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ON GENERALIZED CONTINUOUS
MULTIFUNCTIONS AND THEIR

SELECTIONS

Abstract

In this paper a generalized concept of continuous multifunctions has
been studied. The main goal of this paper is to study some properties
concerning a new type of multifunction along with its selections.

1 Introduction.

In recent years a considerable amount of research work has been done relat-
ing to many types of generalized continuous multifunctions. The notion of
quasicontinuity [12] has been studied most intensively. The quasicontinuity is
closely related to other types of continuity introduced by several authors (see
[1], [3], [5], [9]). The notion of upper and lower E-continuous multifunctions
was first introduced by M. Matejdes [8]. In this paper we are interested in
the existence of E-cluster multifunctions, as explored by M. Matejdes in [8],
[9], and [10]. An attempt has been made to investigate some properties of
E-cluster multifunctions together with its selections.

Throughout the paper X, Y are topological spaces. For a subset A of a
topological space Cl(A) denotes the closure of A and ∅ the empty set. Here
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R is the space of real numbers with the usual topology and N stands for the
set of natural numbers. A multifunction is a mapping from X to P (Y ) \ {∅}
where P (Y ) is the power set of Y . We use capital letters F , G, H, etc. to
denote multifunctions. For a multifunction F : X −→ P (Y ) \ {∅} we write
simply F : X −→ Y . A single-valued mapping f : X −→ Y can be considered
as a multifunction as x 7→ {f(x)}, x ∈ X. A multifunction S : X −→ Y
is a submultifunction of F : X −→ Y if S(x) ⊆ F (x) for all x ∈ X. For a
multifunction F : X −→ Y with A ⊆ Y , we write F+(A) = {x ∈ X : F (x) ⊆
A} and F−(A) = {x ∈ X : F (x) ∩A 6= ∅}.

Definition 1. ([1]) A multifunction F : X −→ Y is said to be upper (lower)
semi-continuous at x ∈ X if for each open set V in Y with F (x) ⊆ V (F (x) ∩
V 6= ∅) there exists a neighbourhood U of x such that U ⊆ F+(V ) (U ⊆
F−(V )). A multifunction is called upper (lower) semicontinuous on X if it is
so at each point of X.

Definition 2. ([10]) Let E be a non-empty family of non-empty subsets of
X. A point y ∈ Y is called an E-cluster point of a multifunction F : X −→
Y at x ∈ X if for every open neighbourhood U of x and for every open
neighbourhood V of y there is E ∈ E with E ⊆ U such that E ⊆ F−(V ). The
set of all E-cluster points of F at x ∈ X will be denoted by EF (x) and is called
E-cluster set of F at x.

Definition 3. ([8]) A multifunction F : X −→ Y is said to be upper (lower)
E-continuous at x ∈ X if for each open neighbourhood U of x and each open
set V in Y with F (x) ⊆ V (F (x) ∩ V 6= ∅) there is a set E ∈ E with E ⊆ U
such that E ⊆ F+(V ) (E ⊆ F−(V )). A multifunction is called upper (lower)
E-continuous on X if it is so at every point of X.

For a single-valued mapping f : X −→ Y , upper and lower E-continuity
are same as E-continuity. Let

1. O = {E ⊆ X : E 6= ∅ and open in X},
2. Br = {E ⊆ X : E is second category with the Baire property},
3. B = {E ⊆ X : E is either non-empty open or second category with the

Baire property}
4. B∗ = {E ⊆ X : E is not nowhere dense with the Baire property}.

In the case E = O (= Br = B = B∗), we have the upper (lower) E-continuity
as the usual notion of upper (lower) quasi-continuity ([13]) (Baire continuity
[9], B-continuity [9], and B∗-continuity [5], respectively).
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2 Subcontinuity and Weak-Subcontinuity.

The notion of subcontinuity for a single-valued mapping f : X −→ Y was
introduced by R. V. Fuller in [4]. A multifunction F : X −→ Y is said to
be subcontinuous at x ∈ X ([14]) if whenever {xα}α is a net in X converging
to x and {yα}α is a net in Y with yα ∈ F (xα) for each α, then {yα}α has a
convergent subnet. A multifunction is called subcontinuous on X if it is so at
every point of X. Clearly any multifunction F : X −→ Y is subcontinuous on
X when Y is compact.

For a multifunction F : X −→ Y , Gr(F ) = {(x, y) ∈ X × Y : y ∈ F (x)} is
called the graph of F . A multifunction F : X −→ Y is said to have a closed
graph ([7]) if Gr(F ) is closed in X×Y . It is proved in [14] that a subcontinuous
multifunction with a closed graph is upper semi-continuous. The reader is also
referred to the comprehensive information in [7].

Definition 4. A multifunction F : X −→ Y is said to be weak-subcontinuous
at x ∈ X if for every net {xα}α in X converging to x there is a net {yα}α in
Y with yα ∈ F (xα) for each α such that {yα}α has a convergent subnet. A
multifunction is called weak-subcontinuous on X if it is so at all points of X.

For a single-valued mapping weak-subcontinuity and subcontinuity are
equivalent to each other. However, for a multifunction subcontinuity implies
weak-subcontinuity but the converse is not true.

Example 5. Let F : R −→ R be given by F (x) = [0,∞) = {y ∈ R : y ≥ 0}
for all x ∈ R. Let {xα}α be a net in R converging to x ∈ R. Let yα = 0 for
all α. Clearly 0 is a cluster point of {yα}α. So F is weak-subcontinuous at
x and hence it is weak-subcontinuous on R. Let xn = 0 for all n ∈ N. Then
the sequence {xn}n converges to 0 in R. But the sequence {n}n does not have
any convergent subsequence. So F is not subcontinuous at 0 and hence not
subcontinuous on R.

3 E-Cluster Multifunctions.

On the assumption that EF (x) 6= ∅ for all x ∈ X we can define a multifunction
x 7→ EF (x) for each x ∈ X ([10]). This is called E-cluster multifunction of F .

Example 6. Let f : R → R be given by f(x) =

{
1 x is rational,
0 x is irrational.

Here

Of (x) = ∅ for all x ∈ R, Brf
(x) = Bf (x) =

{
∅ x is rational,
{0} x is irrational

and B?f (x) =
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{0, 1} for all x ∈ R. We want to find the conditions under which EF (x) 6= ∅
for all x ∈ X. Using the concept of E-cluster point we can characterize the
lower E-continuity as follows:

Theorem 7. F : X −→ Y is lower E-continuous at x ∈ X if and only if
Cl(F (x)) ⊆ EF (x).

Proof. Let F : X −→ Y be lower E-continuous at x ∈ X, y ∈ Cl(F (x))
and U , V be open neighbourhoods of x in X and y in Y respectively. Then
F (x) ∩ V 6= ∅. By the lower E-continuity of F at x, there is an E ∈ E with
E ⊆ U such that E ⊆ F−(V ). Therefore y ∈ EF (x) and Cl(F (x)) ⊆ EF (x).

Conversely suppose that Cl(F (x)) ⊆ EF (x). Let U be an open neighbour-
hood of x in X and V be open in Y with F (x)∩V 6= ∅. Suppose y ∈ F (x)∩V .
Then y is an E-cluster point of F at x. Thus there is E ∈ E with E ⊆ U such
that E ⊆ F−(V ). Hence F is lower E-continuous at x.

Remark 8. If F : X −→ Y is lower E-continuous on X then EF (x) 6= ∅ for
all x ∈ X. This follows immediately from Theorem 7. The converse of this is
not true as shown in the following example.

Example 9. Let f : R→ R be given by f(x) =

{
0 x = 1, 2, . . . , n (n finite),
1 otherwise.

Here f fails to be quasicontinuous at each of the points 1, 2, . . . , n but Of (x) 6=
∅ for all x ∈ R since Of (x) = {1} for all x ∈ R.

Theorem 10. If F : X −→ Y is lower E-continuous on X then EF : X −→ Y
is lower E-continuous on X and F is a submultifunction of EF .

Proof. Let F : X −→ Y be lower E-continuous on X. Then clearly from
Theorem 7, F is a submultifunction of EF . Let x ∈ X, U be an open neigh-
bourhood of x in X, and V be open in Y with EF (x) ∩ V 6= ∅. Suppose
y ∈ EF (x) ∩ V . Then y ∈ EF (x) and y ∈ V . Thus there is an E ∈ E with
E ⊆ U such that E ⊆ F−(V ) ⊆ E−F (V ). Hence EF is lower E-continuous at x
and consequently EF is lower E-continuous on X.

Remark 11. The lower E-continuity of EF on X does not necessarily imply
the lower E-continuity of F on X. In Example 9, Of is quasicontinuous on R
but f is not so.

Theorem 12. EF : X −→ Y has a closed graph.

Proof. Let (x, y) ∈ Cl(Gr(EF )) and U , V be open neighbourhoods of x in
X and y in Y respectively. Then Gr(EF ) ∩ (U × V ) 6= ∅. Suppose (x′, y′) ∈
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Gr(EF ) ∩ (U × V ). Then x′ ∈ U and y′ ∈ EF (x′) ∩ V . So there is an E ∈ E
with E ⊆ U such that E ⊆ F−(V ). Hence y ∈ EF (x) and so (x, y) ∈ Gr(EF ).
Therefore Gr(EF ) is closed in X × Y .

Remark 13. EF : X −→ Y has closed values. This follows from Theorem 12.

Remark 14. EF : X −→ Y has compact values when Y is compact.

Theorem 15. If EF : X −→ Y is non-empty valued and Y is compact, then
EF is upper semi-continuous.

Proof. This follows immediately from the fact that a subcontinuous multi-
function with a closed graph is upper semi-continuous.

4 Densely Lower E-Continuous Forms.

Densely continuous forms have been studied very intensively (see [6]). Such a
form φf is defined for any single-valued function f : X −→ Y having a dense
set of continuity points C(f). This φf is a multifunction (possibly empty
valued) such that Gr(φf ) = Cl(Gr(f |C(f))) in X × Y , where f |C(f) is the
restriction of f on C(f) ([6]). Densely lower E-continuous forms E lF can also
be generated by a multifunction F : X −→ Y whose set ClE(F ) of all lower E-
continuity points is dense. Then E lF is a multifunction (possibly empty valued)
such that Gr(E lF ) = Cl(Gr(F |Cl

E(F ))) in X × Y . Clearly E lF : X −→ Y has
closed graph and hence, has closed values. We omit the simple proof of the
following lemma.

Lemma 16. Let F : X −→ Y be a multifunction having dense ClE(F ). Then
E lF (x) = {y ∈ Y : there are nets {xα}α in ClE(F ) converging to x and {yα}α
in Y with yα ∈ F (xα) for each α such that y is a cluster point of {yα}α} for
all x ∈ X. Therefore F (x) ⊆ E lF (x) for all x ∈ ClE(F ).

It follows that E lF is a cluster multifunction generated by the cluster system
E l = {A : ∅ 6= A ⊆ ClE(F )}.

Theorem 17. If F : X −→ Y is weak-subcontinuous on X and ClE(F ) is
dense then E lF is a non-empty valued submultifunction of EF .

Proof. Let x ∈ X. There exists a net {x′α}α in ClE(F ) converging to x
and F is weak-subcontinuous at x. Therefore there is a net {y′α}α in Y with
y′α ∈ F (x′α) for each α such that {y′α}α has a cluster point, which we label y′.
By Lemma 16, y′ ∈ E lF (x) and so E lF (x) 6= ∅.

Let y ∈ E lF (x). Then there are nets {xα}α in ClE(F ) converging to x and
{yα}α in Y with yα ∈ F (xα) for each α such that y is a cluster point of {yα}α.
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Let U , V be open neighbourhoods of x in X and y in Y respectively. Then
there is an index α such that xα ∈ U and yα ∈ V ∩ F (xα). Now F is lower
E-continuous at xα and V ∩F (xα) 6= ∅. Thus there is E ∈ E with E ⊆ U such
that E ⊆ F−(V ). Hence y ∈ EF (x) and consequently E lF (x) ⊆ EF (x).

Remark 18. In Theorem 17, E lF is in general a proper submultifunction of
EF as the following example illustrates.

Example 19. Consider the closed interval [0, 1] with the subspace topology
of the usual topology on R and let T = { 1

n : n ∈ N}. Let F : [0, 1]→ [0, 1] be

given by F (x) =

{
{0, 1} x ∈ T,
{0} otherwise.

Then EF (0) = {0, 1} and E lF (0) = {0}

where E = {A ⊆ [0, 1] : A is not finite}.

Theorem 20. If F : X −→ Y is weak-subcontinuous on X and if the set
ClO(F ) of all lower quasicontinuity points is dense and open then OlF is lower
quasicontinuous on X.

Proof. Let x ∈ X, U be an open neighbourhood of x in X, and V be open
in Y such that OlF (x) ∩ V 6= ∅. By Theorem 17, OlF (x) ⊆ OF (x). Then
OF (x) ∩ V 6= ∅. Suppose y ∈ OF (x) ∩ V . Then there is a G ∈ O with G ⊆ U
such that G ⊆ F−(V ). Since ClO(F ) is dense and open, H = ClO(F )∩G ∈ O.
Let h ∈ H. Then F (h) ∩ V 6= ∅ and by Lemma 16, F (h) ⊆ OlF (h). So
OlF (h) ∩ V 6= ∅. Hence OlF is lower quasicontinuous at x and therefore lower
quasicontinuous on X.

5 Selection of E-Cluster Multifunctions.

A single-valued mapping f : X −→ Y is called a selection of a multifunction
F : X −→ Y if f(x) ∈ F (x) for all x ∈ X. M. Matejdes proved the following
theorem in [8].

Theorem 21. Let X be a T1-space and Y be a compact metric space. If
F : X −→ Y is upper Baire continuous with compact values then F admits a
quasicontinuous selection.

J. Cao and W.B. Moors give the following extension of Theorem 21 in [2].

Theorem 22. Let Y be a regular T1-space. If F : X −→ Y is upper Baire
continuous with compact values then F admits a quasicontinuous selection.

Using Remark 14 and Theorems 15 and 22, it easily follows that:
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Theorem 23. Let X be a Baire space and Y be a compact T2-space. If EF :
X −→ Y has non-empty values then EF admits a quasicontinuous selection.

M. Matejdes proved the following theorem in [11] which is an elegant gen-
eralization of the result of [8].

Theorem 24. Let Y be a T2-space and F : X −→ Y be a compact-valued upper
E-continuous multifunction. Then F has a compact-valued submultifunction
for which any selection is E-continuous.

Theorem 25. Let Y be a compact T2-space. If EF : X −→ Y has non-empty
values then EF has a compact-valued submultifunction for which any selection
is quasicontinuous.

Proof. By Remark 14 and Theorem 15, EF : X −→ Y is compact-valued
and upper semi-continuous and hence upper quasicontinuous on X. Again
by Theorem 24, EF has a compact-valued submultifunction for which any
selection is quasicontinuous.

Note that a multifunction F : X −→ Y is said to have an E-closed graph
[11] if EF : X −→ Y is a submultifunction of F . Now if the set of lower
E-continuity points of F : X −→ Y is dense and if Y is compact then EF :
X −→ Y is non-empty valued. So from Theorem 25, it readily follows that:

Theorem 26. Let Y be a compact T2-space and let the set of lower E-continuity
points of F : X −→ Y be dense. If F has an E-closed graph then F admits a
quasicontinuous selection.

Remark 27. The compactness in Theorems 25 and 26 cannot be omitted as
illustrated by the example function f(x) = 1

x for x 6= 0 and f(0) = 0.
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