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ON THE PRODUCTS OF UNILATERALLY
CONTINUOUS REGULATED FUNCTIONS

Abstract

In this article we describe the products of two unilaterally continuous
regulated functions.

Let R be the set of all reals. A function f : R — R is said to be a regulated
function ([1, 2, 4]) if for each point « € R there are both finite unilateral limits

f(z—) = lim f(¢) and f(z+) = lim f(¢).
t—x— t—axt

In [5] (see also [3]) C. S. Reed calls such functions as jump functions.

Evidently, the sum and the product of two regulated functions is also a
regulated function. In [3] T show that each regulated function f : R — R is
the sum of two unilaterally continuous regulated functions.

Let (wy) be an enumeration of all rationals such that w,, # w,, for n # m.
In [3] I observed that the function

f@) =4/

L forz=w,, n>1
0 otherwise onR
is a regulated function, but it is not the product of any finite family of unilat-
erally continuous regulated functions fi1,..., f, : R — R.

Moreover, in [3], I prove that each regulated function f : R — (R\ {0})
such that, for each z € R, the inequality f(z—) # 0 # f(z+) holds is the
product of two unilaterally continuous regulated functions g, h : R — R.

Lemma 1. If a regulated function f : R — R is the product of two unilaterally
continuous regulated functions g,h: R — R and f(x) =0, then f(x—) =0 or
f(z+) =0.
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PROOF. Since 0 = f(z) = g(x)h(x), we have g(z) = 0 or h(z) = 0. Assume
that g(x) = 0. Since g is unilaterally continuous, g(z+) = g(z) = 0 or
g(z—) = g(x) = 0. But f(z+) = g(z+)h(z+) and f(z—) = g(z—)h(z—), so
flz+)=0o0r f(x—) =0. If g(x) # 0, then h(xz) = 0 and the further reasoning
is analogous. This completes the proof. O

The converse theorem is not true. Simply note that the function
f(z) =0for x #0 and f(0) =1
is a regulated function which is the product of the two functions

1 f < 1 f >
g(@) = orx <0 and h(z) = or x>0
0 forx>0 0 forxz <0,

both of which are unilaterally continuous at each point x € R. However,
1i1%f(x) =0, but f(0)=1#0.

Moreover, in the thesis of Lemma 1, the alternative f(z+) =0 or f(z—) =
0 cannot be replaced by the conjunction tlim f(t) = 0. For example the

function
f(x)=0 for x <0and f(z) =1 for >0

is an unilaterally continuous regulated function and f(0) = 0, but it does not
have the limit 212% f(z).

In [3] (see also [1, 4]) it is proved that the set D(f) of all discontinuity
points of a regulated function f: R — R is countable.

From Lemma 1 we obtain the following theorem giving the first necessary
condition satisfied by the products of two unilaterally continuous regulated
functions.

Theorem 1. If a function f : R — R s the product of two unilaterally
continuous regulated functions and f(x) = 0, then f is unilaterally continuous
at x.

Now we show the second necessary condition satisfied by all regulated func-
tions which are the products of two unilaterally continuous regulated functions.
In the statement of the theorem we are using the following terminology. For a
set A C R we denote by cl(A) the closure of the set A and by cl,(A) the set
of all points x € cl(A) which are bilateral condensation points of A.

Theorem 2. Suppose that a function f : R — R is the product of two uni-
laterally continuous regulated functions g,h : R — R and that the closure
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cl(f71(0)) of the level set f~1(0) is uncountable. Then for each monempty
perfect set A C cl(f=1(0)), the set

E(f) = cb(A) N {w € R : f(z) # 0}
is nowhere dense in cly(A).

PROOF. Assume to a contradiction that there are a nonempty perfect set
A C cl(f~1(0)) and an open interval I such that ANTI # @ and the intersection
INE(f)is dense in B = INcly(A). Since f is a regulated function, the set
D(f) is countable. Consequently, the set I Ncly(A) is of the second category
in itself and at least one of the sets

B, ={zecIncl(A):g(x) =0} and By, = {z € INcly(A) : h(z) =0}

is of the second category in I Ncly(A). Assume that the set By is of the
second category in B. There is an open interval J C I such that the set
JNA # 0 and JN By is dense in J N A. There is a point v € J N E(f)
which is a bilateral accumulation point of f~1(0). Observe that il_r& g(x) =0

and 0 # f(u) = g(u)h(u). Consequently, g(u) # 0 and ¢ is not unilaterally
continuous at u, a contradiction with our hypothesis. If the set By is of the
first category in B then By is of the second category in B and we proceed
similarly. This finishes the proof. O

Remark 1. The conjunction of the necessary conditions from Theorems 1 and
2 concerning a regulated function f : R — R is not a sufficient condition for
the existence of two unilaterally continuous requlated functions g,h : R — R

with f = gh.

PROOF. Let C C [0,1] be the Cantor ternary set and let (a,) be an enu-
meration of all points from C' which are unilaterally isolated in C' such that
Qp F# Ay, for n # m. The function

fz) =

% forzx=a,, n>1
0 otherwise on R

is a regulated function continuous at each point z € f~1(0). It also satisfies
the necessary condition from Theorem 2. Assume to a contrary that there are
two unilaterally continuous regulated functions g, h : R — R with f = gh. Let

A={rxeC:g(x)=0}and B={z € C:h(x)=0}.

Since H = C'\ {a,, : n > 1} is of the second category in itself and H = AU B,
at least one of the sets A and B is of the second category in H. Assume that
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A is of the second category in H. Then there is an open interval I such that
INC # 0 and AN is dense in C N I. Fix a positive integer k such that
ar € I NC. Assume that ay, is isolated on the left hand in C. Then

Flax) = glar)h(ar) = % 20

and consequently g(ay) # 0 and h(ax) # 0. Observe that lim g(¢) = 0. Since

t—>akJr
g(ag) # 0, the function g is not continuous on the right hand at ax. So the
function g is continuous on the left hand at a;. But f is not continuous on the
left hand at ag, so h is not continuous on the left hand at a;. Consequently, h
is continuous on the right hand at ay, and there is a positive real r such that

[ak,ar + 1) C I and |h(t) — h(ak)| < |h(2i)|

for t € [ag,ar + 7).
Let m > 3 be a positive integer such that a,, € [ag,ar + ) and a,, is isolated
on the left hand in C. Since lim+ g(t) = 0 and g(a.,) # 0, as above we show

t—am,

that g is continuous on the left hand at a.,, and there is a positive real s such
that

\g((;m)| for t € (am,am + ).

[@m, am + ) C (ak,ax +7) and |g(t) — g(am)| <
Consequently,
f(t) =gt)h(t) #0 for t € [am, am + ),

a contradiction with the definition of f.
In the case where A is of the first category in H the set B must be of the
second category in H and we proceed similarly. This finishes the proof. O

Example 1. Let C C [0, 1] be the ternary Cantor set and let (I, = (an,by))
be an enumeration of all components of the set R\ C' such that I = (—o0,0),
I, = (1,00) and I, # I, for n # m. Let

Cp = @n + bn for n > 2.
2
The function
1 for x € {an,bn}, n>2
0 forx=c,, n>2

fz) =

interpolatory linear on the intervals [a,,, ¢,] and [¢,, b,], n > 2

0 otherwise on R
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is a unilaterally continuous regulated function which is continuous at each
point z € f71(0), but for the perfect set C' C cl(f~1(0)) the set C N {x :
f(z) # 0} is dense in C.

So in this example I show that the necessary condition from Theorem 2
cannot replaced by the following condition: “for each nonempty perfect set
A Ccl(f1(0)) the set An{x: f(z) # 0} is nowhere dense in C”.
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