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ON DINI AND APPROXIMATE DINI
DERIVATES OF TYPICAL CONTINUOUS

FUNCTIONS

Abstract

In the thirties, Banach, Mazurkiewicz and Jarńık found relations
connecting Dini derivates of a typical continuous function on [0, 1] at
all points of (0, 1). We prove, answering a question of K. M. Garg,
that there are no further relations of this sort. An analogous result is
proved also for approximate Dini derivates. The aim of this note is to
present relatively simple proofs of these results. An article containing an
improvement of these results in several directions (with a considerably
more complicated proof) is in preparation.

1 Introduction

In what follows we denote by C the space of all continuous real functions on
[0, 1] equipped with the supremum norm ‖ · ‖. We put R∗ = R ∪ {−∞,∞}.

As usual, we say that the typical function in C has a property if all functions
from a residual subset of C (i.e., all functions of C except a first category set)
have this property.

The Dini derivates and the approximate Dini derivates of f at x are denot-
ed by D+f(x), D−f(x), D+f(x), D−f(x) and by D

+

apf(x), D
−
apf(x), D+

apf(x),
D−apf(x), respectively.

It is known that, for a typical function f ∈ C, at every point x ∈ (0, 1) the
following relations hold:
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(i) ([B],[M]) max(|D+f(x)|, |D+f(x)|) = max(|D−f(x)|, |D−f(x)|) =∞,
(ii) ([J1]) [D−f(x), D−f(x)] ∪ [D+f(x), D+f(x)] = R

∗.
It is easy to see that these results can be reformulated as follows:

Theorem 1.1. ([B],[M], [J1]) For a typical function f ∈ C, for every point
x ∈ (0, 1) either

(a) D+f(x) =∞, D−f(x) = −∞ and D+f(x) ≤ D−f(x)

or
(b) D+f(x) = −∞, D−f(x) =∞ and D−f(x) ≤ D+f(x).

A natural problem (cf. [G1], Remark 2 and [G2], p. 466) arises, whether
there are other relations of this sort. The following theorem gives a negative
answer to this question. It was proved by the first named author almost twenty
years ago (cf. [Z1], where this result and its improvements are stated without
a proof).

Theorem 1.2. Let D+, D+, D
−, D− be extended real numbers such that ei-

ther
(a) D+ =∞, D− = −∞ and D+ ≤ D−

or
(b) D+ = −∞, D− =∞ and D− ≤ D+.

Then, for a typical f ∈ C, there exists x ∈ (0, 1) such that

D+ = D+f(x), D+ = D+f(x), D− = D−f(x), D− = D−f(x).

We note that only the cases

D+ =∞, D− = −∞, D+ < D− and {D+, D
−} 6= {−∞,∞}

and

D+ = −∞, D− =∞, D− < D+ and {D−, D+} 6= {−∞,∞}

are new (cf. [G1]). Indeed, the three remaining cases are covered by the
following:

The case D+ = D− = ∞, D+ = D− = −∞ follows from the well-known
result of Jarńık ([J1], cf. [Z1] for further improvements and generalizations)
that, for a typical f ∈ C, almost all point x ∈ (0, 1) are knot points of f , i.e.,
D+f(x) = D−f(x) =∞ and D+f(x) = D−f(x) = −∞.

The case D+ = D+ = D− = ∞, D− = −∞ (and the three symmetrical
cases) is covered by the well-known result of Saks [S].
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The case D+ = ∞, D− = −∞, D+ = D− = r ∈ R (and the three
symmetrical cases) is due to Garg ([G1], Theorem 1, (iii)).

We will also show the approximate analogues of the above results; these
were stated without proof in [Z1](p. 106, Theorem 3). The following approx-
imate analogue of Theorem 1.1 easily follows from [J2] and [Z2].

Theorem 1.3. For a typical function f ∈ C, for every point x ∈ (0, 1) either

(α) D
+

apf(x) =∞, D−apf(x) = −∞ and D+
apf(x) ≤ D−apf(x)

or
(β) D+

apf(x) = −∞, D−apf(x) =∞ and D−apf(x) ≤ D+

apf(x).

Proof. The results of [J2] (cf. [Z1], p. 104, Theorem J, for the formulation
of less known Jarńık’s results on typical continuous functions) immediately
imply that, for a typical f ∈ C, for each x ∈ (0, 1)

max(|D+

apf(x)|, |D+
apf(x)|) = max(|D−apf(x)|, |D−apf(x)|) =∞ and

{∞,−∞} ⊂ {D+

apf(x), D+
apf(x),D

−
apf(x), D−apf(x)},

and therefore either D
+

apf(x) = ∞, D−apf(x) = −∞ or D+
apf(x) = −∞,

D
−
apf(x) =∞.

Theorem 4 (i) of [Z1], p. 106, (which was proved in [Z2]) immediately
implies that, for a typical f ∈ C, D+

apf(x) ≤ D−apf(x) and D−apf(x) ≤ D+

apf(x)
for each x ∈ (0, 1). The statement of the theorem now follows from the fact
that the union of two first category sets is of the first category.

Both Theorem 1.2 and its approximate analogue are special cases of the
following theorem.

Theorem 1.4. Let D+, D+, D
−, D− be extended real numbers such that ei-

ther
(a) D+ =∞, D− = −∞ and D+ ≤ D−

or
(b) D+ = −∞, D− =∞ and D− ≤ D+.

Then, for a typical f ∈ C, there exists x ∈ (0, 1) such that

D+ = D+f(x) = D
+

apf(x), D+ = D+f(x) = D+
apf(x),

D− = D−f(x) = D
−
apf(x), D− = D−f(x) = D−apf(x).
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The rest of the article is devoted to presenting a relatively simple proof of
Theorem 1.4. An article containing its improvement in several directions is
in preparation. These more complicated results (with much more complicat-
ed proofs) also contain the previous improvement of Theorem 1.4 announced
without proof in [Z1] (Theorem 2 on page 106). The basic idea of the proof of
the stronger results in this direction is the same as the one used here to show
Theorem 1.4, but several rather technical refinements are also needed.

In order to include Saks’s result [S] in the present development fully, The-
orem 1.4 should assert that there exists a c-dense set M of points x with the
desired property. In fact, a slight standard refinement of the present proof
suffices to show this. Nevertheless, we do not do it, since the article in prepa-
ration will give (among other things) a satisfactory answer to the question
how big the set M is.

2 Proofs

To prove Theorem 1.4, we will need a number of lemmas. We will use the
following notation.

The open ball in a metric space with the center c ∈ X and the radius r > 0
is denoted by B(c, r).

If M ⊂ R, then |M | denotes the Lebesgue measure of M .

Definition 2.1. Let λ+ < λ−, 0 < τ < 1 be real numbers, J = [y1, y4], I =
[y2, y3] be closed intervals and f ∈ C. We say that f is of type A(λ+, λ−, J, I, τ),
if 0 ≤ y1 < y2 < y3 < y4 ≤ 1, y3−y2 = τ(y4−y3) = τ(y2−y1) and f is linear
on the intervals [y1, y2], [y2, y3], [y3, y4] with the slopes λ−, (λ+ + λ−)/2, λ+,
respectively.

Remark 1.. If f is of type A(λ+, λ−, J, I, τ), then J, I are concentric closed
subintervals of [0, 1] and |J | = 2+τ

τ |I|.

The following simple lemma is basic for the whole proof. Note that it can be
easily generalized; for example, the equalities y3−y2 = τ(y4−y3) = τ(y2−y1)
are not used in its proof.

Lemma 2.2. Let g ∈ C be of type A(λ+, λ−, J, I, τ), 0 < β < (1/8)(λ− −
λ+)|I| and let f ∈ B(g, β) be given. Then there exists x ∈ int I such that

f(y)− f(x)
y − x

≥ λ+ whenever x < y, y ∈ J (1)

and

f(y)− f(x)
y − x

≤ λ− whenever y < x, y ∈ J. (2)



Dini and Approximate Dini Derivates 405

Proof. Let J = [y1, y4], I = [y2, y3]. Put s := (y2 + y3)/2. Consider the
function ψ on [y1, y4] for which ψ(s) = g(s) and which is linear on the intervals
[y1, s], [s, y4] with the slopes λ−, λ+, respectively. Clearly

λ+ ≤ ψ(y)− ψ(x)
y − x

≤ λ− whenever x, y ∈ [y1, y4], x 6= y (3)

and

g(t)− ψ(t) =
1
4

(λ− − λ+)(y3 − y2) whenever t ∈ [y1, y2] ∪ [y3, y4]. (4)

Put m := mint∈[y1,y4] (f(t) − ψ(t)) and choose x ∈ [y1, y4] for which m =
f(x)− ψ(x). Since f(s)− ψ(s) < β, we have m < β. Since m+ ψ(x) = f(x)
and m+ ψ(y) ≤ f(y) for each y ∈ [y1, y4], we easily see that (1) and (2) hold.
Indeed, e.g. for x < y ≤ y4 we have (using also (3))

f(y)− f(x)
y − x

≥ (m+ ψ(y))− (m+ ψ(x))
y − x

=
ψ(y)− ψ(x)

y − x
≥ λ+.

Further

g(x)− ψ(x) = g(x)− f(x) +m < 2β <
1
4

(λ− − λ+)(y3 − y2)

and thus x ∈ (y2, y3) by (4).

The number τ plays an essential role in the following lemma and in its
application.

Lemma 2.3. Let g ∈ C be of type A(λ+, λ−, J, I, τ), β > 0, f ∈ B(g, β) and
x ∈ I be given. Then there exist numbers 0 < h+ < |J |, 0 < h− < |J | such
that∣∣∣∣{y ∈ (x, x+ h+) :

∣∣∣∣f(y)− f(x)
y − x

− λ+

∣∣∣∣ < τ(λ− − λ+) + 4β/|I|}
∣∣∣∣ ≥ h+/2

and∣∣∣∣{y ∈ (x− h−, x) :
∣∣∣∣f(y)− f(x)

y − x
− λ−

∣∣∣∣ < τ(λ− − λ+) + 4β/|I|}
∣∣∣∣ ≥ h−/2.

Proof. Let J = [y1, y4], I = [y2, y3]. Put h+ = y4 − x and K = [(x +
y4)/2, y4]. Choose an arbitrary y ∈ K. Since τ < 1, we have y > y3 and
therefore

g(y)− g(x) =
λ− + λ+

2
(y3 − x) + λ+(y− y3) = λ+(y− x) +

λ− − λ+

2
(y3 − x).
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Consequently∣∣∣∣g(y)− g(x)
y − x

− λ+

∣∣∣∣ =
λ− − λ+

2
y3 − x
y − x

≤ λ− − λ+

2
y3 − y2

(y4 − y3)/2
= τ(λ− − λ+).

Since ∣∣∣∣f(y)− f(x)
y − x

− g(y)− g(x)
y − x

∣∣∣∣ ≤ 2β
(y4 − y3)/2

≤ 4β
|I|
,

we obtain ∣∣∣∣f(y)− f(x)
y − x

− λ+

∣∣∣∣ ≤ τ(λ− − λ+) +
4β
|I|
.

Since |K| = h+/2, this shows that h+ has the desired property. The existence
of h− can be proved in a symmetrical way.

The proofs of the following two almost obvious lemmas will be omitted.

Lemma 2.4. Let ϕ ∈ C, γ > 0 and x ∈ (c, d) ⊂ [0, 1] be given. Then there
exists ξ > 0 such that [x− ξ, x+ ξ] ⊂ (c, d) and∣∣∣∣ϕ(y)− ϕ(x)

y − x
− ϕ(y)−X∗

y − x∗

∣∣∣∣ < γ,

whenever |x∗ − x| < ξ, |X∗ − ϕ(x)| < ξ and y ∈ [0, 1] \ (c, d).

Lemma 2.5. Let ψ ∈ C, γ > 0 and closed intervals I, J such that I ⊂ intJ ⊂
(0, 1) be given. Then there exists ω > 0 such that∣∣∣∣f(y)− f(x)

y − x
− ψ(y)− ψ(x)

y − x

∣∣∣∣ < γ,

whenever f ∈ B(ψ, ω), x ∈ I and y ∈ [0, 1] \ J .

These two lemmas will be used to prove our last lemma.

Lemma 2.6. Let λ+ < λ−, µ+ < µ−, x, δ > 0, τ > 0, α > 0 be real numbers,
I, J be closed intervals and ϕ ∈ C be a piece-wise linear function such that
x ∈ int I, I ⊂ intJ ⊂ (0, 1),

ϕ(y)− ϕ(x)
y − x

≥ λ+ whenever y ∈ J, y > x and

ϕ(y)− ϕ(x)
y − x

≤ λ− whenever y ∈ J, y < x.
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Then there exist closed intervals I∗, J∗, ψ ∈ B(ϕ, α) and ω > 0 such that J∗ ⊂
int I, |J∗| < δ, ψ is of type A(µ+, µ−, J∗, I∗, τ) and the following condition (C)
holds:

(C) If f ∈ B(ψ, ω), x∗ ∈ I∗ and y ∈ J \ J∗, then

f(y)− f(x∗)
y − x∗

≥ min(λ+, µ+)− δ in the case y > x∗ and

f(y)− f(x∗)
y − x∗

≤ max(λ−, µ−) + δ in the case y < x∗.

Proof. It is easy to see that there exists an interval [c, d] ⊂ int I such that
x ∈ (c, d), ϕ is linear on [x, d] with a slope s+

1 ≥ λ+ and ϕ is linear on [c, x] with
a slope s−1 ≤ λ−. Using Lemma 2.4 (for γ := δ/2), we can choose ξ > 0 such
that [x−ξ, x+ξ] ⊂ (c, d) and, if x∗ ∈ (x−ξ, x+ξ) and X∗ ∈ (ϕ(x)−ξ, ϕ(x)+ξ),
then

ϕ(y)−X∗

y − x∗
≥ λ+ − δ/2 for y ∈ J, y ≥ d and (5)

ϕ(y)−X∗

y − x∗
≤ λ− + δ/2 for y ∈ J, y ≤ c.

It is geometrically obvious and easy to prove that there exist closed intervals
I∗, J∗, [u, v] with

x ∈ I∗ ⊂ J∗ = [p, q] ⊂ (u, v) ⊂ (x− ξ, x+ ξ)

and a piece-wise linear function ψ ∈ B(ϕ, α) of type A(µ+, µ−, J∗, I∗, τ) such
that ψ is linear with a slope s+

2 ≥ λ+ on [q, v], ψ is linear with a slope s−2 ≤ λ−
on [u, p], ϕ(t) = ψ(t) for t ∈ [0, 1] \ (u, v) and

ψ(I∗) ⊂ (ϕ(x)− ξ, ϕ(x) + ξ). (6)

By Lemma 2.5, choose ω > 0 such that the following holds:

If f ∈ B(ψ, ω), x∗ ∈ I∗ and y ∈ [0, 1] \ J∗, then

∣∣∣∣f(y)− f(x∗)
y − x∗

− ψ(y)− ψ(x∗)
y − x∗

∣∣∣∣ < δ

2
. (7)

To prove the condition (C), suppose that f ∈ B(ψ, ω), x∗ ∈ I∗ and y ∈
J \ J∗, y > x∗ are given.
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If y > d, then (7), (6) and (5) (used for X∗ := ψ(x∗)) imply

f(y)− f(x∗)
y − x∗

>
ψ(y)− ψ(x∗)

y − x∗
− δ

2
=
ϕ(y)− ψ(x∗)

y − x∗
− δ

2
≥ λ+ − δ.

If x∗ < y ≤ d, then observe that ψ′+(t) ≥ min(λ+, µ+) for each t ∈ [x∗, d].
This fact and (7) give

f(y)− f(x∗)
y − x∗

≥ ψ(y)− ψ(x∗)
y − x∗

− δ

2
≥ min(λ+, µ+)− δ

2
.

Thus we have proved the first part of condition (C). The second part can be
proved in a symmetrical way.

In the following, we will use the Banach-Mazur game in a metric space.
By this we mean the following infinite game between two players:

Let X be a metric space and let Q ⊂ X be given. In the first step the first
player chooses an open ball B(f1, α1). In the second step the second player
chooses an open ball B(g1, β1) ⊂ B(f1, α1), in the third step the first player
chooses an open ball B(f2, α2) ⊂ B(g1, β1), and so on. If

∞⋂
n=1

B(gn, βn) ⊂ Q,

then the second player wins. In the opposite case the first player wins. We
shall need the following theorem.

Theorem 2.7. ([O1]) The second player has a winning strategy in the Banach-
Mazur game if and only if Q is a residual subset of X (i.e., X \ Q is a first
category set).

A proof of this theorem can be found in [O2] in the case X = (0, 1); the
proof in the general situation (cf. [O1]) is essentially the same.

To make the proof of Theorem 1.4 clearer, we will prove first the following
proposition, from which we then easily deduce Theorem 1.4.

Proposition 2.8. Let −∞ ≤ D+ ≤ D− ≤ ∞ be extended real numbers.
Then, for a typical f ∈ C, there exists x ∈ (0, 1) such that D+ = D+f(x) =
D+
apf(x) and D− = D−f(x) = D

−
apf(x).

Proof. We can clearly choose sequences of real numbers (λ+
n )∞1 , (λ

−
n )∞1 such

that

λ+
n < λ−n , λ

+
n → D+, λ

−
n → D−. (8)
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Denote by Q the set of all f ∈ C for which there exists x ∈ (0, 1) such that
D+ = D+f(x) = D+

apf(x) and D− = D−f(x) = D
−
apf(x). By Theorem

2.7 it is sufficient to describe a winning strategy for the second player in the
Banach-Mazur game for X := C and Q.

By our strategy the second player will construct in his pth move not only
a ball B(gp, βp) such that

B(gp, βp) ⊂ B(fp, αp) (9)

but also closed intervals Ip, Jp such that the following conditions hold:

Ip ⊂ intJp ⊂ (0, 1), |Jp| < 1/p and, if p ≥ 2, Jp ⊂ int Ip−1; (10)

If p ≥ 2, x ∈ Ip and f ∈ B(gp, βp), then there exist

numbers 0 < h+ ≤ 1/p, 0 < h− ≤ 1/p such that∣∣∣∣{y ∈ (x, x+ h+) :
∣∣∣∣f(y)− f(x)

y − x
− λ+

p

∣∣∣∣ < 1
p
}
∣∣∣∣ ≥ h+

2
and

∣∣∣∣{y ∈ (x− h−, x) :
∣∣∣∣f(y)− f(x)

y − x
− λ−p

∣∣∣∣ < 1
p
}
∣∣∣∣ ≥ h−

2
; (11)

If p ≥ 2, x ∈ Ip, f ∈ B(gp, βp) and y ∈ Jp−1 \ Jp, then

f(y)− f(x)
y − x

≥ min(λ+
p , λ

+
p−1)− 1

p
for y > x and

f(y)− f(x)
y − x

≤ max(λ−p , λ
−
p−1) +

1
p

for y < x; (12)

For each f ∈ B(gp, βp) there exists a point x ∈ int Ip such that

f(y)− f(x)
y − x

≥ λ+
p for y ∈ Jp, y > x and

f(y)− f(x)
y − x

≤ λ−p for y ∈ Jp, y < x. (13)

First we will prove that the second player can play according to this strat-
egy in all moves.

Thus suppose that, for a fixed natural number n, the second player has
played n−1 moves and the first player has played n moves such that the condi-
tions (9)-(13) hold for each p < n. We know that B(fn, αn) ⊂ B(gn−1, βn−1)
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(if n > 1) and we can clearly suppose without any loss of generality that fn is
a piece-wise linear function. Our task is to construct gn, βn, In, Jn such that
the conditions (9)-(13) hold for p = n.

First consider the case n = 1. Then the conditions (11), (12) are trivially
satisfied for p = n = 1. We can clearly find intervals I1, J1 such that (10)
holds for p = 1 and a function g1 ∈ B(f1, α1) of type A(λ+

1 , λ
−
1 , J1, I1, 1). Now

choose β1 > 0 so small, that (9) holds for p = 1 and β1 < (1/8)(λ−1 − λ
+
1 )|I1|.

Then Lemma 2.2 implies that also (13) holds for p = 1.
Now consider the case n ≥ 2. Since fn ∈ B(gn−1, βn−1) and (13) holds for

p = n− 1, we can choose x ∈ int In−1 such that

fn(y)− fn(x)
y − x

≥ λ+
n−1 for y ∈ Jn−1, y > x and

fn(y)− fn(x)
y − x

≤ λ−n−1 for y ∈ Jn−1, y < x.

Thus the assumptions of Lemma 2.6 are satisfied for

λ+ := λ+
n−1, λ

− := λ−n−1, µ
+ := λ+

n , µ
− := λ−n , x, δ := 1/n,

τ :=
1

2n(λ−n − λ+
n )
, α := αn, I := In−1, J := Jn−1 and ϕ := fn.

Therefore we can choose intervals

I∗ =: In, J∗ =: Jn, ψ =: gn ∈ B(fn, αn) and ω > 0

such that Jn ⊂ int In−1, |Jn| < 1/n, gn is of type A(λ+
n , λ

−
n , Jn, In, τ) and the

condition (C) of Lemma 2.6 holds. Now choose 0 < βn < ω so small that

4βn
|In|

<
1

2n
, βn <

1
8

(λ−n − λ+
n )|In| and B(gn, βn) ⊂ B(fn, αn).

We see that (9) and (10) hold for p = n. Since βn < ω, the condition (C) of
Lemma 2.6 implies that (12) holds for p = n.

Since τ(λ−n − λ+
n ) + 4βn/|In| < 1/n and |Jn| < 1/n, the application of

Lemma 2.3 to

g := gn, λ
+ := λ+

n , λ
− := λ−n , J := Jn, I := In, τ, β := βn

gives the validity of (11) for p = n.
Lemma 2.2 immediately implies that (13) holds for p = n.
To prove that the described strategy is a winning one, suppose that a game

in which the second player used this strategy is over and f ∈
⋂∞
n=1B(gn, βn)

is given. By (10) there exists x ∈
⋂∞
n=1 In ⊂ (0, 1).
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Now we prove the main inequality D+f(x) ≥ D+. In the opposite case we
can choose D+f(x) < q < D+. By (8) there exists n0 such that λ+

n > q+ 1/n
for n ≥ n0. Now consider an arbitrary y > x, y ∈ intJn0 . By condition (10)
we can clearly find p ≥ n0 + 1 such that y ∈ Jp−1 \ Jp. Then we obtain by
(12)

f(y)− f(x)
y − x

≥ min(λ+
p , λ

+
p−1)− 1

p
≥ q,

which contradicts q > D+f(x), since x ∈ intJn0 .
Since the conditions (8) and (11) easily imply D+ ≥ D+

apf(x), we obtain
D+ = D+f(x) = D+

apf(x).

The equations D− = D−f(x) = D
−
apf(x) are proved in a symmetrical way.

Thus f ∈ Q, which completes the proof.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. If

D+ = D− =∞ and D+ = D− = −∞, (14)

then the conclusion of the theorem immediately follows from Jarńık’s result
[J4] which says that, for a typical f ∈ C, almost all x ∈ (0, 1) are essential
knot points of f (for an account on improvements of this Jarńık’s result see
[Z1]).

If the assumption (a) of Theorem 1.4 holds but (14) does not hold, then

either D+ 6= −∞ or D− 6=∞. (15)

Combining Proposition 2.8 and Theorem 1.3 (and the fact that the intersection
of two residual sets is residual), we see that for a typical f ∈ C there exists a
point x ∈ (0, 1) for which D+f(x) = D+

apf(x) = D+, D−f(x) = D
−
apf(x) =

D− and either (α) or (β) of Theorem 1.3 holds. Therefore by (15)

D
+

apf(x) =∞ = D+, D−apf(x) = −∞ = D−

and the conclusion of Theorem 1.4 follows.
The case when (b) holds, but (14) does not hold, is quite symmetrical. It

can be easily reduced to the preceding case using the fact that the mapping
f → −f is a homeomorphism on C and relations between derivates of f and
−f .
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