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A NOTE ON AN IDENTITY OF THE
GAMMA FUNCTION AND STIRLING’S
FORMULA

Abstract

Short and elementary proofs of the well-known Stirling formula for
the discrete Gamma function I'(n) have been given by several authors.
In this note, a well-known identity and Stirling’s formula for the con-
tinuous Gamma function I'(z) are deduced in a different and short way
from a simple and elementary proposition.

It is well known that the Gamma function, I'(x) := fooo e~ l*=ldt, x >0,
satisfies the identity

_2””_1 x r+1

1) M) = ST )
and Stirling’s formula
2) lm @D

T —00 ler%e—m, /2

In 2000, Romik [8] gives a very short proof of the Stirling’s formula for I'(n).
Other different proofs of (2) can be found in [1, pp. 20-24], [6], [4, pp. 216—
218], and [9, pg. 194]. See also [3], [5], and [7] for various proofs of the case
x=n € Nof (2).

The purpose of this note is to deduce (1) and (2) in a different way from
the following elementary and simple proposition, which also holds for vector-
valued functions.
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Recall that a function f : (a,b) — R is said to be convex, where (a,b) is an
interval of R, if it satisfies

FOz+ (1 =XNy) <Af(x)+ (1 =N f(y) for all z,y € (a,b) and 0 < X < 1.

It is well-known that convex functions have the following properties:
(C1) Every convex function is continuous [2, Thm. 6.2.5],
(C2) If f: (a,b) — R is continuous and midpoint convex; i.e.,

1 1

Fg+ 3u) < 3 7(@) + 5 7() for all 2,y € (a.),

then f is convex [9, pg. 101].

(C3) If f : (a,b) — R is differentiable, then f is convex if and only if f’ is

non-decreasing on (a,b) (see [2, Thm. 6.2.3]). In particular, if f”(z) > 0 on

(a,b), then f is convex on (a,b).

Proposition 1. Let f: (0,00) = R and Af(x) = f(x +1) — f(z), > 0.
(a) lim f(z) exists if and only if > Af(n) converges and f satisfies

n=1

(3) lim [f(n+14+2z)— f(n+1)—xAf(n)] =0 uniformly on 0 <z < 1.

n—oo

(b) If f is convex and lim A%f(n) =0, then (3) holds.

n—oo

oo
PROOF. (a) The necessity is obvious. For the sufficiency, suppose that >~ Af(n)
n=1

converges, and f satisfies (3). Then Af(n) — 0 and

n

fn+1)=f1)+ Y Af(k) = f(1)+ > Af(n) as n — oc.

k=1

From these facts and (3), we easily deduce that

r—00

lim f(x) = f(1)+ 3 Af(n).

(b) Since f is convex, we have for every n =1,2,...and 0 <z <1

fn+1) = f( n -+ (n+1+x))§%+1f(n)+%+lf(n+l+x)

r+1 r+1

and

fn+l4+z)=f(l—-z)n+1)+z(n+2) <A —-2z)f(n+1)+zf(n+2).



AN IDENTITY OF THE GAMMA FUNCTION AND STIRLING’S FORMULA 269

From these two inequalities, we obtain

A f(n) = z[f(n+1)—f(n)] < f(nt1+x)—f(n+l) < z[f(n+2)—f(n+1)] = zAf(n+1),
and hence

0< f(n+1+x)— fn+1)—aAf(n) <a[Af(n+1) = Af(n)] = 2A%f(n).

Now (3) follows from the assumption lim AZf(n) = 0. O

n—oo

Corollary 2. (cf. 9, pg. 194]) T'(z) = Z=T($)[(252) for all z > 0.

PROOF. Let h(z) := L -T(§)[(%51), 2 > 0. Then (1) = 1 = T(1). Since

I'(x) is continuous on (0, 00), so is the function InT'(z). Using the Cauchy-
Schwarz inequality, we obtain from the definition of Gamma function that

InT(3o+ 2y) < W [T(@)/20(3)"?] = 2 nT(&) + L WT()

for all z,y > 0; i.e., InT'(z) is midpoint convex on (0, 00). It follows from (C2)
that InT'(z) is convex on (0, 00). Hence, the function

r+1

lnh(a:):(x—1)1n2—%lnﬂ—i—lnf(g)—l—lnf‘( )

is also convex, and we have for every = > 0

Alnh(z) =2+ Il(EH) —InD(%) + In[(22) — InD(2H)
=In2+Ing =Ilnz=AInl(z),

so that A?Inh(z) = A’InT(z) = Alnz =In 2t — 0 as z — oo.

By Proposition 1(b), both In h(z) and InT'(x) satisfy (3) with Alnh(z) =
AlnT(z) = Inz. Thus, the function f(z) := Inh(z)—InT'(z) satisfies (3) with
Af(x) =0 for all z > 0, and f(1) = Inh(1l) — InT(1) = 0. It follows from
Proposition 1(a) that ¢ := IILH;O f(z) exists. Therefore, for every = > 0,

Inh(z) —InT(z) = f(x)= f(z+1)=---= f(n+2x) > casn — oc.
Since f(1) = 0, this proves ¢ = 0 and so h(z) = I'(x). O
Corollary 3. (Stirling’s formula) lim Lt 1.

i
z—00 %3 e—=\/27
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PROOF. Since I'(x + 1) = 2I'(x), we have

I(z+1) _ 1 |
b v =@+ = (@t g) e +o— 5 In2n)
=InT(z) — ¢(x) — %111(271’),

where ¢(z) := (z — 3)In(z) — z. Hence, it suffices to show lim [InI'(z) —

¢(x) — 3 In(2m)] = 0. Since ¢’ > 0 on (0,00), ¢ is convex on (0,00). Also,
A¢(z) =Inz + r(z), where r(z) = (z + 1) In(1 + 1) — 1 for 2 > 0. Thus, we
have

w?r(e) =22+ g) X Camt ]
=3 S - G et s pase— o
n=1

If follows that A2¢(z) = Alnz + Ar(x) — 0 as © — oo. Hence, ¢ satisfies
(3) by Proposition 1(b). Thus, the function f(z) := InT'(z) — ¢(x) satisfies
(3) with

Af(x) =AlnT(z) — A¢(z) =Inz — A¢(z) = —r(x).

o0
Since Z Af(n) == > r(n) converges by limiting comparison test with the
n=1

OC

series Z 2, it follows from Proposition 1(a) that ¢ := lim [InI'(z) — ¢(z)]

r— 00

exists. Slnce

¢(m+1) P(E5E) — o(E52) —
L(14+1n(2 ))+ﬂ1(+1

using Corollary 2, we have
c = lerr;O [lnl“(a; +1)— oz + 1)]
= lim {(3: In(2) + In[(ZH) + InD(EE2) — Ln(7))
—(B(25) + 6(5£2) + 2 1n(2) + $ In(2))
=c+c— %ln(27r).

This shows that ¢ = 1 In(2n), and hence lim [InT'(z)—¢(z)—21 In(27)] = 0.

r—00

The proof is complete.
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