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ATTAINABLE VALUES FOR UPPER
POROSITIES OF MEASURES∗

Abstract

We consider two definitions of upper porosity of measures and we
prove that the first one only can take the values o and 1

2
and the second

one, the values of 0, 1
2
. or 1.

1 Results.

In this paper we introduce two definitions of upper porosity of a measure (see
Definitions 1 and 2) which range from 0 to 1

2 and from 0 to 1 respectively,
and prove (Theorem 6 and Corollary 7) that actually the first porosity only
can take the extreme values 0 or 1

2 , and the second one takes either the value
0 or the values 1

2 or 1. The other main result of this paper (see Theorem 2,
Corollary 3 and Proposition 4) says that any measure µ which does not satisfy
the doubling condition µ-a.e. has a maximal porosity.

1.1 Porosities of Sets and the Doubling Condition.

Let B(x, r) be the closed ball with center x ∈ Rn and radius r. For A ⊂ Rn,
x ∈ Rn and r > 0, let

p(A, x, r) = sup{ρ : B(z, ρ) ⊂ B(x, r)\A for some z ∈ Rn},

p(A, x) = lim sup
r↓0

p(A, x, r)
r

and

p(A, x) = lim inf
r↓0

p(A, x, r)
r

.
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For x ∈ A, p(A, x, r) takes a value in between 0 and r/2; so p(A, x) and p(A, x)
take values in between 0 and 1

2 . The upper and lower porosity of a set A are
given by

p(A) = inf{p(A, x) : x ∈ A} and p(A) = inf{p(A, x) : x ∈ A}

respectively. The set A is said to be porous if p(A) > 0 and very porous if
p(A) > 0. The set A is said to be strongly porous if p(A) = 1

2 and strongly
very porous if p(A) = 1

2 . The set A is said to be σ-porous (σ-very porous,
σ-strongly porous, σ-strongly very porous) if A is a countable union of porous
(very porous, strongly porous, strongly very porous) sets. Results on porous
sets connected with problems in analysis can be seen in [9] and [10], and results
on Hausdorff dimension of very porous sets can be found in [5] and [8].

The doubling condition is usually imposed in problems of harmonic anal-
ysis, Vitali coverings theorems and tangent measures theory ([1], [2], [4] and
[5]).

A probability measure µ on Rn satisfies the doubling condition at a point
a ∈ Rn if

lim sup
r↓0

µ(B(a, 2r))
µ(B(a, r))

<∞.

1.2 Main Results.

We begin studying the Radon probability measures µ on Rn which do not
satisfy the doubling condition µ-a.e. We prove (see Theorem 2) that any Radon
probability measure µ gives two alternative decompositions of Rn into three
sets:

• the set where the doubling condition holds, a set with arbitrary small
µ-measure and a strongly porous set. This last set is contained in a
very sparse set defined as an intersection of disjointed unions of annuli
of width tending to zero (see Lemma 1 below).

• the set of points where the doubling condition holds, a set of null µ-
measure and a σ-strongly porous set.

The following lemma describes the geometry of the set of points where a
measure does not satisfy the doubling condition.

Lemma 1. Let µ be a Radon probability measure on Rn and let A be the set of
points where µ does not satisfy the doubling condition. Let {λi} be a sequence
of real numbers such that limi→∞ λi = 1 and 0 < λi < 1, i ∈ N. Then for any



Attainable Values for Upper Porosities of Measures 103

ε > 0, there exist a family {xi,j}i,j∈N of points in A and a family {ri,j}i,j∈N
of radii, with ri,j < 1/i for all j ∈ N, such that

µ
(
A\
( ∞⋂
i=1

∞⋃
j=1

Wi,j

))
≤ ε

where Wi,j := B(xi,j , ri,j)\B(xi,j , λiri,j), and for any i ∈ N the balls in the
family {B(xi,j , ri,j)}j∈N are disjointed balls.

This result gives a strong indication that the measures which do not satisfy
the doubling condition are exceptional. In particular we conjecture that an
ergodic measure invariant for a smooth hyperbolic dynamical system in a
n-dimensional manifold must satisfy the doubling condition. We have been
unable to prove this conjecture from Lemma 1, which, however, gives easily
the following result relating porosity to doubling condition.

Theorem 2. Let µ be a Radon probability measure on Rn and let A be the
set of points where µ does not satisfy the doubling condition. The following
statements hold.

(i) For all ε > 0, there is a strongly porous subset A∗ of A such that
µ(A\A∗) ≤ ε.

(ii) There exists a σ-strongly porous subset C of A such that µ(A) = µ(C).

This theorem suggests the following definitions of porosity of a measure.

Definition 1. Let µ be a measure over Rn. We define the upper and lower
porosity of µ as

p(µ) = sup{p(A) : A ⊂ Rn with µ(A) > 0}

and
p(µ) = sup{p(A) : A ⊂ Rn with µ(A) > 0}

respectively. We say that µ is a porous measure if p(µ) > 0 and a very porous
measure if p(µ) > 0. The notions of strongly porous and very strongly porous
measures are defined in the obvious way.

Corollary 3. Let µ be a Radon probability measure on Rn which does not
satisfy the doubling condition µ-a.e. Then p(µ) = 1

2 .

We will use this corollary in proving that any porous measure is a strongly
porous measure (see Theorem 6).
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We now introduce another definition of upper porosity of a measure µ
which is equivalent, when the measure µ satisfies the doubling condition µ-
a.e., to that given in definition 1. We use this equivalence in the proof of
Theorem 6.

Definition 2. The upper porosity por(µ) of µ is given by

por(µ) := inf{s : por(µ, x) ≤ s, µ-a.e x ∈ Rn} (1)

where
por(µ, x) := lim

ε↓0
lim sup

r↓0
por(µ, x, r, ε)

is the upper porosity of µ at x and

por(µ, x, r, ε) := sup{ρ : there is a z ∈ Rn such that B(z, ρr) ⊂ B(x, r)
and µ(B(z, ρr)) ≤ εµ(B(x, r))}.

Notice that por(µ) ranges from 0 to 1. This is the version for the upper
porosity of the following definition of lower porosity por(µ) given by J-P. Eck-
mann, E. Järvenpää and M. Järvenpää in [3]:

por(µ) = inf{s : por(µ, x) ≤ s, µ-a.e. x ∈ Rn}, (2)

where
por(µ, x) := lim

ε↓0
lim inf
r↓0

por(µ, x, r, ε),

is the lower porosity of µ at x.
They prove that por(µ) ≤ p(µ) holds for any Radon probability measure

µ, and if µ satisfies the doubling condition µ-a.e., then por(µ) = p(µ), but
por(µ) > p(µ) may occur if the doubling condition fails to hold µ-a.e. ([3],
example 4). Obvious changes in the proof of these facts give the corresponding
results for the upper porosities of the measure; that is, p(µ) ≤ por(µ) for any
Radon probability measure µ, and if µ satisfies the doubling condition µ-a.e.,
then p(µ) ≥ por(µ), and hence por(µ) = p(µ).

Notice that if µ does not satisfy the doubling condition, por(µ) ≥ p(µ) = 1
2

holds. We prove that in this case por(µ) = 1.

Proposition 4. Let µ be a Radon probability measure on Rn which does not
satisfy the doubling condition µ-a.e. Then por(µ) = 1.

The next lemma characterizes strongly porous measures in terms of their
tangent measures.
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Tangent measures, introduced by Preiss ([7]), have turned out to be a
powerful tool for the study of the local behavior of measures. Given a locally
finite Borel measure µ over Rn, the measure ν is a tangent measure of µ at a
point a if it is a non null locally finite Borel measure and there are sequences
{ci} and {ri} of positive numbers such that {ri} ↓ 0 and

ciTa,ri#µ
w→ ν

where Ta,ri
are the homotheties given by Ta,ri

(x) = x−a
ri
, Ta,ri#µ is the mea-

sure induced by Ta,ri, (i.e. Ta,ri#µ(A) = µ(a+ riA), A ⊂ Rn) and w→ denotes
weak convergence of measures. The set of all such tangent measures is denoted
by Tan(µ, a) and the support of the measure µ is denoted by spt(µ).

Lemma 5. Let µ be a Radon probability measure on Rn satisfying the doubling
condition µ-a.e. Let

B := {a ∈ Rn : there is ν ∈ Tan(µ, a) such that spt(ν) 6= Rn}.

Then p(µ) = 1
2 ⇐⇒ µ(B) > 0.

From this lemma easily follows the main result of this paper:

Theorem 6. Let µ be a Radon probability measure on Rn. Then p(µ) is
either 0 or 1

2 .

Corollary 7. Let µ be a Radon probability measure on Rn. Then por(µ) is
0, 1

2 or 1.

We can only obtain the lower bound 1
4 for the porosity of subsets arbitrarily

close in measure to a given porous set, although it seems likely that this bound
can be improved to 1

2 .

Theorem 8. Let µ be a Radon probability measure on Rn which satisfies
the doubling condition µ-a.e. and let A ⊂ Rn. If p(A) > 0, then for any ε,
0 < ε < µ(A), there is a set A∗ ⊂ A such that µ(A\A∗) ≤ ε and p(A∗) ≥ 1

4 .

Finally we give an example of measures with p(µ) = 1
2 . The proposition

is essentially known to hold (see Theorems 11.11 and 6.9 in [5]). However,
Lemma 5 gives a very simple proof of this result.

Proposition 9. Let µ be a Radon probability measure on Rn and let s < n.
If the set of points a ∈ Rn where

0 < Θs
∗(µ, a) := lim inf

r↓0

µ(B(a, r))
(2r)s

≤ Θ∗s(µ, a) := lim sup
r↓0

µ(B(a, r))
(2r)s

<∞

(3)
has a positive µ measure, then p(µ) = 1

2 .
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Among the measures which this proposition applies to is the restriction
of the s-dimensional Hausdorff measure Hs to a s-dimensional self-similar set
E ⊂ Rn if 0 < Hs(E) <∞ and s < n.

1.3 Complementary Results.

We give other results related to very porous measures and to the doubling
condition. The next lemma is used to characterize very porous measures in
terms of a porosity property of their tangent measures. We denote by U(x, r)
the open ball centered at x and with radius r.

Lemma 10. Let µ be a Radon probability measure on Rn, let A ⊂ Rn and let α
be a constant with 0 < α ≤ 1

2 . The following statement holds for µ-a.e. a ∈ A.
If p(A, a) ≥ α, then for every ν ∈ Tan(µ, a) there is a point y ∈ B(0, 1 − α)
such that ν(U(y, α)) = 0.

From this lemma the following property follows.

Proposition 11. Let µ be a Radon probability measure on Rn, let α be a
constant with 0 < α ≤ 1

2 and let

C := {a ∈ Rn :∀ν ∈ Tan(µ, a) there is an y ∈ B(0, 1− α) such that
ν(U(y, α)) = 0}.

Then p(µ) > α =⇒ µ(C) > 0 and if µ satisfies the doubling condition µ-a.e.,
then µ(C) > 0 =⇒ p(µ) ≥ α.

Finally, we state another property of measures which do not satisfy the
doubling condition at a point a ∈ Rn. Given A ⊂ Rn, we denote by µ |A the
restriction of the measure µ to the set A.

Proposition 12. Let µ be a Radon measure which does not satisfy the doubling
condition at a point a ∈ Rn. Then there is a sequence {ri} ↓ 0 such that the
measures

1
µ(B(a, ri))

Ta,ri#(µ |B(a, ri))

converge weakly to a probability measure on ∂B(0, 1).

2 Proofs.

2.1 Proof of Theorem 2.

Proof of Lemma 1. It is easy to see that µ satisfies

lim sup
r↓0

µ(B(x, r))
µ(B(x, λr))

=∞ (4)
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for all λ ∈ (0, 1) and all x ∈ A. Let {λi}i∈N be any sequence such that
limi→∞ λi = 1 with 0 < λi < 1 for any i ∈ N. Given ε > 0 and x ∈ A,
by (4)

µ(B(x, r))
µ(B(x, λir))

≥ 2i

ε

holds for arbitrarily small values of r. Let Vi be the Vitali class given by

Vi = {B(x, r) : x ∈ A, µ(B(x, r))
µ(B(x, λir))

≥ 2i

ε
and r <

1
i
}.

By the Vitali Covering Theorem (see Theorem 2.8 in [5]), there is a sequence
of pairwise disjoint balls {Bi,j}j∈N ⊂ Vi, Bi,j = B(xi,j , ri,j), such that

µ(A\
∞⋃
j=1

Bi,j) = 0. (5)

For all i, j ∈ N, let B′i,j = B(xi,j , λiri,j) and Wi,j = Bi,j\B′i,j . Then

µ(Bi,j) ≥
2i

ε
µ(B′i,j)

for all i, j ∈ N which, together with (5), gives

µ
(
A\
( ∞⋂
i=1

∞⋃
j=1

Wi,j

))
= µ

( ∞⋃
i=1

(
A\

∞⋃
j=1

Wi,j

))
≤
∞∑
i=1

µ
(
A\

∞⋃
j=1

Wi,j

)
=
∞∑
i=1

µ
(
A
⋂ ∞⋃

j=1

B′i,j

)
≤
∞∑
i=1

ε

2i
µ
( ∞⋃
j=1

Bi,j

)
≤ ε.

Proof of Theorem 2.
i) For ε > 0, let C =

⋂∞
i=1

⋃∞
j=1Wi,j be the set used in Lemma 1 and A∗ =

A ∩ C. Then A∗ ⊂ A and µ(A\A∗) ≤ ε. We now check that p(A∗) = 1
2 .

If x ∈ A∗, then x ∈
⋃∞
j=1Wi,j for all i ∈ N. Therefore, for all i ∈ N,

there is a unique index j(i) such that x ∈ Wi,j(i) = Bi,j(i)\B′i,j(i). Obviously
B′i,j(i) ⊂ B(x, 2ri,j(i))\A∗ so that

p(A∗, x, 2ri,j(i)) ≥ λiri,j(i) (6)

for all i ∈ N. Consider the sequence of radius given by {2ri,j(i)}i∈N. Since
ri,j(i) is the radius of the ball Bi,j(i) we have that ri,j(i) < 1

i for all i, and by
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(6) lim supi→∞
p(A∗,x,2ri,j(i))

2ri,j(i)
≥ 1

2 . Thus, lim supr↓0
p(A∗,x,r)

r ≥ 1
2 and, since

p(A∗,x,r)
r ≤ 1

2 , the result follows.
ii) Let A∗ be as in part i) and let A∗0 = A∗. The argument used in Lemma 1
gives the existence of sets A∗i ⊂ A\(

⋃i−1
k=0A

∗
k) , i ≥ 1 such that

µ(A\
i⋃

k=0

A∗i ) ≤ ε/2i and p(A∗i ) =
1
2
.

Thus the set C =
⋃∞
i=0A

∗
i ⊂ A is a σ-strongly porous set and

µ(C) = lim
i→∞

µ(
i⋃

k=0

A∗k) ≥ µ(A)− lim
i→∞

ε

2i
= µ(A).

Proof of Corollary 3.
The set A∗ of part (i) in Theorem 2 has a positive measure and its upper

porosity is equal to 1
2 .

Proof of Proposition 4.
Let A be the set of points where the doubling condition does not hold, let

{εj} be a sequence in (0, 1) such that limj→∞ εj = 0, and let x ∈ A. Using (4 )
for λ = 1−εj we get that µ(B(x, (1−εj)r)) ≤ εjµ(B(x, r)) holds for arbitrarily
small values of r. Then por(µ, x, r, εj) ≥ (1 − εj) for such values of r and
lim supr→0 por(µ, x, r, εj) ≥ 1− εj . Thus, limj→∞ lim supr→0 por(µ, x, r, εj) ≥
1 and then por(µ, x) = 1 for any x ∈ A. Therefore por(µ) = 1.

2.2 Proof of Theorem 6.

We first introduce results on tangent measures that we need later. In [7] it is
proved that if µ is an almost finite measure over Rn, then Tan(µ, a) 6= ∅ for
µ almost every a ∈ Rn. If µ satisfies the doubling condition at a, then any
sequence {ri} ↓ 0 contains a subsequence {rij} such that

1
µ(B(a, rij ))

Ta,rij
#µ

w→ ν ∈ Tan(µ, a)

([5],Theorem 14.3). Furthermore, for all ν ∈ Tan(µ, a) there are a sequence
{ri} ↓ 0 and a positive number c such that ν = c limi→∞

1
µ(B(a,ri))

Ta,ri#µ

([5], Remark 14.4).
We denote by ∂A the boundary of the set A. Recall that U(x, r) is the

open ball with center at x ∈ Rn and radius r.
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Lemma 13. Let µ be a Radon probability measure on Rn, let D be the set of
points where the doubling condition holds and A ⊂ D. The following statement
holds for µ-a.e. a ∈ A.
If p(A, a) > 0, then there exist a ν∗ ∈ Tan(µ, a) and an open half-space H
such that 0 ∈ ∂H and ν∗(H) = 0.

Proof. Let a ∈ A be a µ-density point of A, that is

lim
r↓0

µ(B(a, r)\A)
µ(B(a, r))

= 0,

let α = p(A, a) > 0 and 0 < ε < α/2. We may select a sequence of radii
{ri} ↓ 0 such that p(A, a, ri) ≥ (α− ε)ri for all i and

1
µ(B(a, ri))

Ta,ri#µ
w→ ν ∈ Tan(µ, a).

Furthermore, since p(A, a, ri) ≥ (α − ε)ri, there is a sequence {zi} of points
such that B(zi, (α − ε)ri) ⊂ B(a, ri)\A for all i. Let yi = zi−a

ri
. By the com-

pactness of B(0, 1−α+ε), there is a subsequence of {yi}, which for simplicity
we also denote by {yi}, such that limi→∞ yi = y ∈ B(0, 1− α+ ε). Thus,

ν(U(y, α− 2ε)) ≤ lim inf
i→∞

1
µ(B(a, ri))

Ta,ri#µ(U(y, α− 2ε))

≤ lim inf
i→∞

1
µ(B(a, ri))

Ta,ri#µ(U(yi, α− ε))

= lim inf
i→∞

1
µ(B(a, ri))

µ(U(zi, ri(α− ε)))

≤ lim inf
i→∞

µ(B(a, ri)\A)
µ(B(a, ri))

= 0.

Thus spt(ν) 6= Rn and there exists ν∗ ∈ Tan(µ, a) and an open half space
H (see the proof of part (3) of Theorem 14.7 in [5]) such that 0 ∈ ∂H, and
ν∗(H) = 0.

Remark 1. This lemma was initially formulated stating that if p(A, a) = α >
0, then there exist y ∈ B(0, 1−α) and ν ∈ Tan(µ, a) such that ν(U(y, α)) = 0.
The present formulation has been possible thanks to an anonymous referee who
gave us the reference of Theorem 14.7 in [5]. This, together with Theorem 8,
allowed us to obtain firstly that p(µ) > 0 implies p(µ) ≥ 1

4 , and afterwards we
improved this result with Theorem 6.



110 M. Eugenia Mera and Manuel Morán

Proof of Lemma 5.
We first prove that p(µ) = 1

2 =⇒ µ(B) > 0. If p(µ) = 1
2 , then for any ε > 0

there is a set E with µ(E) > 0 such that p(E) > 1
2 − ε. Then Lemma 13 gives

µ(B) ≥ µ(E∗) = µ(E) > 0 where E∗ = {x ∈ E ∩D : there is ν ∈ Tan(µ, x)
such that spt(ν) 6= Rn}.

We now prove that µ(B) > 0 =⇒ p(µ) = 1
2 . By Theorem 14.7 in [5],

we know that for any a ∈ B ∩ D there are a measure ν∗ ∈ Tan(µ, a) and
an open half-space H such that 0 ∈ ∂H and ν∗(H) = 0. Since a ∈ D,
there exist a positive constant c and a sequence {ri} ↓ 0 such that ν∗ =

c
1

µ(B(a, ri))
limi→∞ Ta,ri#µ. Since ν∗(H) = 0, there exists a point y ∈ H ∩

∂B(0, 1
2 ) such that for any δ > 0

0 = ν∗(B(y,
1
2
− δ)) ≥ c lim sup

i→∞

1
µ(B(a, ri))

Ta,ri#µ(B(y,
1
2
− δ))

= c lim sup
i→∞

µ(B(a+ riy, ri( 1
2 − δ)))

µ(B(a, ri))
.

Thus, for any ε > 0,
µ(B(zi, ri( 1

2 − δ)))
µ(B(a, ri))

< ε for sufficiently large i, where zi :=

a+riy. Therefore for any δ, ε and a ∈ B∩D, we have that por(µ, a, ri, ε) ≥ 1
2−δ

for sufficiently large i. This implies (see Definition 2) that por(µ) ≥ 1
2 . Since µ

satisfies the doubling condition µ-a.e. and p(µ) ≤ 1
2 , we obtain 1

2 ≤ por(µ) =
p(µ) ≤ 1

2 .

Proof of Theorem 6. If µ does not satisfy the doubling condition µ-a.e,
then Corollary 3 gives p(µ) = 1

2 .
Assume now that µ satisfies the doubling condition µ-a.e. Let α be any

constant with 0 < α < p(µ) and let A be a set with µ(A) > 0 and p(A) ≥ α.
Using Lemma 13 we get that the set

A∗ := {a ∈ A : there is ν ∈ Tan(µ, a) such that spt(ν) 6= Rn}

satisfies that µ(A∗) = µ(A) > 0, and Lemma 5 gives the claim.

Proof of Corollary 7. If µ satisfies the doubling condition µ-a.e, then
p(µ) = por(µ) and the above theorem gives that por(µ) only can take the
values 0 or 1

2 . If µ does not satisfy the doubling condition µ-a.e, then Corollary
7 gives por(µ) = 1.

Notice that actually por(µ) can take this three values: if µ does not satisfy
the doubling µ-a.e., then por(µ) = 1; if (3) holds µ-a.e., then 1

2 = p(µ) =
por(µ); and if the doubling condition holds and p(µ) = 0, then por(µ) = 0.
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2.2.1 Proofs of Theorem 8 and Proposition 9.

Proof of Theorem 8. Since λ := p(A) > 0, the set

B := {a ∈ A ∩D : there is ν ∈ Tan(µ, a) such that spt(ν) 6= Rn}

satisfies µ(B) = µ(A) (see Lemma 13). We now prove that for any ε, 0 < ε <
µ(A), there exists a set A∗ ⊂ B such that µ(B\A∗) ≤ ε and p(A∗) ≥ 1

4 . Since
µ(B) = µ(A), this gives the claim.

Let a ∈ B and ν ∈ Tan(µ, a) such that spt(ν) 6= Rn. Then, there exists
ν∗ ∈ Tan(µ, a) and an open half-space H such that 0 ∈ ∂H and ν∗(H) = 0.
Since a ∈ D, there exist a positive constant c and a sequence {ri} ↓ 0 such
that ν∗ = c limi→∞

1
µ(B(a,ri))

Ta,ri#µ. Since ν∗(H) = 0, there is a point y ∈
H ∩ ∂B(0, 1/2) such that for any δ > 0

0 = ν∗(B(y,
1
2
− δ)) ≥ c lim sup

i→∞

1
µ(B(a, ri))

Ta,ri#µ(B(y,
1
2
− δ))

= c lim sup
i→∞

µ(B(a+ riy, ri( 1
2 − δ)))

µ(B(a, ri))
.

Then, given an ε > 0 and a k > 0, there is an ik such that

µ(B(a+ riy, ri( 1
2 − 2−k)))

µ(B(a, ri))
<

ε

2k
for i > ik.

Let Vk be the Vitali class given by

Vk = {B(a, r) : a ∈ B, r < 1
k

and there is an y ∈ ∂B(0, 1/2) such that

µ(B(a+ ry, r( 1
2 − 2−k)))

µ(B(a, r))
<

ε

2k
}.

By the Vitali Covering Theorem, there is a sequence of pairwise disjoint balls
{Bk,j}∞j=1 ⊂ Vk, Bk,j = B(xk,j , rk,j), satisfying

µ(B\
∞⋃
j=1

Bk,j) = 0. (7)

Since each ball Bk,j ∈ Vk, there is an yk,j ∈ ∂B(0, 1
2 ) such that

µ(B′k,j)
µ(Bk,j)

<
ε

2k
, (8)
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where B′k,j = B(xk,j + rk,jyk,j , ( 1
2 − 2−k)rk,j). Let Wk,j = Bk,j\B′k,j and

A∗ = B
⋂(⋂∞

k=1

⋃∞
j=1Wk,j

)
. Using (7) and (8) we obtain µ(A∗) > µ(B)−ε =

µ(A)− ε. Let x ∈ A∗. Then for all k ∈ N, x ∈
⋃∞
j=1Wk,j . Thus, there is a

unique index j(k) such that x ∈Wk,j(k). Since B′k,j(k) ⊂ B(x, 2rk,j(k))\A∗, we
have that p(A∗, x, 2rk,j(k)) ≥ ( 1

2 − 2−k)rk,j(k) and then p(A∗, x) ≥ 1
4 for all

x ∈ A∗.

Remark 2. Let D be the set of points where the doubling condition holds.
If µ(D) < 1, then, for any ε, 0 < ε < µ(A ∩Dc), there is a set A∗ ⊂ A ∩Dc

such that µ(A∗) ≥ µ(A ∩Dc)− ε and p(A∗) = 1
2 .

Proof of Proposition 9. Let D ⊃ A be the set of points where the doubling
condition holds. Theorem 14.7 in [5] guarantees that for µ-a.e. a ∈ A and every
ν ∈ Tan(µ, a), there is a positive number c such that

tcrs ≤ ν(B(x, r)) ≤ crs, for x ∈ spt(ν), 0 < r <∞,

where t = t(a) = Θs
∗(µ, a)/Θ∗s(µ, a). Therefore, since s < n we have that

spt(ν) 6= Rn for every ν ∈ Tan(µ, a) and µ-a.e. a ∈ A (see [5], Chap. 14, exer.
4). Thus the set

A1 = {a ∈ A : there exists ν ∈ Tan(µ, a) such that spt(ν) 6= Rn}

satisfies µ(A1) = µ(A) > 0, and Lemma 5 gives p(µ) = 1
2 provided µ(D) = 1.

If µ(D) < 1, then Corollary 3 gives the result.

2.3 Proofs of Complementary Results.

Proof of Lemma 10. Let a be a µ-density point of A; that is,

lim
r↓0

µ(B(a, r)\A)
µ(B(a, r))

= 0,

and let ν = limi→∞ ciTa,ri#µ ∈ Tan(µ, a). Then (see Remark 14.4, part (1), in
[5]) there are a subsequence {rij} of {ri} and a constant R > 1 such that ν =
limj→∞

c
µ(B(a,Rrij

))Ta,rij
#µ. Let {εk} be a sequence decreasing to zero. Since

p(A, a) ≥ α, for a given εk, there is an ik such that p(A, a, rij ) ≥ (α−εk)rij for
all ij > ik. The argument used in Lemma 13 gives a point yk ∈ B(0, 1−α+εk)
such that

ν(U(yk, α− 2εk)) ≤ c lim inf
j→∞

µ(B(a, rij )\A)
µ(B(a,Rrij ))

≤ c lim inf
j→∞

µ(B(a, rij )\A)
µ(B(a, rij ))

= 0.
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The sequence {yk} has a subsequence which converges to a point y ∈ B(0, α).
Let δ > 0. There is an index k such that

ν(U(y, α− δ)) ≤ ν(U(yk, α− 2εk)) = 0

and letting δ ↓ 0 the claim follows.

Proof of Proposition 11. We first prove p(µ) > α =⇒ µ(C) > 0. Since
p(µ) > α, there is a set E with µ(E) > 0 such that p(E) ≥ α. Lemma 10 gives
that the set

E∗ = {a ∈ E : for any ν ∈ Tan(µ, a) there exists y ∈ B(0, 1− α)
such that ν(U(y, α)) = 0}

satisfies µ(E∗) = µ(E) > 0 so that µ(C) > 0.
We now prove µ(C) > 0 =⇒ p(µ) ≥ α. Let D be the set of points where

the doubling condition holds. Since µ(D) = 1, p(µ) = por(µ) holds (see (2)).
Then, it is sufficient to prove that for any x ∈ C ∩D and ε > 0,

lim inf
r↓0

por(µ, x, r, ε) ≥ α.

If this is not the case, there are x ∈ C ∩ D, ε > 0, and a sequence of radii
{ri} ↓ 0 such that

por(µ, x, ri, ε) <
p+ α

2
(9)

where p := lim infr↓0 por(µ, x, r, ε). Since x ∈ D there exist a subsequence
{rij} of {ri} and a point y ∈ B(0, 1− α) such that

1
µ(B(x, rij ))

Tx,rij
#µ

w→ ν ∈ Tan(µ, x)

and ν(U(y, α)) = 0. Let δ be a constant with 0 < δ < (α− p)/2. Then,

0 = ν(B(y, α− δ)) ≥ lim sup
i→∞

µ(B(x+ rijy, rij (α− δ))
µ(B(x, rij ))

.

Hence for any ε > 0 there are j0 and zj := x+ rijy such that

µ(B(zj , rij (α− δ)) ≤ εµ(B(x, rij )) and B(zj , rij (α− δ)) ⊂ B(x, rij )

for j > j0. Therefore por(µ, x, rij , ε) ≥ α− δ >
p+α

2 which contradicts (9).
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Proof of Proposition 12. For i ∈ N, let λi = 1 − 2−i. Since µ does not
satisfy the doubling condition at a, it follows that

µ(B(a, r))
µ(B(a, λir))

> 2i

for arbitrarily small values of r. Thus, we may select a sequence {rj} ↓ 0
such that µ(B(a, rj)) > 2jµ(B(a, λjrj)). Let {νj} be the sequence of measures
given by νj = 1

µ(B(a,rj))
Ta,rj#(µ |B(a, rj)) and take R > 0. Then,

νj(B(0, R)) =
µ(B(a, rj) ∩B(a,Rrj))

µ(B(a, rj))
≤ 1,

and sup{νj(K) : j = 1, 2, ...} < ∞ for all compact sets K ⊂ Rn. Therefore
there is a subsequence {νjk} of {νj}, which converges weakly to some measure
ν. It is easy to see that ν is a probability measure on B(0, 1). We now see that
ν(∂B(0, 1)) = 1. Let Ci = B(0, 1)\U(0, λi), then

νjk(Ci) =
µ(B(a, rjk)\U(a, λirjk))

µ(B(a, rjk))

≥ µ(B(a, rjk)\U(a, λjkrjk))
µ(B(a, rjk))

> 1− 2−k for jk > i,

so ν(Ci) ≥ lim supk→∞ νjk(Ci) ≥ 1, and we get ν(∂B(0, 1)) = limi→∞ ν(Ci) =
1.

Final Remark At the time of revising the galley proofs of this paper we
have known that Theorem 6 can also be proved using results of Luděk Zaj́ıček
(see [11]). These results also allow us to prove that Theorem 8 holds with
p(A∗) > c for c arbitrarily close to 1

2 .(see [6]).
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