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ASYMPTOTIC STRUCTURE OF BANACH
SPACES AND RIEMANN INTEGRATION

Abstract

In this paper we focus on the Lebesgue property of Banach spaces.
A real Banach space X is said to have the Lebesgue property if any
Riemann integrable function from [0, 1] into X is continuous almost ev-
erywhere on [0, 1]. We obtain a partial characterization of the Lebesgue
property, showing that it has connections with the asymptotic geometry
of the space involved.

1 Introduction.

This section will give some historical background. In 1972, R. Redjouani et
al. [15, 17] were the first to show that `1 has the Lebesgue property (or is a
Lebesgue space, for short). On the other hand, it can easily be seen that the
so-called classical Banach spaces including `p for 1 < p < ∞, c0, and Lp for
1 ≤ p < ∞ do not have the Lebesgue property. Moreover, all these spaces
except L1 do not contain any subspace having the Lebesgue property.

In 1984, R. Haydon [8] proved that if a stable Banach space with uniformly
separable types has the Schur property, then it has the Lebesgue property.
Recall that a real Banach space X is said to have the Schur property (or
to be a Schur space, for short) if each weakly null sequence in X converges
in norm. The reader should refer to [10, 7] for an extensive study of stable
Banach spaces and types. In particular, it follows from this result that a Schur
subspace of L1 has the Lebesgue property. We ought to observe at this point
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that the same immediately follows from the weak property of Lebesgue of L1

[20]. In the same paper Haydon went on to prove that a stable Lebesgue
space is necessarily a Schur space. To this end he employed an unpublished
result attributable to A. Pe lczyński and G. C. da Rocha Filho which states
that each spreading model of a Lebesgue space is equivalent to the standard
unit vector basis of `1. We will present our proof of this important fact below.
In the remainder of his paper Haydon provided a rather lengthy construction
of a stable Schur space failing the Lebesgue property. We will give another
example of a Schur space which does not have the Lebesgue property that
is simpler than Haydon’s. Nevertheless, we make note of the fact that both
constructions are based on the dyadic tree.

In 1991, R. Gordon [6] published the first truly non-classical example of a
Lebesgue space; the Tsirelson space T . T , being close to `1 in an asymptotic
sense, is reflexive and does not contain an isomorphic copy of either `p for
1 ≤ p < ∞ or c0. We extend Gordon’s result to prove that an asymptotic `1

Banach space has the Lebesgue property.

2 Notation and Preliminaries.

In this section we set notation related to Banach spaces and the Riemann
integral and prove some preliminary facts.

2.1 Banach Spaces.

In what follows X denotes a real Banach space and X∗ its dual. c00 denotes
the linear space of all real sequences that are finitely non-zero and {ei}∞i=1 its
standard unit vector basis.

Let {ui} be a sequence in a Banach space. [ui] denotes the closed linear
span of {ui}. {ui} is said to be normalized if ‖ui‖ = 1 for each i.
{ui} is said to be a basis in X, if each x ∈ X has a unique expansion of

the form
∑
i aiui. {ui} is called a basic sequence if it is a basis in [ui]. A

sequence of non-zero vectors {ui} is basic (C-basic) if and only if there exists
C ≥ 1 such that ‖

∑m
i=1 aiui‖ ≤ C ‖

∑n
i=1 aiui‖ for all {ai}ni=1 ⊂ R and for all

m ≤ n.
A basic sequence {ui} is said to be unconditional (C-unconditional) if

there exists a constant C ≥ 1 such that ‖
∑n
i=1 εiaiui‖ ≤ C ‖

∑n
i=1 aiui‖ for

all {ai}ni=1 ⊂ R and any sequence of signs {εi = ±1}ni=1. It is useful to note
that if {ui} is C-unconditional, then∥∥∥∑n

i=1
λiaiui

∥∥∥ ≤ C maxi |λi| ·
∥∥∥∑n

i=1
aiui

∥∥∥
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for all {ai}ni=1 ⊂ R and for all {λi}ni=1 ⊂ R (see [11, Proposition 1.c.7]). In
particular, a sequence of non-zero vectors {ui} is 1-unconditional if and only
if ‖

∑n
i=1 εiaiui‖ = ‖

∑n
i=1 aiui‖ for all {ai}ni=1 ⊂ R and for any sequence of

signs {εi = ±1}ni=1.
A basic sequence {ui} is said to be suppression-C-unconditional, if∥∥∥∑

i∈I
aiui

∥∥∥ ≤ C ∥∥∥∑n

i=1
aiui

∥∥∥
for all {ai}ni=1 ⊂ R and for any I ⊂ {1, . . . , n}.

It is not hard to see that a suppression-C-unconditional sequence is 2C-
unconditional. Conversely, C-unconditional sequence is always suppression-
C-unconditional.

Basic sequences {ui} and {vi} are called C-equivalent for some C ≥ 1, if

C−1
∥∥∥∑n

i=1
aivi

∥∥∥ ≤ ∥∥∥∑n

i=1
aiui

∥∥∥ ≤ C ∥∥∥∑n

i=1
aivi

∥∥∥
for all {ai}ni=1 ⊂ R. A basic sequence {ui} is C-subsymmetric, if {ui} is C-
equivalent to any its subsequence {u′i}. Note that if {ui} is 1-subsymmetric,
then ‖a1u1 + · · · + anun‖ = ‖a1uk1 + · · · + anukn‖ for all k1 < · · · < kn and
for all {ai}ni=1 ⊂ R.

A non-zero vector x of the form
∑n
i=m aiui, {ai}ni=m ⊂ R, is called a block

vector (or a block, in short) with respect to a fixed sequence {ui}. Denote the
set of all integers i for which ai 6= 0 by suppx. We write x < y for two blocks
x and y, if max suppx < min supp y. Blocks x1, . . . , xn are called successive
provided x1 < · · · < xn. Note that successive blocks {xi} with respect to a
C-basic sequence form a C-basic sequence.

Let x be a vector of the form
∑
i aiui and I, J be non-empty sets of

integers. In this case, we write Ix =
∑
i∈I aiui and I < J , if max I < min J .

2.2 Riemann Integration.

In this section we will sharpen Theorems 3 and 5 of [6]. To begin with, we
briefly recall the standard terminology related to the Riemann integral as
presented in [6]. A partition P of [a, b] is a finite set of points {a = t0 < t1 <
· · · < tN = b}. A tagged partition T of [a, b] consists of a partition {ti}Ni=0

of [a, b] and a finite set of tags {τi}Ni=1 that satisfy τi ∈ [ti−1, ti] for each
i. The points {ti}Ni=0 are called the points of T , the intervals {[ti−1, ti]}Ni=1

are called the intervals of T , and the norm |T | of T is defined by |T | =
max1≤i≤N (ti − ti−1). If f : [a, b] → X, then f(T ) denotes the Riemann sum∑N
i=1 f(τi)(ti − ti−1). A tagged partition T of [a, b] refines a partition P of

[a, b] if each point of P is simultaneously a point of T . Finally, we say that
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a tagged partition is an interior tagged partition if each tag of the tagged
partition lies in the interior of its interval.

Definition 1. Let f : [a, b]→ X.

(i) f is Rδ integrable (resp. R∗δ integrable) on [a, b] if there exists a vector
z ∈ X such that for each ε > 0 there is δ > 0 so that ‖f(T ) − z‖ < ε
whenever a tagged partition (resp. an interior tagged partition) T of
[a, b] satisfies |T | < δ.

(ii) f is R∆ integrable (resp. R∗∆ integrable) on [a, b] if there exists a vector
z ∈ X such that for each ε > 0 there is a partition Pε of [a, b] so that
‖f(T ) − z‖ < ε whenever a tagged partition (resp. an interior tagged
partition) T of [a, b] refines Pε.

A standard argument shows that a function integrable on [a, b] in each of
the above four senses must be bounded on [a, b].

Theorem 1. A function f : [a, b]→ X is R∆ integrable (resp. R∗∆ integrable)
on [a, b] if and only if it is Rδ integrable (resp. R∗δ integrable) on [a, b].

Proof. The proof of the theorem is completely analogous to that of Theorem
3 of [6] and is omitted.

Lemma 1. Suppose that f : [a, b] → X and supt∈[a,b] ‖f(t)‖ = M < ∞. If
positive numbers ε and δ satisfy δ < ε/4M , then for any tagged partition T
of [a, b] that satisfies |T | < δ/4 there exists an interior tagged partition T ∗ of
[a, b] such that ‖f(T )− f(T ∗)‖ < ε and |T ∗| < δ.

Proof. Assume without loss of generality that T = {(τk, [tk−1, tk])}Kk=1,
|T | < δ/2, and τ1 < τ2 < · · · < τK . Set K0 = {k ∈ {2, . . . ,K−1} : τk = tk−1}
and K1 = {k ∈ {2, . . . ,K − 1} : τk = tk}.

Now we construct the interior tagged partition T ∗ = {(τ∗k , [t∗k−1, t
∗
k])}Kk=1

of [a, b] as follows. Choose τ∗1 ∈ (a, t1) and τ∗K ∈ (tK−1, b) freely. Let τ∗k be
equal to τk for 1 < k < K. Next, if k ∈ K0, then choose t∗k−1 ∈ (τ∗k−1, tk−1)
so that tk−1 − t∗k−1 < δ/K. If k ∈ K1, then choose t∗k ∈ (tk, τ∗k+1) so that
t∗k − tk < δ/K. The remaining points of T ∗ are equal to the corresponding
points of T . We have

‖f(T )− f(T ∗)‖ ≤ 4M · δ
2

+ 2M
∑K−1

k=2

δ

K
< ε

which is what we desired.

Theorem 2. If a function f : [a, b] → X is R∗δ integrable on [a, b], then f is
Rδ integrable on [a, b].
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Proof. Let z be the R∗δ integral of f over [a, b]. Fix ε > 0 and set M =
supt∈[a,b] ‖f(t)‖ <∞. There exists 0 < δ < ε/8M such that ‖f(T ∗)−z‖ < ε/2
whenever an interior tagged partition T ∗ of [a, b] satisfies |T ∗| < δ. Let T
be a tagged partition of [a, b] that satisfies |T | < δ/4. By Lemma 1 we have

‖f(T )− z‖ ≤ ‖f(T ∗)− z‖+ ‖f(T )− f(T ∗)‖ < ε

2
+
ε

2
= ε.

Thus, the above four notions of the Riemann integrability are equivalent
and we make the following definition.

Definition 2. A function f : [a, b]→ X is Riemann integrable on [a, b] if f is
either Rδ or R∗δ or R∆ or R∗∆ integrable on [a, b].

Theorem 3. Let f : [a, b]→ X. If for each ε > 0 there exists a partition Pε

of [a, b] such that ‖f(T1) − f(T2)‖ < ε for all interior tagged partitions T1

and T2 of [a, b] that have the same points as Pε, then f is Riemann integrable
on [a, b].

Proof. Gordon’s proof of (4) ⇒ (3) in Theorem 5 of [6] can be adapted to
prove the theorem.

3 Spreading Models of a Lebesgue Space.

The theory of spreading models is an important application of the Ramsey
theory to Banach spaces. A spreading model arises from a normalized basic
sequence and provides a way of studying the asymptotic nature of a Banach
space. Some facts about spreading models are gathered in [16]. It is a well-
known consequence of Rosenthal’s `1 theorem [18] that each spreading model
of a Schur space is equivalent to the standard unit vector basis of `1. In
this section we demonstrate that the same property is fulfilled for a Lebesgue
space. It has been widely noted that the Schur property is closely related to
weak versions of the Riemann integral (see [6, 9, 21]).

We begin with two auxiliary facts concerning normalized 1-subsymmetric
sequences. The first, Lemma 2, is actually Lemma I.1 of [3].

Lemma 2. If {ei}∞i=1 is a normalized 1-subsymmetric sequence, then the se-
quence {e2i−1 − e2i}∞i=1 is suppression-1-unconditional.

The second, Lemma 3, is a compilation of Lemmas III.2 and II.3 of [3].
However, we present complete proof for the reader’s convenience.

Lemma 3. Let {ei}∞i=1 be a normalized 1-subsymmetric sequence. If

‖e1 − e2 + · · ·+ e2n−1 − e2n‖ ≥ nδ
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for some δ > 0 and for all n ∈ N, then {ei}∞i=1 is 4δ−1-equivalent to the
standard unit vector basis of `1.

Proof. Fix a sequence of signs {εi = ±1}ni=1. It follows that

‖ε1e1 + · · ·+ εnen‖ = ‖ε1e1 + · · ·+ εne2n−1‖ = ‖ − ε1e2 − · · · − εne2n‖.

By Lemma 2 we have

2‖ε1e1 + · · ·+ εnen‖ ≥ ‖ε1(e1 − e2) + · · ·+ εn(e2n−1 − e2n)‖

≥ 1
2
· ‖e1 − e2 + · · ·+ e2n−1 − e2n‖ ≥

nδ

2
.

Now fix {pi}ni=1 ⊂ N. Let v1 = ε2p2e2 + · · ·+ εnpnen and w1 = ε2p2ep1+1 +
· · ·+ εnpnep1+···+pn−1+1. We have ‖ε1e1 + v1

p1
‖ = ‖ε1ej + w1

p1
‖ for j = 1, . . . , p1.

Summing up these equalities, we obtain ‖ε1p1e1+v1‖ ≥ ‖ε1(e1+· · ·+ep1)+w1‖.
Let v2 = ε1(e1 + · · ·+ep1)+ ε3p3e3 + · · ·+ εnpnen and w2 = ε1(e1 + · · ·+ep1)+
ε3p3ep1+p2+1 + · · ·+εnpnep1+···+pn−1+1. We have ‖ε2e2 + v2

p2
‖ = ‖ε2ep1+j+ w2

p2
‖

for j = 1, . . . , p2. Summing up these equalities, we obtain ‖ε2p2e1 + v2‖ ≥
‖ε2(ep1+1 + · · ·+ ep1+p2) + w2‖. Continuing this process for n steps, we get

‖ε1p1e1 + · · ·+ εnpnen‖ ≥ ‖ε1(e1 + · · ·+ ep1) + ε2(ep1+1 + · · ·+ ep1+p2)

+ · · ·+ εn(ep1+···+pn−1+1 + · · ·+ ep1+···+pn)‖ ≥ (p1 + · · ·+ pn) · δ
4

from which it follows that {ei}∞i=1 is 4δ−1-equivalent to the standard unit
vector basis of `1.

Definition 3. Let {ei}∞i=1 be a normalized basic sequence. A basic sequence
{si}∞i=1 is said to be a spreading model of {ei}∞i=1 if for some sequence of
positive numbers εn ↓ 0 and for all {ai}ni=1 ⊂ [−1, 1] we have∣∣∣∥∥∥∑n

i=1
aieki

∥∥∥− ∥∥∥∑n

i=1
aisi

∥∥∥∣∣∣ < εn

whenever n ≤ k1 < · · · < kn.

A spreading model is necessarily 1-subsymmetric. It is well known that
each normalized basic sequence has a subsequence with a spreading model. If
{ei} is weakly null, then {si} is suppression-1-unconditional. For the proofs
of these results see, for example, [16, Theorem 2.2] and either [16, Proposition
2.3] or [3, Lemma I.2], respectively.

Let D =
{
dkj = 2j−1

2k

}
k=1,2,...,j=1,...,2k−1 be the set of dyadic rational

numbers in (0, 1). Given n ∈ N, there is a unique pair (k, j) such that k ∈ N,
j ∈ {1, . . . , 2k−1} and n = 2k−1 + j − 1. Let dn = dkj . Then we have
D = {d1, d2, . . . }.
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Theorem 4. Let {ei}∞i=1 be a normalized C-basic sequence in X with a spread-
ing model {si}∞i=1. Then the following three are equivalent:

(i) The function f : [0, 1] → X such that f(di) = ui = e2i − e2i+1 and
f(t) = 0 for t 6∈ D is not Riemann integrable on [0, 1].

(ii) lim
n→∞

‖s1 − s2 + · · · − s2n‖/2n > 0.

(iii) ‖s1 − s2 + · · ·+ s2n−1 − s2n‖ ≥ nδ for some δ > 0 and for all n ∈ N.

Proof. (i)⇒ (ii). Suppose that ‖s1− s2 + · · · − s2n‖/2n → 0 as n→∞. Fix
ε > 0. Choose N ∈ N so that∥∥∥s1 − s2 + · · · − s2N

2N

∥∥∥ < ε

4C
and ε2N <

ε

2C
.

Fix τj ∈
(
j−1
2N−1 ,

j
2N−1

)
for j = 1, . . . , 2N−1. Then

{f(τ1), . . . , f(τ2N−1)} \ {0} = {uk1 , . . . , ukn}

for some k1 < · · · < kn. We have n ≤ 2N−1 ≤ k1 < · · · < kn < kn+1 =
kn + 1 < · · · < k2N−1 = kn + 2N−1 − n. Hence

‖f(τ1) + · · ·+ f(τ2N−1)‖ =‖uk1 + · · ·+ ukn‖ ≤ C‖uk1 + · · ·+ uk2N−1‖
≤C‖s1 − s2 + · · · − s2N ‖+ C|‖uk1 + · · ·+ uk2N−1 ‖

− ‖s1 − s2 + · · · − s2N ‖| < C · ε
4C
· 2N + C · ε2N

<
ε

2
· 2N−1 +

ε

2
≤ ε · 2N−1,

and, by Theorem 3, f is Riemann integrable on [0, 1].
(ii) ⇒ (i). Suppose that limn→∞ ‖s1 − s2 + · · · − s2n‖/2n > 0. It follows

that there exist δ > 0 and a sequence of positive integers Nk ↗∞ such that∥∥∥s1 − s2 + · · · − s2Nk
2Nk

∥∥∥ > δ for all k.

Choose tags τj = dNk j = 2j−1
2Nk

∈
(
j−1

2Nk−1 ,
j

2Nk−1

)
for j = 1, . . . , 2Nk−1 and

K ∈ N so that ε2NK < δ/2. Then

2−Nk‖f(τ1) + · · ·+ f(τ2Nk−1)‖ ≥2−Nk‖s1 − s2 + · · · − s2Nk ‖
− 2−Nk |‖s1 − s2 + · · · − s2Nk ‖
− ‖f(τ1) + · · ·+ f(τ2Nk−1)‖| > δ/2

whenever k ≥ K. This contradicts the Riemann integrability of f on [0, 1].
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(ii) ⇒ (iii). Fix n ∈ N and k ∈ N for which 2n · 2−Nk < δ/2. Let
2Nk = 2mn+ r, where m ∈ N and 0 ≤ r < 2n. We have

δ · 2Nk <‖s1 − s2 + · · · − s2Nk ‖
≤‖s1 − s2 + · · · − s2mn‖+ ‖s2mn+1 + · · · − s2mn+r‖.

Hence

δ

2
· 2mn ≤ δ

2
· 2Nk < ‖s1 − s2 + · · · − s2mn‖ ≤ m · ‖s1 − s2 + · · · − s2n‖.

(iii)⇒ (ii). The proof is clear.

Theorem 5. If X has the Lebesgue property, then each spreading model of X
is equivalent to the standard unit vector basis of `1.

Proof. Let {e}∞i=1 be a normalized C-basic sequence in X with spreading
model {si}∞i=1. Consider the sequence {ui = e2i − e2i+1}∞i=1. We have

1 = ‖e2i‖ ≤ C‖e2i − e2i+1‖ = C‖ui‖.

It follows that 2 ≥ ‖ui‖ ≥ C−1 and the function f from item (i) of Theorem 4
is bounded and discontinuous everywhere on [0, 1]. Since X has the Lebesgue
property, f is not Riemann integrable on [0, 1]. Thus {si}∞i=1 satisfies the
estimate of item (iii) of Theorem 4. Finally, it follows from Lemma 3 that
{si}∞i=1 is equivalent to the standard unit vector basis of `1.

Remark. An application of Rosenthal’s `1 theorem [18] together with some
standard arguments show that a Banach space that satisfies the conclusion
of Theorem 5 is necessarily `1-convex (see [14]). The converse is not true.
For example, the Lorentz sequence space d(w, 1) (see [11, Definition 4.e.1])is
`1-convex and its standard unit vector basis is 1-subsymmetric and, clearly,
not equivalent to that of `1.

The remainder of this section will give a construction of a Schur space E
failing the Lebesgue property. The construction of the space E is borrowed
from Talagrand’s paper [19]. However, our notation is slightly different from
that in [19].

Consider the set T =
⋃∞
n=0 Tn, Tn = {0, 1}n. Given s = (s0, . . . , sn−1) ∈

Tn and t = (t0, . . . , tm−1) ∈ Tm. Let s�t = (s0, . . . , sn−1, t0, . . . , tm−1) ∈ Tn+m.
We write s ≺ t, if t = s � q for some q ∈ T . Then (T,≺) is the usual dyadic
tree. For each t ∈ T there exists a unique |t| ≥ 0 such that t ∈ T|t|. If A is a
finite non-empty subset of T , then the stem s(A) of A is the maximal s ∈ T
that satisfies s ≺ t for all t ∈ A and |A| = max{|t| : t ∈ A}.
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Let R(T ) denote the set of real functions g on T that have finite support
supp g and let {et}t∈T be the standard unit vector basis in R(T ). Let s(g) =
s(supp g), |g| = | supp g|, and 〈 g , h 〉 =

∑
t∈T gt · ht for g, h ∈ R(T ).

We start with H0 = {et}t∈T and write H1 =
⋃∞
n=1H

n
1 , where

Hn
1 =

{
4−1

∑
t∈A={t1,...,tp}

et : |s(A)| ≥ n, s({ti+1, . . . , tp}) ≥ |ti|
}
.

Next, write H2 =
⋃∞
n=1H

n
2 , where

Hn
2 =

{
g = 4−1

∑p

i=1
gi :gi ∈ Hki

1 , |gi| < ki+1 for some k1 = n < . . .

< kp, |s(g)| ≥ n, |s(gi+1 + · · ·+ gp)| ≥ |gi|
}
.

We continue this process by induction. For each g ∈ Hm we have g =
4−m

∑
t∈A et. Moreover, if B ⊂ A, then 4−m

∑
t∈B et ∈ Hm. Let H

′

be the set of finite sums of the form
∑
m≥2 gm where gm ∈ Hm. Finally,

H = H0

⋃
H1

⋃
H
′
.

Denote, by E, the completion of R(T ) with respect to the norm ‖ · ‖ =
supg∈H |〈 g , · 〉|. Clearly, we have ‖et‖ = 1. In spite of the fact that E is a
Schur space [19], E actually contains “very few” sequences which are equiva-
lent to the standard unit vector basis of `1 and does not have the Lebesgue
property.

Dyadic rational numbers can in a natural way be indexed by T . Each
d ∈ D has a unique expression of the form

d =
1
2

+
n−1∑
k=0

sk − 1
2

2k+1

for some n ≥ 0. So, to a fixed d ∈ D assign ϕ(d) = (s0, . . . , sn−1) ∈ Tn. Let
f : [0, 1]→ E be a function such that f(d) = eϕ(d) for d ∈ D and f(t) = 0 for
t 6∈ D. Evidently, f is discontinuous everywhere on [0, 1].

Lemma 4. Suppose that n ∈ N and τj ∈
(
j−1
2n ,

j
2n

)
for j = 1, . . . , 2n. Then

0 ≤ 〈 g , f(τ1) + · · ·+ f(τ2n) 〉 ≤ 1 for all g ∈ H.

Proof. Let {f(τ1), . . . , f(τ2n)} \ {0} = {et1 , . . . , etp}. Note that |ti| ≥ n for
i = 1, . . . , p and |s({ti, tj})| < n for j 6= i. Fix g ∈ H. If g ∈ H0, then the
inequality is obvious. If g ∈ H1, then it follows from the definition of H1 that
the set A = supp g ∩ {t1, . . . , tp} has at most two elements and, hence, the
inequality is valid. By induction we obtain that A has at most two elements
for g ∈ Hm when m ≥ 2. Thus for g ∈ H ′ we have

〈 g , f(τ1) + · · ·+ f(τ2n) 〉 ≤ 2
∑∞

m=2
4−m = 1/6
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and our lemma is proved.

Now it follows from the definition of the norm that ‖f(τ1)+ · · ·+f(τ2n)‖ ≤
1. And, by Theorem 3, the function f is Riemann integrable on [0, 1]. This in
turn means that E does not have the Lebesgue property.

4 Asymptotic `1 Banach Spaces.

The Tsirelson space T has the Lebesgue property. The proof of this fact was
first published in [6]. We will refine this argument to prove that an asymptotic
`1 space has the Lebesgue property.

First of all, recall Tsirelson’s definition [4] of a norm on c00. For a fixed
0 < θ < 1 there is a unique norm on c00 that satisfies the equation

‖x‖Tθ = max
{
‖x‖∞, θ sup

∑n

i=1
‖Iix‖Tθ

}
,

where I1, . . . , In run over finite sets of integers for which n ≤ I1 < · · · < In. Tθ
(T1/2 is the original Tsirelson space T ) is the completion of c00 with respect
to ‖ · ‖Tθ . Tθ has normalized 1-unconditional basis {ei}∞i=1 and its norm
is asymptotically close to the norm of `1. However, it does not contain an
isomorphic copy of either `p for 1 ≤ p <∞ or c0.

At the beginning of the 90s, asymptotic `1 spaces were introduced by Ba-
nach space theorists [13, 12] to obtain a generalization of Tsirelson’s spaces.
In this paper we are concerned with Banach spaces which are asymptotic `1

with respect to a basis, exclusively. So, we make the following definition.

Definition 4 ([5]). A Banach space is said to be asymptotic `1 space (C-
asymptotic `1 space) with respect to its normalized basis {ei}, if there is
C ≥ 1 such that for each n ∈ N there exists a function Fn : N0 → N (with
Fn(k) ≥ k for all k) so that

C−1
∑n

i=1
|ai| ≤

∥∥∥∑n

i=1
aixi

∥∥∥
for all normalized successive blocks {xi}ni=1 with respect to {ei} that satisfy
Fn(0) ≤ suppx1 and Fn(max suppxi) < min suppxi+1, i = 1, . . . , n − 1, and
for all {ai}ni=1 ⊂ R. In other words, {xi}ni=1 is C-equivalent to the unit vector
basis of `n1 . If it is possible to choose Fn(k) = k for all n, k ∈ N, then X is
called stabilized asymptotic `1 space with respect to {ei}.

Let En be an arbitrary finite dimensional normed space. Then the direct
`1-sum

(∑∞
n=1⊕En

)
1

gives a trivial example of a 1-asymptotic `1 space with
respect to its natural unit vector basis. Such a sum is not always isomorphic
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to `1. It follows from the definition that the Tsirelson space Tθ is a stabilized
θ−1-asymptotic `1 space with respect to {ei}∞i=1. Many other examples of
asymptotic `1 spaces have been constructed in connection with various prob-
lems in Banach space geometry [1, 2]. These examples show that asymptotic
`1 spaces form a large class. As an illustration, an asymptotic `1 space can
contain no unconditional basic sequence [1].

Theorem 6. Let X be C-asymptotic `1 space with respect to its normalized
basis {ei}. Then X has the Lebesgue property.

Proof. Suppose on the contrary that there exits a Riemann integrable func-
tion f : [0, 1]→ X which is not continuous almost everywhere on [0, 1]. Then,
writing µ for Lebesgue measure and ω(f)(t) for the oscillation of f at a point
t, there are positive numbers α and β such that H = {t ∈ [0, 1] : ω(f)(t) >
β} and µ(H) = α.

Consider the functions fj(t) = e∗j (f)(t), where {e∗i } ⊂ X∗ are the coeffi-
cient functionals of {ei}. Denote, by Gj , the set of discontinuities of fj on
[0, 1] and note that µ(Gj) = 0. If G =

⋃∞
j=1Gj , then µ(G) = 0 and each fj is

continuous on [0, 1] \G. Clearly, f(t) =
∑∞
j=1 fj(t)ej for all t ∈ [0, 1].

Fix δ > 0 and N ∈ N such that N−1 < δ. Set PN = {k/N}Nk=0. List all
the intervals {[ci, di]}pi=1 of PN for which µ(H ∩ [ci, di]) > 0 in the increasing
order. Then it is evident that p/N ≥ α.

Let Fp be the function as in Definition 4. Choose ε = αβ/16C. Construct
by induction the following sets: {ui}pi=1, ui ∈ (H \ G) ∩ (ci, di), {vi}pi=1,
vi ∈ (ci, di), {ni}pi=0, Fp(0) = n0 < n1, max(Fp(ni−1 + 1), . . . , Fp(ni)) < ni+1

for i = 1, . . . , p− 1 so that

zi =f(ui)− f(vi) =
∑∞

i=1
aijej = wi + xi + yi,

wi =
∑ni−1

j=1
aijej , xi =

∑ni

j=ni−1+1
aijej , yi =

∑∞

j=ni+1
aijej ,

‖zi‖ ≥β/2, ‖wi‖ ≤ ε2−i, ‖yi‖ ≤ ε2−i.

Note that

‖xi‖ ≥ ‖zi‖ − ‖wi‖ − ‖yi‖ ≥
β

2
− 2ε · 2−i ≥ β

2
− ε =

β

2

(
1− α

8C

)
≥ 7β

16
.

Choose n0 = Fp(0) and u1 ∈ (H \ G) ∩ (c1, d1) so that ω(f)(u1) > β. Since
fj is continuous at u1 for j = 1, . . . , n0, there exists v1 ∈ (c1, d1) such that
‖f(u1) − f(v1)‖ ≥ β/2 and

∑n0
j=1 |fj(u1) − fj(v1)| < ε2−1. Let z1 = f(u1) −

f(v1) =
∑∞
j=1 a

1
jej . Then ‖

∑n0
j=1 a

1
jej‖ ≤

∑n0
j=1 |a1

j | < ε2−1. Now choose
n1 > n0 and u2 ∈ (H \ G) ∩ (c2, d2) so that ‖

∑∞
j=n1+1 a

1
jej‖ < ε2−1 and
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ω(f)(u2) > β. Since fj is continuous at u2 for j = 1, . . . , n1, there exists v2 ∈
(c2, d2) such that ‖f(u2) − f(v2)‖ ≥ β/2 and

∑n1
j=1 |fj(u2) − fj(v2)| < ε2−2.

Let z2 = f(u2)− f(v2) =
∑∞
j=1 a

2
jej . Then ‖

∑n1
j=1 a

2
jej‖ ≤

∑n1
j=1 |a2

j | < ε2−2.
Next choose n2 > max(Fp(n0 + 1), . . . , Fp(n1)) so that ‖

∑∞
j=n2+1 a

2
jej‖ <

ε2−2. We continue this process for p steps and obtain the desired sets.
By Definition 4 we have∥∥∥∑p

i=1
xi

∥∥∥ =
∥∥∥∑p

i=1
‖xi‖ ·

xi
‖xi‖

∥∥∥ ≥ 1
C

∑p

i=1
‖xi‖.

Consequently,∥∥∥∑p

i=1
zi

∥∥∥ ≥∥∥∥∑p

i=1
xi

∥∥∥− ∥∥∥∑p

i=1
(wi + yi)

∥∥∥
≥ 1
C

∑p

i=1
‖xi‖ −

∑p

i=1
(‖wi‖+ ‖yi‖)

≥ 1
C

∑p

i=1
‖zi‖ −

(
1 +

1
C

)∑p

i=1
(‖wi‖+ ‖yi‖)

≥ p
C
· β

2
− 2ε

(
1 +

1
C

)
·
∑p

i=1
2−i >

p

C
· β

2
− 2ε

(
1 +

1
C

)
.

Let T1 and T2 be tagged partitions of [0, 1] that have the same intervals as
PN , where (ui, [ci, di]) ∈ T1 and (vi, [ci, di]) ∈ T2 for i = 1, . . . , p. The tags
of T1 and T2 in the remaining intervals are the same. Thus we obtain

‖f(T1)− f(T2)‖ =
∥∥∥∑p

i=1

1
N
· zi
∥∥∥ ≥ p

N
· β

2C
− 2ε
N
·
(

1 +
1
C

)
≥αβ

2C
− 4ε =

αβ

4C

that contradicts the Riemann integrability of f on [0, 1].
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