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FINITELY CONTINUOUS HAMEL
FUNCTIONS

Abstract

A function h: R® — R* is called a Hamel function if it is a Hamel
basis for R"**. We prove that there exists a Hamel function which is
finitely continuous (its graph can be covered by finitely many partial
continuous functions). This answers the question posted in [3].

We consider functions with values in R¥. No distinction is made between a
function and its graph. Let f: R® — R* be a function and x < ¢ be a cardinal
number. We say that the function f is a Hamel function if f, considered
as a subset of R"* is a Hamel basis for R***. The function f is called
k-continuous if it can be covered by the union of x many partial continuous
functions from R™. We write f|A for the restriction of f to a set A C R™. For
B C R", the symbol Ling(B) stands for the smallest linear subspace of R™
over Q that contains B.

In [3], it was asked whether there exists a Hamel function which is w-
continuous (Problem 3.2). We give an affirmative answer to this question.

Theorem 1. There exists a Hamel function h : R™ — R¥ which is (n+2)-
continuous (k,n > 1).

Let us mention here that it is unknown whether the number (n + 2) is
optimal, however it cannot be replaced by 1 (e.g. (n 4 2)-continuity cannot
be replaced by continuity; see [3, Fact 3.1 (iii)]).

Problem 2. Is the number (n + 2) in Theorem 1 optimal?

To prove Theorem 1, we will need the following lemma.
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Lemma 3. Let H C R™ be a Hamel basis. Assume that h: R™ — R is such
that h|H = 0. Then h is a Hamel function iff h|(R™ \ H) is one-to-one and
h[R™\ H] C R* is a Hamel basis.

PROOF. First assume that h is a Hamel function. We will show that h|(R™\ H)
is a bijection onto a Hamel basis. Let y € R¥. There exist x,... ,x; € R
and ¢1,...q; € Q such that Y7 gh(z;) = y. But since h|H = 0 we get
y=>1qih(xi) = 32, o qih(x;:). Hence Ling(h[R™\ H]) = RF.

Next suppose that le pih(z;) = 0 for some distinct x1,...,2; € (R™\ H)
and p1,...p € Q. Since H C R™ is a Hamel basis, there exist z;41,...,2, €
H and pyy1,...,pm € Q such that Eﬁlpixi = - le pix;. Recall that h|H =
0, hence 7" p;(z;, h(x;)) = (0,0). Since h is a Hamel function we conclude
that p; = 0 for all ¢ = 1,...,m. This finishes the proof that h|(R" \ H) is a
bijection onto a Hamel basis.

Now we prove the converse. To see that h is a Hamel function, first
observe that the graph of h is linearly independent over Q. Indeed, let
314 (zi, h(z;)) = (0,0) for some z1,...,2, € R” and ¢1,...¢- € Q. Then

> g (@i h(@) = Y g (@i b))+ Y i (i, b)) =
1 z,€H i ¢H

> ai(@i,0)+ > gi(wi,h(@) = (0,0).

r,€H r; ¢H

Hence }, oy qih(z;) = 0. Since h|(R™ \ H) is a bijection onto a Hamel
basis, we conclude that ¢; = 0 for z; ¢ H. Consequently, ZziGH qgiz; = 0.
This implies that ¢; = 0 for z; € H.

To see that Ling(h) = R"T* choose z € R" and y € R¥. Since h[R" \ H]
is a Hamel basis for R*, there exist z1,...,2, € R" \ H and py,...,ps € Q
such that > ] p;h(z;) = y. Similarly, since H is a Hamel basis for R", there
exist £sy1,...,2¢ € H CR™ and psyq,...,p: € Q such that Zzﬂpixi =x—
>3 piz;. Next observe that Etl pih(x;) = Y] pih(z;) = y by the assumption
h|H = 0. Finally, we obtain 3% p;(z;, h(z;)) = (x,y). So Ling(h) = Rtk

O
PROOF OF THEOREM 1. Let P C {(x,0,...,0) € R*: 2 ¢ Q} be a perfect set
linearly independent over Q (see e.g., [2, Theorem 2, p. 270]) and Y C (R\Q)*
be a Hamel basis such that P C Y. The existence of such a basis follows from
the fact that Ling((R\ Q)*) = R* and the fact from elementary linear algebra
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that every linearly independent set can be extended to a linear basis. Next
choose a Hamel basis H C (R\ {0}) x R x --- x R C R" such that H is dense
in R™ (such a basis exists because Ling((R\ {0}) xR x --- x R) = R"™). Since
X = R™\ H has topological dimension < (n—1) (as the complement of a dense
set; see [1, Theorem IV.3 p. 44]), it can be decomposed into n 0-dimensional
spaces E1, ..., E, (see [1, Theorem IIL.3 p. 32]). For every perfect set @ C R
and 0-dimensional space E, there exists an embedding g: F — Q. (Seee.g., [1,
Theorem V.6 p. 65].) Hence, if P = P, U P, U---U P, is a partition of P
into n perfect sets, then there exists an embedding gg: E; — P; for every
i < n. Now define g; = U} ggjz X — Y and note that it is an injective
n-continuous function. Next, since Y is also 0-dimensional (as a subset of a
0-dimensional space (R\ Q)¥), it can be embedded into any perfect set, hence
also into the set X. Let go: ¥ — X be an embedding. Now, following the
proof of Cantor-Bernstein Theorem, define a function f: X — Y by

_Ja(x) ifzgA
f(m)_{ggl(:c) ifx € A,

where Ag = g2[Y \ g1 [X]], Ams1 = g2[91[An]] for m >0, and A =J,._; Am.
The function f is a bijection. To see this observe that ¢ [X \ A] = g1[X]\ ¢1[4]
and

g2 '[A4] = U o 'Anl = ¥ \ailxXD U | 0ilAn]

= (Y'\ 1[X]) U g1 [A].

Hence ¢1[X \ A] N gy '[A] = 0 and ¢;[X \ A]Ug;'[A] =Y. Since both g,
and g, L are injections, the latter implies that f is bijective.

Now, by recalling that g; is n-continuous and g, ' is continuous, we con-
clude that f is (n + 1)-continuous. Finally, we define h: R™ — R by

0 ifxe H
Ma) = {f(x) itz ¢ H.

It follows from Lemma 3 that h is a Hamel function. Obviously, & is (n + 2)-
continuous. O
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