 0, there exists a sequence {tk}k∈N tending to zero, such
that

m∗(F ∩ [−tk, tk]) < δ
1

n
g(tk)

and tk < y0 for each k ∈ N. Then tk ∈ (0, 1
n ) and m∗(F ∩ [−tk, tk]) < 1

ng(tk)
so we have tk ∈ An for each k ∈ N.

Let k be a fixed positive integer number. Since tk ∈ An it follows that
there exists a component (ak, bk) of the open set An, such that tk ∈ (ak, bk).
We observe that

m(A ∩ [−x, x]) >
1

n
g(x)

for each x ∈ (ak, bk),

m(A ∩ [−ak, ak]) =
1

n
g(ak)

and
m(A ∩ [−bk, bk]) =

1

n
g(bk).



Topologies Generated by the ψ-Sparse Sets 263

So y0 /∈ [ak, bk] and as tk < y0, we have bk < y0 < δ.
We have proven that [ak, bk] ⊂ (0, δ) and m(A ∩ [−x, x]) > 1

ng(x) for each
x ∈ (ak, bk). Therefore, there exists xk ∈ [bk, 1] such that

g(ak) ≥ δg
(
xk −

1

2n
g(xk)

)
.

Moreover, ak /∈ An and ak ∈ (0, 1
n ), hence m∗(F ∩ [−ak, ak]) > 1

ng(ak).
Therefore

1

n
δg

(
xk −

1

2n
g(xk)

)
≤ 1

n
g(ak) < m∗(F ∩ [−ak, ak])

≤ m∗(F ∩ [−tk, tk]) < δ
1

n
g(tk)

and, by the monotonicity of the function g, we have

xk −
1

2n
g(xk) < tk < bk ≤ xk.

Thus

m(A ∩ [−xk, xk]) ≤ m(A ∩ [−bk, bk]) + 2(xk − bk)

≤ 1

n
g(bk) +

1

n
g(xk) ≤ 2

n
g(xk),

and

m∗(F ∩ [−xk, xk]) ≤ m∗(F ∩ [−tk, tk]) + 2(xk − tk)

< δ
1

n
g(tk) +

1

n
g(xk) <

2

n
g(xk).

Hence, m∗((A ∪ F ) ∩ [−xk, xk]) < 4
ng(xk).

Moreover, lim sup
k→∞

(
xk − 1

2ng(xk)
)
≤ lim

k→∞
tk = 0, so lim

k→∞
xk = 0. Now we

put vn = xk, where xk ∈ (0, 1
n ).

(iii) ⇒ (i) Assume that (iii) is fulfilled. Let F ⊂ R be a set such that
ψ − d(F, 0) = 0. Then

lim inf
h→0+

m∗((E ∪ F ) ∩ [−h, h])

g(h)
≤ lim inf

h→0+

m∗((A ∪ F ) ∩ [−h, h])

g(h)
= 0.

Hence E ∈ ψ − S(0).

Lemma 2.1. For each real number α ∈ (0, 1), there exists an open interval
(a, b) ⊂ (0, α) such that b− a = 2bψ(2b) and 2aψ(2a) ≥ bψ(2b).
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Proof. Let α ∈ (0, 1) and δ > 0 be such that, for each x ∈ (0, δ), we have
ψ(2x) < 1

4 . Put γ = min{α, δ}, b1 ∈ (0, γ) and, for each n ∈ N, bn+1 be such
that bn+1ψ(2bn+1) = 1

2n b1ψ(2b1). Then lim
n→∞

bn = 0.

Suppose that bn − bn+1 < 2bnψ(2bn) for each n ∈ N. Then

b1 =

∞∑
n=1

(bn − bn+1) ≤
∞∑
n=1

2bnψ(2bn) = 4b1ψ(2b1) < b1,

which is impossible. Thus there exists n ∈ N such that bn−bn+1 ≥ 2bnψ(2bn).
Let b = bn and a = bn − 2bnψ(2bn). Then b − a = 2bψ(2b), a ≥ bn+1 and

2aψ(2a) ≥ 2bn+1ψ(2bn+1) = bψ(2b).

Theorem 2.4. There exists an open set H such that H ∈ ψ−S(0)\ψ−S0(0).

Proof. By Lemma 2.1, we can defined a sequence of disjoint open intervals
{(cn, dn)}n∈N ⊂ (0, 1) such that for each n ∈ N,

1. dn − cn = g(dn),

2. g(cn) ≥ 1
2g(dn),

3. dn+1 < min
{

1
n ,

1
2n g(cn)

}
.

Put H =
⋃
n∈N

(cn, dn). Then m(H ∩ [−dn, dn]) ≥ dn − cn = g(dn) for each

n ∈ N. Therefore H /∈ ψ − S0(0).
We shall show that H ∈ ψ−S(0). Let ε ∈ (0, 1). Choose n0 ∈ N such that

max
{
cn0

, 1
2n0

}
< ε

4 . Then, for each n > n0, the inequality

ε

2
g(dn+1) < g(dn+1) < 2dn+1 <

ε

2
g(cn)

implies that there exists yn ∈ (dn+1, cn) such that g(dn+1) = ε
2g(yn).

Let x0 ∈ [0, 1] be such that

m = x0 −
ε

2
g(x0) = sup

{
x− ε

2
g(x) : x ∈ [0, 1]

}
.

It is easily seen that x0 6= 0 and m > 0. Choose n1 > n0 such that cn1
< m

and cn1 < x0. Put δ = cn1 . Let [a, b] ⊂ (0, δ) be an interval such that, for each
x ∈ [b, 1], g(a) < δg(x − ε

2g(x)). If there exists n ≥ n1 such that cn ∈ (a, b),
then

m(H ∩ [−cn, cn]) < dn+1 <
1

2n
g(cn) < εg(cn).
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Now let as assume that for each n ≥ n1 cn /∈ (a, b). Then there exists
n ≥ n1 such that (a, b) ⊂ (cn+1, cn). Suppose (a, b) ⊂ (cn+1, yn). Then, by
0 < yn− ε

2g(yn) < yn < cn1
< m and yn < x0, there exists x ∈ (yn, x0) ⊂ [b, 1]

such that x− ε
2g(x) = yn. Therefore, by 2

g(a) ≥ g(cn+1) ≥ 1

2
g(dn+1) =

ε

4
g(yn) ≥ δg(x− ε

2
g(x)).

But this contradicts the definition of the interval [a, b], so (a, b)∩ (yn, cn) 6= ∅.
Let h ∈ (a, b) ∩ (yn, cn). Then

m(H ∩ [−h, h]) <
1

2n+1
g(cn+1) + g(dn+1) <

ε

2
g(h) +

ε

2
g(yn) < εg(h).

We have shown that, for each ε ∈ (0, 1), there exists δ ∈ (0, 1) such that, for
each interval [a, b] ⊂ (0, δ), if g(a) < δg(x − ε

2g(x)) for each x ∈ [b, 1], then
there exists y ∈ (a, b) such that m(H ∩ (−y, y)) < εg(y). Thus, by Theorem
2.3, H ∈ ψ − S(0).

Theorem 2.5. For each x ∈ R, ψ − S(x) ∩ L ⊂ S0(x).

Proof. We may assume that x = 0. We suppose that there exists a set
A ∈ ψ−S(0)∩L\S0(0). Then there exists a real number α ∈ (0, 1) such that

(7) lim sup
x→0+

m∗(A ∩ [−x, x])

2x
> α

and, by Theorem 2.3, there exists a real number δ ∈ (0, 1) such that

(8) for each interval [a, b] ⊂ (0, δ), if g(a) < δg
(
x− 1

4g(x)
)
for each x ∈ [b, 1],

then there exists y ∈ (a, b) such that m(A ∩ (−y, y)) < 1
2g(y).

Let γ be a real positive number such that γ < δ and, for each x ∈ (0, γ),
ψ(2x) < α. By the continuity of the function x − 1

4g(x), for each b ∈ (0, 1),
there exists a point t(b) ∈ [b, 1] such that

t(b)− 1

4
g(t(b)) = min

{
x− 1

4
g(x) : x ∈ [b, 1]

}
≤ b− 1

4
g(b).

Then, by lim
b→0+

(
t(b)− 1

4g(t(b)
)

= 0 and by the definition of the function g, we

see that

lim
b→0+

g(t(b))

t(b)− 1
4g(t(b))

= 0.
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Thus there exists a real positive number δ1 < γ such that, for any b ∈ (0, δ1)
and x ∈ [b, 1],

g(b) ≤ g(t(b)) < 2αδ

(
t(b)− 1

4
g(t(b))

)
≤ 2αδ

(
x− 1

4
g(x)

)
.

Consequently,
(9) for any b ∈ (0, δ1) and x ∈ [b, 1],

g

(
1

2α
g(b)

)
< g

(
δ

(
x− 1

4
g(x)

))
≤ δg

(
x− 1

4
g(x)

)
.

By A ∈ ψ −S(0), there exists x1 ∈ (0, δ1) such that m(A ∩ [−x1, x1]) < g(x1)
and, by (7), there exists x2 ∈ (0, x1) such that m(A ∩ [−x2, x2]) > 2αx2.
Put

E = {x ∈ [x2, 1] : m(A ∩ [−x, x]) ≤ g(x) }.
Then x1 ∈ E. Set b = minE. Since ψ(2x2) < α, we have that

m(A ∩ [−x2, x2]) > 2αx2 > g(x2)

and x2 < b < x1. Put a = x2. Then

(10) g(b) = m(A ∩ [−b, b]) ≥ m(A ∩ [−a, a]) > 2αa

and
(11) for each t ∈ (a, b), m(A ∩ (−t, t)) > g(t).

Let x ∈ [b, 1]. By (10) and (9),

g(a) < g

(
1

2α
g(b)

)
< δg

(
x− 1

4
g(x)

)
,

for each x ∈ [b, 1]. Therefore, by (8), there exists y ∈ (a, b) such that

m(A ∩ [−y, y]) <
1

2
g(y),

contrary to (11).

Theorem 2.6. There exists an open set H such that H ∈ S0(0) \ ψ − S(0).

Proof. Let b0 ∈ (0, 1) be such that ψ(2b0) < 1
16 and, for each n ∈ N, bn =

1
2n b0. We choose a1 as an arbitrary point of an interval (b2, b1) and, for each
n ≥ 2, put an = bn − g(bn−2). We observe that, for each n ≥ 2,

an = bn − g(bn−2) = 2bn+1(1− 8ψ(2bn−2)) > bn+1.
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Put H =
∞⋃
n=2

(an, bn). We shall show that H /∈ ψ−S(0). Let h ∈ (0, a2]. Then

there exists n ≥ 3 such that h ∈ (an, an−1]. Therefore

m(H ∩ [−h, h]) > bn+1 − an+1 = g(bn−1) > g(h).

Now we shall show that H ∈ S0(0). Let ε > 0. Then there exists n0 ∈ N
such that, for each n ≥ n0, ψ(2bn) < ε

16 . Put δ = an0+1 and let h ∈ (0, δ).
Then there exists n > n0 + 1 such that h ∈ [an, an−1), and

m(H ∩ [−h, h]) ≤
∞∑
k=n

(bk − ak) =

∞∑
k=n

g(bk−2) <
ε

8

∞∑
k=n

bk−2 = ε2bn+1 < ε2h.

Thus
lim
h→0+

m(H ∩ [−h, h])

2h
= 0.

3 ψ-sparse topology

Let ψ ∈ C. For E ∈ L, put

Γψ(E) = {x ∈ R : x is a ψ − sparse point of R \ E}.

Let A ∈ L and B ∈ L. We denote A ∼ B, if m(A4B) = 0, where A4B is the
symmetric difference of A and B.

It is easy to see that the following theorem is true.

Theorem 3.1. Let ψ ∈ C. Then for each A,B ∈ L

1. if A ⊂ B, then Γψ(A) ⊂ Γψ(B);

2. if A ∼ B, then Γψ(A) = Γψ(B);

3. Γψ(∅) = ∅, Γψ(R) = R;

4. Γψ(A ∩B) = Γψ(A) ∩ Γψ(B).

By theorems 3.1, 2.1, 2.4, 2.5 and 2.6, we have the following

Theorem 3.2. Let ψ ∈ C and

τψ = {E ∈ L : E ⊂ Γψ(E)}.

Then τψ is a topology on the real line, stronger than the ψ-density topology Tψ
and weaker than the density topology d.
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