TRIANGULAR MAPS NON-DECREASING ON THE FIBERS

Abstract

There is a list of about 50 properties which characterize continuous maps of the interval with zero topological entropy. Most of them were proved by A. N. Sharkovsky [cf., e.g., Sharkovsky et al., Dynamics of One-Dimensional Mappings, Kluwer 1997]. It is also well known that only a few of these properties remain equivalent for continuous maps of the square. Recall, e.g., the famous Kolyada's example of a triangular map of type 2^{∞} with positive topological entropy.

In 1989 Sharkovsky formulated the problem to classify these conditions in a special case of triangular maps of the square. The present paper is a step toward the solution. In particular, we give a classification of 23 conditions in the case of triangular maps of the square which are non-decreasing on the fibers. We show that the weakest is "no homoclinic trajectory", the two strongest, mutually incomparable, are "map restricted to the set of chain recurrent points is not Li \& Yorke chaotic" and "every ω-limit set contains a unique minimal set".

1 Introduction.

As is well-known, there is a long list of properties characterizing continuous maps of the interval with zero topological entropy. The most representative one can be found in [13] (see also [7], [11], [12]). Below we present a reduced list of 27 properties, regardless of the fact that the last four properties were recently found not to be equivalent to the others (cf. Šindelářová [14]-[16], Alsedà et al. [1]).

[^0]In 1989 A. N. Sharkovsky [12] asked the question which of these properties are equivalent in the case of triangular maps of the square. This problem seems to be very difficult. Until now there are only partial results showing that many of these conditions are not equivalent (cf., e.g., [8], [9], [11], [12]). A systematic approach to the problem, containing also some positive results can be found in [10]. The main problem is caused by the fact that, for general triangular maps of the square, the properties "the map has zero topological entropy" and "the map is of type not greater than 2^{∞} " are not equivalent [11]. However, they are equivalent in a special case when the triangular maps are non-decreasing on the fibers. Therefore, the present paper is devoted just to these special maps.

In Section 2 we recall some known results. In Section 3 we prove some implications and in Section 4 we present examples of triangular maps showing that some implications are not true. Non-trivial new results are given in Lemmas 3.4, 4.4, and 4.5. The main result, a survey, is given at the end of the paper as a diagram.

In the sequel, $I=[0,1]$ is the unit compact interval, I^{2} the unit square, and X a compact metric space with a metric ρ. Let $\mathcal{C}(X, X)$ be the set of continuous mappings of X into itself, \mathbb{N} the set of positive integers, and \mathbb{N}_{0} the set of non-negative integers. For $\varphi \in \mathcal{C}(X, X)$, let $\varphi^{n}(x)$ denote the n-th iterate of φ at x, for $n \in \mathbb{N}$ and $x \in X$. The set of cluster points of the sequence $\left(\varphi^{n}(x)\right)_{n \in \mathbb{N}}$ is the ω-limit set $\omega_{\varphi}(x)$ of x. Let $\pi: I^{2} \rightarrow I$ be the projection $(x, y) \mapsto x$.

Let $f: I \rightarrow I$, and $g_{x}:\{x\} \times I \rightarrow I$, for $x \in I$. A map $F \in \mathcal{C}\left(I^{2}, I^{2}\right)$ such that $F(x, y)=\left(f(x), g_{x}(y)\right)$, for any x, y in I, is a triangular map, f is the base of F, and the set $I_{x}:=\{x\} \times I$ is the fiber over x. Throughout the paper, F always denotes a triangular map, and f its base.

We proceed with the list of properties of continuous maps of a compact metric space into itself; the symbols used in them are explained below.
$(\mathrm{P} 1) \quad h(\varphi)=0$
(P2) $\quad h(\varphi \mid \operatorname{CR}(\varphi))=0$
(P3) $\quad h(\varphi \mid \Omega(\varphi))=0$
(P4) $\quad h(\varphi \mid \omega(\varphi))=0$
(P5) $\quad h(\varphi \mid \mathrm{C}(\varphi))=0$
(P6) $\quad h(\varphi \mid \operatorname{Rec}(\varphi))=0$
(P7) $\quad h(\varphi \mid \operatorname{UR}(\varphi))=0$
(P8) $\quad h(\varphi \mid \operatorname{AP}(\varphi))=0$
(P9) $\quad h(\varphi \mid \operatorname{Per}(\varphi))=0$
(P10) Every cycle is simple
(P11) Period of any cycle is a power of 2
(P12) There is no minimal set with positive topological entropy
(P13) φ has no homoclinic trajectory
(P14) $\varphi \mid \operatorname{CR}(\varphi)$ is non-chaotic
(P15) $\varphi \mid \Omega(\varphi)$ is non-chaotic
(P16) $\quad \varphi \mid \omega(\varphi)$ is non-chaotic
(P17) $\quad \varphi \mid \mathrm{C}(\varphi)$ is non-chaotic
(P18) $\varphi \mid \operatorname{Rec}(\varphi)$ is non-chaotic
(P19) $\varphi \mid \operatorname{UR}(\varphi)$ is non-chaotic
(P20) $\operatorname{UR}(\varphi)=\operatorname{Rec}(\varphi)$
(P21) Every ω-limit set contains a unique minimal set
(P22) No infinite ω-limit set contains a cycle
(P23) Every ω-limit set either is a cycle or contains no cycle
(P24) $\varphi \mid \operatorname{Per}(\varphi)$ is Lyapunov stable
(P25) $\operatorname{Per}(\varphi)$ is a G_{δ}-set
(P26) $\operatorname{Rec}(\varphi)$ is an $F_{\sigma \text {-set }}$
(P27) Every linearly ordered chain of ω-limit sets is countable
In the sequel, $\mathrm{CR}(\varphi)$ denotes the set of chain recurrent points of φ. Thus, $x \in \operatorname{CR}(\varphi)$ if, for any $\varepsilon>0$, there is a sequence of points $\left(x_{i}\right)_{i=0}^{n}$ with $x_{0}=x$ and $x_{n}=x$ such that $\rho\left(x_{i+1}, \varphi\left(x_{i}\right)\right)<\varepsilon$, for $i=0,1,2, \ldots, n-1 . \Omega(\varphi)$ is the set of non-wandering points of φ; i.e., $x \in \Omega(\varphi)$ if, for any neighborhood U of x, there is an $n \in \mathbb{N}$ with $\varphi^{n}(U) \cap U \neq \emptyset$. By $\omega(\varphi)$ we denote the union of all ω-limit sets of φ, and by $\operatorname{Rec}(\varphi)$ the set of recurrent points of φ; i.e., the set of $x \in X$ such that $x \in \omega_{\varphi}(x)$, while $\mathrm{C}(\varphi)=\operatorname{cl}(\operatorname{Rec}(\varphi))$ is the center of $\varphi \cdot \operatorname{UR}(\varphi)$ denotes the set of uniformly recurrent points of φ; i.e., the set of $x \in X$ such that for any neighborhood U of x, there is an $n \in \mathbb{N}$ such that if $\varphi^{m}(x) \in U$, where $m \geq 0$, then $\varphi^{m+k}(x) \in U$ for some k with $0<k \leq n$. $\operatorname{By} \operatorname{AP}(\varphi)$ we denote the set of almost periodic points of φ; i.e., the set of $x \in X$ such that for any neighborhood U of x, there is an $n \in \mathbb{N}$ such that $\varphi^{i n}(x) \in U$, for any i. $\operatorname{Per}(\varphi)$ is the set of periodic points of φ.

Denote by $h_{\rho}(\varphi \mid M)$ the topological entropy of the map φ with respect to the subset M and by $h_{\rho}(\varphi)$ the topological entropy of the map φ. If no confusion can arise we write h instead of h_{ρ}.

Let $\varphi \in \mathcal{C}(I, I)$ and let $\alpha=\left\{x_{1}, x_{2}, \ldots, x_{2^{n}}\right\} \subset I$, where $n \in \mathbb{N}_{0}$, be a cycle of φ with period 2^{n} such that $x_{1}<x_{2}<\ldots<x_{2^{n}}$. Then α is a simple cycle of φ, if either $n=0$ (and $\alpha=\{x\}$ is a fixed point), or $n>0$ and the sets $\left\{x_{1}, x_{2}, \ldots, x_{2^{n-1}}\right\},\left\{x_{2^{n-1}+1}, \ldots, x_{2^{n}}\right\}$ are invariant sets with respect to φ^{2}, and each of them is a simple cycle of φ^{2}.

Let α be a cycle of a triangular map F with period $2^{k}, k \in \mathbb{N}_{0}$, such that $\pi(\alpha)$ is a simple cycle of the base f with period $2^{n}=m$, for some $n \leq k$. Then α is a simple cycle of F if, for every $x \in \pi(\alpha)$ and every $z \in \alpha \cap I_{x}$,
$\left\{F^{i m}(z) \mid i=1,2, \ldots, 2^{k-n}\right\} \subset I_{x}$ is a simple cycle of $F^{m} \mid I_{x}$ (which is a one-dimensional map $I_{x} \rightarrow I_{x}$).

A subset M of X is a minimal set if $M=\omega_{\varphi}(x)$, for any $x \in M$.
Let $x \in X$ be a fixed point of φ. A sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of distinct points in X such that $\varphi\left(x_{n+1}\right)=x_{n}$, for every $n \in \mathbb{N}, \varphi\left(x_{1}\right)=x$, and $\lim _{n \rightarrow \infty} x_{n}=x$, is a homoclinic trajectory related to the point x. A sequence $\left(y_{n}\right)_{n=1}^{\infty}$ of distinct points in X such that $\varphi\left(y_{n+1}\right)=y_{n}$, for every $n \in \mathbb{N}, \varphi\left(y_{1}\right)=y_{k}$, for some $k \in \mathbb{N}$ (i.e., $\left\{y_{1}, \ldots, y_{k}\right\}$ is a cycle of period k), and $\lim _{n \rightarrow \infty} y_{k n+i}=y_{i}$ for $i=1,2, \ldots, k$, is a homoclinic trajectory related to the cycle $\left\{y_{1}, \ldots, y_{k}\right\}$.

A map φ is chaotic (in the sense of Li and Yorke) if there is a φ-chaotic pair $\{x, y\} \subset X$; i.e., points $x, y \in X$ such that

$$
0=\liminf _{n \rightarrow \infty} \rho\left(\varphi^{n}(x), \varphi^{n}(y)\right)<\limsup _{n \rightarrow \infty} \rho\left(\varphi^{n}(x), \varphi^{n}(y)\right)
$$

2 Known Results.

Throughout this section, X denotes a compact metric space, \mathcal{T} the class of triangular maps of the square, and \mathcal{T}_{m} the class of triangular maps of the square which are non-decreasing on the fibers.

Proposition 2.1. Let $\varphi \in \mathcal{C}(I, I)$. Then conditions (P1)-(P23) are mutually equivalent.

Remark. The complete list of references can be found in [13]. In some papers and books it was stated that for $\varphi \in C(I, I)$, also properties (P24)-(P27) are equivalent to (P1) (cf., e.g., [7], [11], [12], [13]), but actually this is not the case. In [14] there is proved that (P24) is not equivalent to (P1), in [15] that (P 25) is not equivalent to $(\mathrm{P} 1)$, in $[16]$ that $(\mathrm{P} 26)$ is not equivalent to (P 1), and in [1] it is proved that (P27) is not equivalent to (P1).

Proposition 2.2. Let $\varphi \in \mathcal{C}(X, X)$, and $F \in \mathcal{T}$.
(i) If $A \subset B \subset X$ are invariant sets of φ, then $h(\varphi \mid A) \leq h(\varphi \mid B)$.
(ii) $h(f)+\sup _{x \in I} h\left(F \mid I_{x}\right) \geq h(F) \geq \max \left\{h(f), \sup _{x \in I} h\left(F \mid I_{x}\right)\right\}$.

Proof. Property (i) follows from the definition of topological entropy, (ii) is proved in [5] (cf. also [11]).

Lemma 2.3. [11] Let $F \in \mathcal{T}$. For $\varphi \in \mathcal{C}(X, X)$, let $A(\varphi, X)$ denote one of the sets $\operatorname{Per}(\varphi), \operatorname{Rec}(\varphi), \operatorname{UR}(\varphi), \mathrm{C}(\varphi), \omega(\varphi), \Omega(\varphi), \mathrm{CR}(\varphi)$. Then $\pi\left(A\left(F, I^{2}\right)\right)=$ $A(f, I)$.

Lemma 2.4. [4] If $\varphi \in \mathcal{C}(X, X)$, then

$$
\operatorname{Per}(\varphi) \subset \operatorname{AP}(\varphi) \subset \operatorname{UR}(\varphi) \subset \operatorname{Rec}(\varphi) \subset \begin{aligned}
& \mathrm{C}(\varphi) \\
& \omega(\varphi)
\end{aligned} \subset \Omega(\varphi) \subset \mathrm{CR}(\varphi)
$$

Lemma 2.5. [3] Let $\varphi \in \mathcal{C}(X, X)$ be surjective. If $h(\varphi)>0$, then φ is chaotic.
Lemma 2.6. [16] There is a map $\chi \in \mathcal{C}(I, I)$ of type 2^{∞} such that
(i) χ has a unique infinite maximal ω-limit set $\tilde{\omega}=Q \cup P$, where Q is a Cantor set, and $P=\left\{p_{n}\right\}_{n=-\infty}^{\infty}$ an infinite set of points isolated in $\tilde{\omega}$ such that $\chi\left(p_{n}\right)=p_{n+1}$, for any n;
(ii) $\operatorname{cl}(\operatorname{Per}(\chi))=\operatorname{Per}(\chi) \cup P \cup Q$;
(iii) $P \subset \operatorname{cl}(\operatorname{Per}(\chi)) \backslash \operatorname{Per}(\chi)$;
(iv) any point in $\operatorname{Per}(\chi)$ is isolated in $\omega(\chi)$, and repelling;
(v) χ is monotone in a neighborhood of any $p \in P$.

Lemma 2.7. $(13 \nRightarrow 1)[10]$ There is an $F \in \mathcal{T}_{m}$ with no homoclinic trajectory such that f has positive topological entropy.

Lemma 2.8. $(21 \Rightarrow 22)[10]$ Let $F \in \mathcal{T}$. If every ω-limit set of F contains a unique minimal set, then no infinite ω-limit set of F contains a cycle.

3 Implications.

In this section we prove some implications for functions in $F \in \mathcal{I}_{m}$. However, if the argument for the class \mathcal{T} is almost the same, we prove the more general statement. For the reader's convenience we include some results that can be found elsewhere, in particular, in [10].

Lemma 3.1. $(1 \Rightarrow 13)$ Let $F \in \mathcal{T}$. If $h(F)=0$, then F has no homoclinic trajectory.

Proof. Let F have a homoclinic trajectory γ. Without loss of generality we may assume that γ is a homoclinic trajectory related to a fixed point, since otherwise it suffices to replace F by F^{k} where k is the period of the cycle related to γ. Then $\pi(\gamma)$ is either a homoclinic trajectory or a fixed point. If $\pi(\gamma)$ is a homoclinic trajectory, then $h(F) \geq h(f)>0$ (cf. Lemma 2.1). If $\pi(\gamma)$ is a fixed point x, then $\gamma \subset I_{x}$ and $F \mid I_{x}$ has a homoclinic trajectory. Thus $0<h\left(F \mid I_{x}\right) \leq h(F)$.

Lemma 3.2. For $F \in \mathcal{T}_{m}$, condition (P11), that period of any cycle is a power of 2 , is necessary for any of the following conditions:
(P12) There is no minimal set with positive topological entropy.
(P19) $F \mid \operatorname{UR}(F)$ is non-chaotic.
(P20) $\operatorname{Rec}(F)=\operatorname{UR}(F)$.
(P22) No infinite ω-limit set contains a cycle.
Proof. Let $F \in \mathcal{T}$, let γ be a cycle of F with period p that is not a power of 2 , and let $\pi(\gamma)=\alpha=\left\{a_{1}, \ldots, a_{q}\right\}$. Consider two cases.

CASE A. Assume q is not a power of 2 . Then there is a minimal set M_{f} of f with positive topological entropy, and in $M_{f} \times I$ there is a minimal set M_{F} of F such that $h\left(F \mid M_{F}\right) \geq h\left(f \mid M_{f}\right)>0$. This proves that (P12) implies (P11). By Lemma 2.5 there are points $z_{1}, z_{2} \in M_{F}$ such that

$$
\liminf _{n \rightarrow \infty}\left|F^{n}\left(z_{1}\right)-F^{n}\left(z_{2}\right)\right|=0 \text { and } \limsup _{n \rightarrow \infty}\left|F^{n}\left(z_{1}\right)-F^{n}\left(z_{2}\right)\right|>0
$$

Since $M_{F} \subset \mathrm{UR}(F)$ (cf., e.g., [4]), $F \mid \operatorname{UR}(F)$ is chaotic and consequently, (P19) implies (P11). By Proposition 2.1 there is a recurrent point \hat{x} of f which is not uniformly recurrent, and by Lemma $2.3, I_{\hat{x}}$ contains a recurrent point of F that is not uniformly recurrent. Hence (P20) implies (P11). Since $h(f)>0$ Proposition 2.1 implies that f has an infinite ω-limit set $\omega_{f}\left(x_{0}\right)$ containing a periodic point a with period r. Take $z_{0}=\left(x_{0}, y\right)$, for arbitrary $y \in I$. Then $\omega_{F}\left(z_{0}\right)$ is an infinite set and $\tilde{\omega}=\omega_{F}\left(z_{0}\right) \cap I_{a}$ contains a point z. We have $F^{r} \mid I_{a}: I_{a} \rightarrow I_{a}$ and $F^{r}(\tilde{\omega})=\tilde{\omega}$. Now assume $F \in \mathcal{T}_{m}$. Then $F^{r} \mid I_{a}$ is non-decreasing and the sequence $\left(F^{k r}(z)\right)_{k=0}^{\infty}$ has a periodic accumulation point $c \in \tilde{\omega} \subset \omega_{F}\left(z_{0}\right)$, and this proves that (P22) implies (P11).

CASE B. Assume q is a power of 2 , and $G:=F^{q} \mid I_{a_{1}}: I_{a_{1}} \rightarrow I_{a_{1}}$ has a cycle whose period is not a power of 2. By Proposition 2.1, G has a minimal set M_{G} with positive topological entropy, $G \mid \operatorname{UR}(G)$ is chaotic, and G has a recurrent point $\left(a_{1}, y_{0}\right)$ which is not uniformly recurrent. Obviously, $\left(a_{1}, y_{0}\right) \in$ $\operatorname{Rec}(F) \backslash \mathrm{UR}(F)$.

Lemma 3.3. $(1 \Leftrightarrow \ldots \Leftrightarrow 12)$ For $F \in \mathcal{T}_{m}$, conditions $(\mathrm{P} 1)-(\mathrm{P} 12)$ are mutually equivalent.

Proof. Take $F \in \mathcal{T}_{m}$ and assume $h(F \mid \operatorname{Per}(F))=0$. Then, by Proposition $2.2($ ii $), h(f \mid \operatorname{Per}(f))=0$, and by Proposition 2.1, $h(f)=0$. Since for every $x \in I, g_{x}$ is non-decreasing, we have $\sup _{x \in I} h\left(F \mid I_{x}\right)=0$ and by 2.2(ii), $h(F)=h(f)$. That is, $h(F)=0$. Thus (P9) implies (P1), and by Lemma 2.4, (P1)-(P9) are mutually equivalent.

Let $F \in \mathcal{T}$. If $h(F)=0$, then by Proposition $2.2(\mathrm{ii}), h(f)=0$ and by Proposition 2.1, every cycle α of f is a simple cycle with period 2^{n}, for some $n \in \mathbb{N}$. For any $x_{0} \in \alpha$, every cycle of $F^{2^{n}} \mid I_{x_{0}}$ is either a fixed point or a cycle with period 2^{k}, for some $k \in \mathbb{N}$. That is, every cycle of F is simple, and $(\mathrm{P} 1)$ implies (P 10). The implication $(\mathrm{P} 10) \Rightarrow(\mathrm{P} 11)$ is obvious.

Let $F \in \mathcal{T}_{m}$ and let the period of any cycle of F be a power of 2 . Then period of any cycle of f is a power of 2 and $h(f)=0$. Thus (P11) implies (P1) since $h(F)=h(f)$.

By Lemma 3.2, (P12) implies (P11). So to finish the proof it suffices to show that (P7) implies (P12). But this follows since every point of a minimal set is uniformly recurrent (cf., e.g., [4]) hence if $h(F \mid \mathrm{UR}(F))=0$, then there is no minimal set with positive topological entropy.

Lemma 3.4. $(18 \Rightarrow 20)$ Let $F \in \mathcal{T}_{m}$. If $F \mid \operatorname{Rec}(F)$ is non-chaotic, then $\operatorname{UR}(F)=\operatorname{Rec}(F)$.

Proof. Let $F \mid \operatorname{Rec}(F)$ be non-chaotic. Then by Lemmas 2.3, 3.2 and 3.3, $h(F)=0$ and hence, $h(f)=0$. So, any isolated point of any infinite ω-limit set of f is a wandering point (cf., e.g., [6]), and since $\operatorname{Rec}(f) \subset \omega(f)$, we have $\operatorname{Rec}(f)=\operatorname{Per}(f) \cup W$ where W is the union of the perfect ω-limit sets of f. Consequently,

$$
\begin{equation*}
\operatorname{Rec}(F) \subset(\operatorname{Per}(f) \cup W) \times I \tag{1}
\end{equation*}
$$

since $\pi(\operatorname{Rec}(F))=\operatorname{Rec}(f)$, by Lemma 2.3.
Now assume, contrary to what we wish to show, that $z_{0}=\left(x_{0}, y_{0}\right) \in$ $\operatorname{Rec}(F) \backslash \operatorname{UR}(F)$. Then $x_{0} \notin \operatorname{Per}(f)$; this follows easily since F is nondecreasing on the fibers. Hence, by (1), $\omega_{f}\left(x_{0}\right)=Q$ is a perfect set containing x_{0}. Thus, $\omega_{F}\left(z_{0}\right)$ is a subset of $Q \times I$ and contains a minimal set $M \neq \omega_{F}\left(z_{0}\right)$. Let $M_{x_{0}}=\left\{y \in I \mid\left(x_{0}, y\right) \in M\right\}$. Since $y_{0} \notin M_{x_{0}}$, we have either $\max M_{x_{0}}<y_{0}$ or $\min M_{x_{0}}>y_{0}$. Assume without loss of generality that $\max M_{x_{0}}<y_{0}$. Let $m=\min M_{x_{0}}$, and $z=\left(x_{0}, m\right)$. Then $z \in M$ and consequently, since M is a minimal set, $z \in \mathrm{UR}(F)$. Since M is invariant and $z_{0} \in \operatorname{Rec}(F) \backslash M$, we have $\lim \sup _{n \rightarrow \infty} \rho\left(F^{n}(z), F^{n}\left(z_{0}\right)\right)>0$.

On the other hand, there is a sequence $\left(n_{k}\right)_{k=0}^{\infty}$ of positive integers such that $\lim _{k \rightarrow \infty} F^{n_{k}}\left(z_{0}\right)=z$. Denote by y_{k} and m_{k} the second coordinate of $F^{n_{k}}\left(z_{0}\right)$ or $F^{n_{k}}(z)$, respectively. Since $F \in \mathcal{T}_{m}$, we have $m_{k} \leq y_{k}$, for any k. Thus,

$$
\begin{equation*}
m_{\infty}=\liminf _{k \rightarrow \infty} m_{k} \leq \lim _{k \rightarrow \infty} y_{k}=m \tag{2}
\end{equation*}
$$

Since M is invariant, $\left(x_{0}, m_{\infty}\right) \in M$. Hence $m_{\infty} \geq m$. Consequently, by (2), $\lim _{k \rightarrow \infty} \rho\left(F^{n_{k}}\left(z_{0}\right), F^{n_{k}}(z)\right)=0$ and $F \mid \operatorname{Rec}(F)$ would be chaotic which is impossible.

4 Examples.

In this section we present some examples of functions from \mathcal{T}_{m} showing that some implications are not true. The next two examples are known.

Lemma 4.1. [9] There is an $F \in \mathcal{T}_{m}$ with the following properties:
(i) $h(F)=0$.
(ii) $F \mid \operatorname{UR}(F)$ is chaotic.
(iii) Every ω-limit set contains a unique minimal set.

Proof. It follows easily by Theorems 3 and 4 in [9].
Lemma 4.2. [9] There is an $F \in \mathcal{T}_{m}$ with the following properties:
(i) $h(F)=0$.
(ii) $F \mid \operatorname{Rec}(F)$ is chaotic.
(iii) $F \mid \mathrm{UR}(F)$ is non-chaotic.
(iv) $\mathrm{UR}(F) \neq \operatorname{Rec}(F)$.
(v) F has an ω-limit set containing more than one minimal set.
(vi) No infinite ω-limit set contains a cycle.

Proof. It follows easily by Theorem 10 in [9]. The corresponding map F is even distributionally chaotic on $\operatorname{Rec}(F)$.

Lemma 4.3. [10] There is an $F \in \mathcal{T}_{m}$ with the following properties:
(i) $h(F)=0$.
(ii) $F \mid \mathrm{CR}(F)$ is non-chaotic.
(iii) $\operatorname{UR}(F)=\operatorname{Rec}(F)$.
(iv) F has an ω-limit set containing more than one minimal set.
(v) F has an infinite ω-limit set containing a cycle.

Proof. The result is implicitly contained in the proof of Lemma 4.4 of [10]. We recall the construction. Let $f(x)=k x$, where $k \in(0,1)$ is a constant. For $\delta \in(0,1)$, let $\tau_{\delta}, \tau_{\delta}^{*}: I \rightarrow I$ be such that

$$
\begin{aligned}
\tau_{\delta}(x) & =(1-\delta) x+\delta, \\
\tau_{\delta}^{*}(x) & = \begin{cases}0 & \text { for } x \in[0, \delta] \\
\frac{1}{1-\delta} x+\frac{\delta}{\delta-1} & \text { for } x \in(\delta, 1]\end{cases}
\end{aligned}
$$

Thus, $\tau_{\delta}^{*} \circ \tau_{\delta}$ is the identity on I. Put $g_{0}(y)=y$ and for $n=0,1,2, \ldots$,

$$
g_{f^{n}(1)}(y)= \begin{cases}\tau_{1 /(k+2)}(y) & \text { for } n_{k} \leq n<\frac{1}{2}\left(n_{k}+n_{k+1}\right) \\ \tau_{1 /(k+2)}^{*}(y) & \text { for } \frac{1}{2}\left(n_{k}+n_{k+1}\right) \leq n<n_{k+1}\end{cases}
$$

for $x \in\left(f^{n+1}(1), f^{n}(1)\right), x=\lambda f^{n+1}(1)+(1-\lambda) f^{n}(1), \lambda \in(0,1)$,

$$
g_{x}(y)=\lambda g_{f^{n+1}(1)}(y)+(1-\lambda) g_{f^{n}(1)}(y)
$$

where $\left(n_{k}\right)_{k=0}^{\infty}$ is a sequence of non-negative even numbers such that $n_{0}=0$ and $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k+1}\right)^{\left(n_{k+1}-n_{k}\right) / 2}=0$. Since f and $F \mid I_{x}$, for every $x \in I$, are non-decreasing, $h(F)=0$. We have $\omega_{F}(1,0)=I_{0}=\operatorname{Fix}(F)=\operatorname{UR}(F)=$ $\operatorname{Rec}(F)=\operatorname{CR}(F)$, and $\omega_{F}(1,0)$ is an infinite ω-limit set containing a cycle. The other conditions are obvious.

In the proofs of the next Lemmas 4.4 and 4.6 we need symbolic dynamics, in particular, the adding machine on the space $\Sigma=\{0,1\}^{\mathbb{N}}$ of sequences of two symbols. We assume that Σ is equipped with a metric ρ of pointwise convergence, e.g., $\rho\left((x(i))_{i=1}^{\infty},(y(i))_{i=1}^{\infty}\right)=1 / k$ if k is the first integer such that $x(k) \neq y(k)$. Let $A: \Sigma \rightarrow \Sigma$ be the adding machine which is defined by $A(\underline{x})=\underline{x}+1 \overline{0}$, where $\underline{x} \in \Sigma$ and $\overline{0}$ is the zero sequence; the adding is mod 2 from the left to the right.

Let $f \in \mathcal{C}(I, I)$ be a map of type 2^{∞} possessing the unique Cantor-type ω-limit set Q such that $f \mid Q$ is one-to-one. In this case the system $(Q, f \mid Q)$ is conjugate (i.e., homeomorphic) to (Σ, A) (cf. [6], for example). In the sequel, we identify both systems and refer to $f \mid Q$ as to the adding machine. Clearly $\omega_{f \mid Q}(x)=Q$, for $x \in Q$. Hence Q is a minimal set for f. For details concerning the adding machine and its representation as a factor of a continuous map of the interval see, e.g., [6], [8], or [9].

Lemma 4.4. There is an $F \in \mathcal{T}_{m}$ with the following properties:
(i) $h(F)=0$.
(ii) $F \mid \operatorname{Rec}(F)$ is chaotic.
(iii) $\operatorname{UR}(F) \neq \operatorname{Rec}(F)$.
(iv) Every ω-limit set contains a unique minimal set.

Proof. The construction of such a mapping is based on the proof of Theorem 1 in [8] which states that there is a triangular map with properties (i) and (iii). But our map is much simpler and has the other properties.

Let $f \in \mathcal{C}(I, I)$ be a map of type 2^{∞} possessing the unique infinite ω-limit set Q such that f is one-to-one on Q (e.g., let f be the Feigenbaum map). Then $f \mid Q$ is the adding machine. To get $F \in \mathcal{T}_{m}$ it suffices to define its restriction $F \mid Q \times I$, non-decreasing on the fibers, and then extend it properly to the whole of I^{2}. This will give $h(F)=0$ since $h(f)=0$. As already mentioned, we assume without loss of generality that Q is the space (Σ, ρ).

For any $k \geq 1$ and any $a \in\{0,1\}$, let $\varphi(k, a)$ be a non-decreasing continuous map $I \rightarrow I$ with the properties:

$$
\begin{equation*}
\varphi(k, 1) \circ \varphi(k, 0)=\mathrm{id} \tag{3}
\end{equation*}
$$

where id is the identity map of I, and

$$
\begin{equation*}
\|\varphi(k, a)-\mathrm{id}\|=\delta_{k} \rightarrow 0 \text { as } k \rightarrow \infty \tag{4}
\end{equation*}
$$

Any $\varphi(k, a)$ is a map of rank k. If $x=x(1) x(2) x(3) \cdots \in Q$, then $x(2 i)$ is the i-th control digit of x. For $(x, y) \in Q \times I$ let $F(x, y)=\left(f(x), g_{x}(y)\right)$ where $g_{x}=\varphi(k, x(2 k-1))$ if the first zero control digit is the k-th one, and g_{x} is the identity if x has no zero control digit.

Then $F \mid Q \times I$ is continuous. Indeed, let $\rho(u, v)<1 / 2 k$, for some $u, v \in Q$. If there exists $i \leq k$ with $u(2 i)=0(=v(2 i))$, then $g_{u}=g_{v}$. Otherwise $\left\|g_{u}-\mathrm{id}\right\| \leq \delta_{m}$ and $\left\|g_{v}-\mathrm{id}\right\| \leq \delta_{m}$, for some $m>k$. In any case $\left\|g_{u}-g_{v}\right\| \leq$ $2 \delta_{m}$ which, by (4), implies $\lim _{u \rightarrow v}\left\|g_{u}-g_{v}\right\|=0$ and hence, the continuity of $g_{x}(y)$ in $Q \times I$.

Next we prove some identities for F. Let $\underline{0}$ be the zero sequence in Q and let $y_{0} \in I$. Denote by y_{j} the second coordinate of $F^{j}\left(\underline{0}, y_{0}\right)$, for $j \geq 0$. Let $m \leq 2 \cdot 4^{k}$. Then

$$
\begin{equation*}
y_{m}=\varphi_{m} \circ \varphi_{m-1} \circ \cdots \circ \varphi_{1}\left(y_{0}\right) \tag{5}
\end{equation*}
$$

where every φ_{i} is a map of rank $\leq k+1$ since during the first $2 \cdot 4^{k}=2^{2 k+1}$ iterations, the $(k+1)$-th control digit of $f^{i}(\underline{0})$ is zero. If $m \geq 2$, then $\varphi_{2} \circ \varphi_{1}$ is the block

$$
\beta_{1}=\varphi(1,1) \circ \varphi(1,0)=\mathrm{id}
$$

(see (3)) and this block β_{1} repeats in (5) periodically with period 4 (since $f^{i}(\underline{0})$ begins with two zeros periodically with period 4). Hence, in (5) there are, from the right to the left, the block β_{1}, then a block of two maps, then again β_{1}, etc.

Similarly, if $m \geq 2^{3}$, then $\varphi_{8} \circ \cdots \circ \varphi_{1}$ is the block β_{2} of the form

$$
\beta_{2}=\varphi^{2}(2,1) \circ \beta_{1} \circ \varphi^{2}(2,0) \circ \beta_{1}
$$

which, by $\beta_{1}=\mathrm{id}$ and (3), again gives $\beta_{2}=\mathrm{id}$. Block β_{2} repeats in (5) periodically with period $2^{4}=16$. By induction we get that the block β_{k} of the first $m_{k}=2^{2 k-1}$ maps in (5) amounts to the identity; so

$$
\begin{equation*}
y_{m_{k}}=y_{0}, \text { for } k \geq 1 \tag{6}
\end{equation*}
$$

and for large m the structure of (5) is

$$
\cdots \circ \beta_{k} \circ \beta_{k}^{\prime \prime} \circ \beta_{k} \circ \beta_{k}^{\prime} \circ \beta_{k}
$$

where $\beta_{k}^{\prime}, \beta_{k}^{\prime \prime}, \ldots$ are blocks of the same length m_{k} as β_{k}. Since the maps of rank less than $k+1$ are organized into blocks $\beta_{i}, i \leq k$, which by (6) can
be cancelled, and since the number of appearances of $\varphi(k+1,0)$ in (5), for $m=2 m_{k}$, equals to the number of n 's between 0 and $2 m_{k}$ for which the first k control digits in $f^{n}(\underline{0})$ are ones; i.e., $2 m_{k} / 2^{k}=2^{k}$, we get

$$
y_{2 m_{k}}=\varphi^{2^{k}}(k+1,0)\left(y_{0}\right), k \geq 1 .
$$

Now we specify $\varphi(k, 0)$ and $\varphi(k, 1)$. For any $y \in I$, let

$$
\begin{align*}
& \varphi(k, 0)(y)=\left(1-\delta_{k}\right) y \tag{7}\\
& \varphi(k, 1)(y)=\min \left\{1, y /\left(1-\delta_{k}\right)\right\} \tag{8}
\end{align*}
$$

So, it is clear that $\omega_{F}(\alpha, 0)=Q \times\{0\}=M$, for any $\alpha \in Q$. That is, M is a minimal set of F. Moreover, we want F to be such that $\omega_{F}(\underline{0}, y) \supset M$, for any $y \in I$. It suffices to let $y_{2 m_{k}} \rightarrow 0$ as $k \rightarrow \infty$. Thus, we have to specify the parameters δ_{k}. Take, for example, $\delta_{k}=1 / k$. Then

$$
\begin{equation*}
y_{2 m_{k}}=\varphi^{2^{k}}(k+1,0)\left(y_{0}\right)=\left(1-\delta_{k}\right)^{2^{k}} y_{0}=(1-1 / k)^{2^{k}} y_{0} \tag{9}
\end{equation*}
$$

It remains to extend $F \mid Q \times I$ properly to get a map $F \in \mathcal{T}_{m}$ which is easy.
For any $\alpha \in Q$ and $y \in I$, the trajectory of (α, y) visits every neighborhood of $I_{\underline{0}}$ and it follows that $\omega_{F}(\alpha, y)$ contains a point $y_{0} \in I_{\underline{0}}$. Consequently, $\omega_{F}(\alpha, y) \supset \omega_{F}\left(\underline{0}, y_{0}\right)$ and by $(9), \omega_{F}\left(\underline{0}, y_{0}\right) \supset M$. It follows that M is a unique minimal set in $Q \times I$. Therefore every ω-limit set in $Q \times I$ contains a unique minimal set, the set M. For any ω-limit set $\tilde{\omega}$ not in $Q \times I, \pi(\tilde{\omega})$ is a cycle of f. Since, for every x, g_{x} is non-decreasing $\tilde{\omega}$ must be a cycle as well. This proves (iv).

Since $\lim _{k \rightarrow \infty} f^{m_{k}}(\underline{0})=\underline{0}$, the point $z_{1}=(\underline{0}, 1)$ is by (6) recurrent, and since M is the unique minimal set in $Q \times I$, it follows that z_{1} is not uniformly recurrent. This proves (iii).

Points $z_{0}=(\underline{0}, 0)$ and $z_{1}=(\underline{0}, 1)$ are recurrent. By (9),

$$
\liminf _{n \rightarrow \infty} \rho\left(F^{n}\left(z_{0}\right), F^{n}\left(z_{1}\right)\right)=0
$$

and by (6),

$$
\limsup _{n \rightarrow \infty} \rho\left(F^{n}\left(z_{0}\right), F^{n}\left(z_{1}\right)\right)=1
$$

That is, $F \mid \operatorname{Rec}(F)$ is chaotic. This proves (ii).
Lemma 4.5. There is an $F \in \mathcal{T}_{m}$ with the following properties:
(i) $\omega(F)$ is a proper subset of $\mathrm{C}(F)$.
(ii) $F \mid \omega(F)$ is non-chaotic.
(iii) $F \mid \mathrm{C}(F)$ is chaotic.
(iv) $\operatorname{UR}(F)=\operatorname{Rec}(F)$.

Proof. As the base f of F take the function χ from Lemma 2.6. Then, by Lemmas 2.3 and 2.6, $\mathrm{C}(F) \subset \mathrm{C}(f) \times I$ and $\mathrm{C}(f)=\operatorname{Per}(f) \cup Q \cup P$. We are going to find F such that

$$
\begin{gather*}
\omega(F) \subset \mathrm{C}(F) \backslash(P \times(0,1]) \tag{10}\\
F \mid P \times\{0,1\} \text { is chaotic. } \tag{11}
\end{gather*}
$$

Moreover, all triangular maps $\left(f, g_{x}\right)$ used in the argument have the property that $g_{x}(0)=0$, for any x. This yields

$$
F(I \times\{0\}) \subset I \times\{0\} .
$$

We proceed with several steps. In each step we construct a triangular map defined on a subset of I^{2}, whose base map is always the corresponding restriction of $f=\chi$ from Lemma 2.6.

STAGE 1. Construction of a map $F_{1}:(P \cup Q) \times I \rightarrow(P \cup Q) \times I$ satisfying (11) with F replaced by F_{1}.

Let

$$
\begin{align*}
& \varphi(k, 0)(y)=\max \left\{0, y-\frac{1}{2^{k}+1}\right\}, y \in I, k \in \mathbb{N}_{0} \tag{12}\\
& \varphi(k, 1)(y)=\min \left\{4 y, y+\frac{1}{2^{k}+1}, 1\right\}, y \in I, k \in \mathbb{N}_{0} \tag{13}
\end{align*}
$$

It is easy to see that, for any k,

$$
\begin{equation*}
\varphi(k, 1) \circ \varphi(k, 0)(1)=1 . \tag{14}
\end{equation*}
$$

For $x \in P \cup Q$ let

$$
g_{x}= \begin{cases}\varphi(k, 0) & \text { if } x=p_{n} \text { and } n \in\left[2\left(2^{k}-1\right), 3\left(2^{k}-1\right)\right] \tag{15}\\ \varphi(k, 1) & \text { if } x=p_{n} \text { and } n \in\left[3 \cdot 2^{k}-2,2^{k+2}-3\right] \\ \text { id } & \text { otherwise. }\end{cases}
$$

Let $F_{1}^{j}\left(p_{0}, 1\right)=\left(p_{j}, y_{j}\right)$, for $j \in \mathbb{N}_{0}$. Then, by (12)-(15),

$$
\begin{equation*}
y_{2\left(2^{k}-1\right)}=1 \quad \text { and } \quad y_{3 \cdot 2^{k}-2}=\varphi^{2^{k}}(k, 0)(1)=1-\frac{2^{k}}{2^{k}+1} \tag{16}
\end{equation*}
$$

By Lemma 2.6(i), $\omega_{f}\left(p_{n}\right)=Q$ for any n, hence $\lim _{n \rightarrow \infty} \operatorname{dist}\left(p_{n}, Q\right)=0$. Since $\lim _{k \rightarrow \infty} \varphi(k, 0)=\lim _{k \rightarrow \infty} \varphi(k, 1)=$ id, the $\operatorname{map} F_{1}$ is continuous on $(P \cup Q) \times I$, and (11) for F replaced by F_{1} follows from (16).

STAGE 2. Extension of F_{1} to an auxiliary triangular map $F_{2}: I^{2} \rightarrow I^{2}$ such that

$$
\begin{equation*}
P \times(0,1] \cap \omega\left(F_{2}\right)=\emptyset \tag{17}
\end{equation*}
$$

By Lemma 2.6(i),(v), for any non-negative integer j there is an open interval V_{j} such that $V_{j} \cap(P \cup Q)=\left\{p_{j}\right\}$ and $f \mid V_{j}$ is strictly monotone. It is wellknown and easy to verify that p_{j} divides V_{j} into two subintervals such that one of them is non-wandering (and the other one is wandering, cf., e.g., [6]); denote this non-wandering interval by W_{j}. Since $f \mid V_{j}$ is strictly monotone for every j, there is a strictly monotone sequence $\left(a_{0}^{i}\right)_{i=0}^{\infty} \subset W_{0}$ such that $\lim _{i \rightarrow \infty} a_{0}^{i}=p_{0}$, and

$$
\begin{equation*}
a_{j}^{i}=f^{j}\left(a_{0}^{i}\right) \in W_{j}, \text { for } j \leq 2^{i+3}, \quad i, j \in \mathbb{N}_{0} \tag{18}
\end{equation*}
$$

Since $f \mid V_{j}$ is strictly monotone for every j, and since W_{j} are non-wandering intervals, for any i there is a minimal $k=k(i)>2^{i+3}$ such that $f^{k}\left(a_{0}^{i}\right) \notin W_{k}$. For $0 \leq j<k$ denote by W_{j}^{i} the compact interval with endpoints p_{j} and a_{j}^{i}. Thus, by (18),

$$
\begin{equation*}
f\left(W_{j}^{i}\right)=W_{j+1}^{i}, \text { whenever } j+1<k(i), i, j \in \mathbb{N}_{0} \tag{19}
\end{equation*}
$$

By Lemma 2.6(iv), we may assume that no a_{j}^{i} is periodic.
For $x \in W_{j}^{i}, j<k(i)$, let

$$
g_{a_{j}^{i}}= \begin{cases}g_{p_{j}} \circ g_{p_{j}} & \text { if } j=3\left(2^{i}-1\right) \tag{20}\\ g_{p_{j}} & \text { otherwise }\end{cases}
$$

and if $\lambda \in(0,1)$, let

$$
\begin{equation*}
g_{x}=\lambda g_{a_{j}^{i}}+(1-\lambda) g_{a_{j}^{i+1}} \text { if } x=\lambda a_{j}^{i}+(1-\lambda) a_{j}^{i+1} \tag{21}
\end{equation*}
$$

Thus, we have defined g_{x} on the union W of all W_{j}^{i}. Since $Q \cup P$ is compact, $W \cup Q \cup P=W \cup Q$ is also compact. Moreover, g_{x} depends continuously on $x \in W \cup Q$. (Note that $\left\|g_{p_{j}} \circ g_{p_{j}}-g_{p_{j}}\right\| \rightarrow 0$ for $j \rightarrow \infty$, cf. (20).) Therefore F_{1} (obtained in Stage 1) can be extended onto the whole of I^{2}, to get an $F_{2} \in \mathcal{T}_{m}$ such that, for $(x, y) \in W_{j}^{i} \times I, F_{2}(x, y)=\left(f(x), g_{x}(y)\right)$ where g_{x} is given by (20) and (21).

Let $J_{i} \subset W_{0}$ be the compact interval with endpoints a_{0}^{i} and a_{0}^{i+1}. Then

$$
\begin{equation*}
F_{2}^{j}\left(I_{x}\right)=\left(f^{j}(x), 0\right), \text { if } x \in J_{i}, j \geq 3 \cdot 2^{i+1}-2 \tag{22}
\end{equation*}
$$

Indeed, for $(x, y) \in I^{2}$ put $F^{j}(x, y)=\left(x_{j}, y_{j}\right)$. If $x=a_{0}^{i}$ and $y=1$, then

$$
y_{3 \cdot 2^{i}-2}=g_{p_{3 \cdot\left(2^{i}-1\right)}^{i}} \circ g_{p_{3 \cdot\left(2^{i}-1\right)}^{i}}\left(y_{3 \cdot\left(2^{i}-1\right)}\right)=g_{p_{3 \cdot\left(2^{i}-1\right)}}\left(1-\frac{2^{i}}{2^{i}+1}\right)=0
$$

by (16), (20), and (13). Since $F_{2} \in \mathcal{T}_{m}$ and $g_{x}(0)=0$ for any x,

$$
\begin{equation*}
F_{2}^{j}\left(I_{a_{0}^{i}}\right)=\left(a_{j}^{i}, 0\right), \text { for every } j \geq 3 \cdot 2^{i}-2 \tag{23}
\end{equation*}
$$

Now let $x=\lambda a_{0}^{i}+(1-\lambda) a_{0}^{i+1}$, with $\lambda \in I$. Then, by (23) and (21), for $j=3 \cdot 2^{i+1}-2<k(i)$,

$$
F_{2}^{j}\left(I_{x}\right) \subset \lambda F_{2}^{j}\left(I_{a_{0}^{i}}\right)+(1-\lambda) F_{2}^{j}\left(I_{a_{0}^{i+1}}\right) \subset\left\{\left(x_{j}, 0\right)\right\}
$$

and (22) follows.
It remains to show (17). Assume $\left(p_{0}, z\right) \in \omega_{F_{2}}(x, y)=\tilde{\omega}$. Then $F_{2}^{m}(x, y)=$ $\left(x_{m}, y_{m}\right) \in W_{0}^{0} \times I$, for some $m>0$. Thus, by $(22), F_{2}^{n}\left(I_{x}\right)=\left(x_{n}, 0\right)$, for all sufficiently large n. Consequently, $z=0$. Indeed, since $F_{2}(\tilde{\omega})=\tilde{\omega}$ and $\pi(\tilde{\omega})=P \cup Q$ (cf. Lemma 2.3), it follows that the only F_{2}^{n}-preimage of $\left(p_{n}, z\right)$ in $\tilde{\omega}$ is $\left(p_{0}, 0\right)$ whence $z=0$. For $n<0$ the argument is similar.

STAGE 3. Construction of a map $F_{3}:((I \backslash G) \cup T) \times I \rightarrow((I \backslash G) \cup T) \times I$ such that

$$
F_{3}\left|(I \backslash G) \times I=F_{2}\right|(I \backslash G) \times I,
$$

and

$$
\begin{equation*}
\left\{p_{0}\right\} \times\{0,1\} \subset \mathrm{C}\left(F_{3}\right) \tag{24}
\end{equation*}
$$

where $T \subset \operatorname{Per}(f), \operatorname{cl}(T)=T \cup P \cup Q$, and G is a neighborhood of T, disjoint from $P \cup Q$.

By Lemma 2.6(ii) there is a sequence $\left(t_{0}^{r}\right)_{r=0}^{\infty}$ of periodic points in W_{0}^{0}, with the periods $\left(s_{r}\right)_{r=0}^{\infty}$ such that s_{0} is arbitrary, $s_{r} \geq 4 s_{r-1}$, for $r>0$, and $\lim _{r \rightarrow \infty} t_{0}^{r}=p_{0}$. Denote $f^{i}\left(t_{0}^{r}\right)=t_{i}^{r}$, for $i<s_{r}$, and let T be the set of t_{i}^{r}, for all r and i. Let G be an open neighborhood of T. The set G is specified in Stage 5.

For any r there is a maximal integer $n=n_{r}$ such that $t_{0}^{r} \in W_{0}^{n}$. Then, by (19), $t_{i}^{r} \in W_{i}^{n}$, for $i \leq n$. If $n=0$ let $g_{x}=\mathrm{id}$, for any $x \in\left\{t_{0}^{r}, t_{1}^{r}, \ldots, t_{s_{r-1}}^{r}\right\}$. Otherwise there is a maximal integer $m=m_{r}$ of the form $2^{k+1}-3$ such that $m \leq n$. Then let $g_{t_{i}^{r}}=g_{p_{i}}$ for $i \leq m$, and $g_{t_{i}^{r}}=$ id otherwise. By (16), $\left(t_{0}^{r}, 1\right) \in \operatorname{Per}\left(F_{3}\right)$. Since $g_{x}(0)=0$ for any x, we have also $\left(t_{0}^{r}, 0\right) \in \operatorname{Per}\left(F_{3}\right)$. Since $\lim _{r \rightarrow \infty} t_{0}^{r}=p_{0},(24)$ follows. It remains to show that F_{3} is continuous, but this easily follows by Lemma 2.6(ii),(iv) since $\lim _{i \rightarrow \infty}\left\|g_{p_{i}}-\mathrm{id}\right\|=0$.

STAGE 4. Any extension $F_{4} \in \mathcal{T}_{m}$ of F_{3} satisfies conditions (iii) and (iv).
Indeed, (iii) follows by (24) and (16) since $\mathrm{C}\left(F_{4}\right) \supset \mathrm{C}\left(F_{3}\right)$. To prove (iv) note that, by Lemma $2.3, \operatorname{Rec}\left(F_{4}\right) \subset(\operatorname{Per}(f) \cup Q) \times I$. Since $F_{4} \in \mathcal{T}_{m}$ any recurrent point of F_{3} in $\operatorname{Per}(f) \times I$ is periodic and hence, uniformly recurrent. Thus, $\operatorname{Rec}\left(F_{4}\right) \backslash \operatorname{UR}\left(F_{4}\right) \subset Q \times I$. But $Q \subset \operatorname{UR}(f)$ and $g_{x}=$ id for $x \in Q$, hence $Q \times I \subset \operatorname{UR}\left(F_{4}\right)$.

STAGE 5. Construction of extension $F \in \mathcal{T}_{m}$ of F_{3} satisfying conditions (i) and (ii).

The map F_{3} from Stage 3 has properties (i) and (ii) since, by (17),

$$
\begin{equation*}
P \times(0,1] \cap \omega\left(F_{3}\right)=\emptyset \tag{25}
\end{equation*}
$$

Therefore to get F it suffices to extend F_{3} not violating this condition. For any $t \in T$, let G_{t} be an open interval with the closure disjoint from $P \cup Q$ such that $G_{t} \cap \operatorname{Per}(f)=\{t\}$, and containing no point a_{j}^{i}. Moreover, let $G_{t} \cap G_{d}=\emptyset$ for $t \neq d$ in T. Such a family exists by Lemma 2.6. By the continuity of f, for any $t \in T$ there is an open interval H_{t} such that

$$
\begin{equation*}
f^{s+i}\left(H_{t}\right) \subset G_{f^{i}(t)}, \text { for } 0 \leq i<s \tag{26}
\end{equation*}
$$

where s is the period of t. Let H be the union of all H_{t}, and let $F \in \mathcal{T}_{m}$ be a continuous extension of $F_{3} \mid((I \backslash H) \cup T) \times I$, such that $g_{x}(0)=0$ for any x. We show that

$$
\begin{equation*}
\left\{p_{0}\right\} \times(0,1] \cap \omega(F)=\emptyset \tag{27}
\end{equation*}
$$

Let $\left(p_{0}, z\right) \in \omega_{F}(x, y)$, let $F^{n}(x, y)=\left(x_{n}, y_{n}\right)$, and let $\lim _{k \rightarrow \infty}\left(x_{n_{k}}, y_{n_{k}}\right)=$ $\left(p_{0}, z\right)$. We may assume that $x_{n_{k}} \in W_{0}$ (cf. Stage 2). If $x_{n_{k}} \in H_{t}$ for no k and t, then $\left(x_{n_{k}}, y_{n_{k}}\right)=F_{4}^{n_{k}}(x, y) \rightarrow\left(p_{0}, 0\right)$ by (22). On the other hand, if $x_{n_{k}} \in H_{t}$ for some t, then, by $(26), x_{n} \in f^{s}\left(H_{t}\right) \backslash H_{t}$ for some $n>n_{k}$ (since $x_{n_{k}} \neq t$ and t is repelling by Lemma 2.6). Consequently, by (26), $y_{m}=0$ for some $m>n$. This proves (27). Now (25) follows by (27) since any ω-limit set is invariant (cf. end of Stage 2).

Lemma 4.6. There are $F_{1}, F_{2}, F_{3} \in \mathcal{T}_{m}$ with zero topological entropy such that:
(i) $F_{1} \mid \mathrm{C}\left(F_{1}\right)$ is non-chaotic and $F_{1} \mid \omega\left(F_{1}\right)$ is chaotic.
(ii) $F_{2} \mid \omega\left(F_{2}\right)$ is non-chaotic and $F_{2} \mid \Omega\left(F_{2}\right)$ is chaotic.
(iii) $F_{3} \mid \Omega\left(F_{3}\right)$ is non-chaotic and $F_{3} \mid \operatorname{CR}\left(F_{3}\right)$ is chaotic.

Proof. There is a map $f_{1} \in \mathcal{C}(I, I)$ with zero topological entropy, such that $\omega\left(f_{1}\right)=T \cup P \cup Q$, where $T=\operatorname{Per}\left(f_{1}\right), Q$ is a (minimal) Cantor set, $P=$ $\left(p_{n}\right)_{n=-\infty}^{\infty}$. Moreover, p_{n} is isolated in $T \cup P \cup Q$ and $f_{1}\left(p_{n}\right)=p_{n+1}$, for any n, and there is an $x_{0} \in I$ with $\omega_{f_{1}}\left(x_{0}\right)=P \cup Q$. Consequently, $\mathrm{C}\left(f_{1}\right)=T \cup Q$. Such a function can be found, e.g., in [6]. To get F_{1} let $g_{x}=\mathrm{id}$, for $x \in T \cup Q$. By Lemma 2.3, $\mathrm{C}\left(F_{1}\right) \subset \mathrm{C}\left(f_{1}\right) \times I=(T \cup Q) \times I$. Therefore, F_{1} is non-chaotic on $\mathrm{C}\left(F_{1}\right)$, regardless of how g_{x} is defined for $x \notin \mathrm{C}\left(f_{1}\right)$.

To finish the construction it suffices to get $\left\{p_{0}\right\} \times I \subset \omega\left(F_{1}\right)$ with the points $z_{0}=\left(p_{0}, 0\right), z_{1}=\left(p_{0}, 1\right)$ forming an F_{1}-chaotic pair. To do this we use similar construction as in the proof of Lemma 4.4. Identify the integers $0,1,2, \ldots$
with the iterates of $\overline{0}$ in the adding machine. For $n<0$ let $g_{p_{n}}=\mathrm{id}$, and for $n \geq 0$ let $g_{p_{n}}=\varphi(k, n(2 k-1))$ if the first zero control digit is the k-th one. The functions $\varphi(k, 0)$ and $\varphi(k, 1)$ are given by (7), and (8), respectively. As in the proof of Lemma 4.5, there is a sequence $\left(W_{n}^{0}\right)_{n=-\infty}^{\infty}$ of compact, nonwandering, mutually disjoint one-sided neighborhoods of the points p_{n} such that $W_{n}^{0} \cap(T \cup P \cup Q)=\left\{p_{n}\right\}$. For $x \in W_{n}^{0}$, let $g_{x}=g_{p_{n}}$, and extend F_{1} to a map in \mathcal{T}_{m}.

It is well-known that the trajectory of x_{0} must be eventually in the union of the sets W_{n}^{0} (cf. [6]). Thus, we may assume $x_{0} \in W_{0}^{0}$ and $f^{2^{k}}\left(x_{0}\right) \in W_{0}^{0}$ for any $k \geq 0[6]$. To complete the argument note that, by (6),

$$
F_{1}^{2^{2 k-1}}(x, y)=\left(f_{1}^{2^{2 k-1}}(x), y\right) \text { if } x \in W_{0}^{0}, k>0
$$

This proves that $\left\{p_{0}\right\} \times I \subset \omega\left(F_{1}\right)$, and $\lim \sup _{i \rightarrow \infty} \rho\left(F^{i}\left(z_{0}\right), F_{1}^{i}\left(z_{1}\right)\right)=1$. Finally, by (9), $\liminf _{i \rightarrow \infty} \rho\left(F^{i}\left(z_{0}\right), F_{1}^{i}\left(z_{1}\right)\right)=0$.

Function F_{2} is defined similarly. By [2], there is a map f_{2} having the same properties as f_{1}, except that P is disjoint from $\omega\left(f_{2}\right)$, and $\left(p_{n}\right)_{n=0}^{\infty} \subset \Omega\left(f_{2}\right)$. Such a function can be obtained, e.g., by an arbitrarily small perturbation of f_{1}, making it constant in a one-sided non-wandering neighborhood of one of the points $p_{n}, n<0$. It is easy to verify that F_{2} has the desired properties.

Finally, construction of F_{3} is simple. Let f_{3} be a map in $\mathcal{C}(I, I)$ with zero topological entropy such that $\Omega\left(f_{3}\right)=\omega\left(f_{3}\right)=T \cup Q$, where $T=\operatorname{Per}\left(f_{3}\right)$, and Q is the unique infinite ω-limit set. Moreover, let f_{3} have a wandering interval J such that $\omega_{f_{3}}(x)=Q$ whenever $x \in J$. It is well-known (and easy to see) that then the trajectory of J is in $\operatorname{CR}\left(f_{3}\right)$. Such a function f_{3} can be obtained either by a simple modification of f_{1} or f_{2}, or by blowing up the orbit, e.g., of the critical point of the Feigenbaum's map (cf. [6]). Now let p_{0} be an interior point of J. For $n \geq 0$ define F_{3} on $\left\{p_{n}\right\} \times I$ similarly as F_{1}, and let g_{x} be the identity for $x \in T \cup Q$. Then extend F_{3} onto the whole of I^{2}.

5 Survey.

The 23 properties of maps in \mathcal{T}_{m} which are considered in this paper are related as follows.

The Main Theorem 5.1. Consider properties (P1)-(P23) of triangular maps non-decreasing on the fibers listed in Section 1. The relations between them are displayed by the graph on Figure 1 where a missing arrow means that there is no implication, except for implications that follow by transitivity.

Figure 1:

Proof. There are two groups of mutually equivalent properties, (P1)-(P12) by Lemma 3.3, and (P22) $\Leftrightarrow(\mathrm{P} 23)$ by [4]. Keeping (P1) and (P22) as representatives of these equivalence classes we can list the remaining relations as follows (brackets contain references, either to a lemma, or to other implications).

```
P1 = P13 (3.1)
P1 \not=> P14 (4.1); P15 (4.1); P16 (4.1); P17 (4.1); P18 (4.1); P19 (4.1);
    P20 (4.2); P21 (4.3); P22 (4.3)
P13 }=> P1 (2.7); P14 (4.1); P15 (4.1); P16 (4.1); P17 (4.1); P18 (4.1)
    P19 (4.1); P20 (4.2); P21 (4.3); P22 (4.3)
P14 = P1 (14 = 19 = 1); P13 (14 = 19 = 13); P15 (2.4); P16 (2.4);
    P17 (2.4); P18 (2.4); P19 (2.4); P20 (14 = 18 = 20)
P14 \not=> P21 (4.3); P22 (4.3)
P15 m P1 (15 => 19=> 1); P13 (15 m 19=> 13); P16 (2.4); P17 (2.4);
    P18 (2.4); P19 (2.4); P20 (14=>18=> 20)
P15 \not=> P14 (4.6); P21 (4.3); P22 (4.3)
P16 => P1 (16 m 19 m 1); P13 (14 m 19=> 13); P18 (2.4); P19 (2.4);
    P20 (14 # 18 = 20)
P16 \not=> P14 (4.6); P15 (4.6); P17 (4.5); P21 (4.3); P22 (4.3)
P17 = P1 (17 = 19 = 1); P13 (17 = 19 = 13); P18 (2.4); P19 (2.4);
    P20 (14 = 18 = 20)
```

```
P17 \not=> P14 (4.6); P15 (4.6); P16 (4.6); P21 (4.3); P22 (4.3)
P18 }=>\mathrm{ P1 P1 (18 = 19 = 1); P13 (18 m 19 m 13); P19 (2.4); P20 (3.4)
P18 }=>\mathrm{ P14 (4.6); P15 (4.6); P16 (4.6); P17 (16 # 18, 16 }\not=17); P2
    (4.3); P22 (4.3)
P19 = P1 (3.2, 3.3); P13 (19 = 1 m 13)
P19 }=>\mathrm{ P14 (4.2); P15 (4.2); P16 (4.2); P17 (4.2); P18 (4.2); P20 (4.2);
    P21 (4.3); P22 (4.3)
P20 }=>\textrm{P}1\quad(3.2, 3.3); P13 (20=>1=> 13)
P}20\not=>\textrm{P}14(18=>20,18\not=>14); P15 (18 => 20, 18\not=>15); P16 (18 => 20,
    18\not=>16); P17 (4.5); P18; P19; P21 (4.3); P22 (4.3)
```

The facts, that (P20) does not imply neither (P18) nor (P19) were recently proved by J. Chudziak, L̆. Snoha, V. Špitalský, and independently by G. L. Forti, L. Paganoni, J. Smítal.

```
P21 }=>\textrm{P}1\quad(21=>22=>1); P13 (21=>22=>13); P22 (2.8)
P21 }=>\mathrm{ P14 (4.1); P15 (4.1); P16 (4.1); P17 (4.1); P18 (4.1); P19 (4.1);
    P20 (4.4)
P22 }=>\mathrm{ P1 (3.2, 3.3); P13 (22 = 1 = 13)
P}22\not=> P14 (4.1, 2.8); P15 (4.1, 2.8); P16 (4.1, 2.8); P17 (4.1, 2.8); P18
    (4.1, 2.8); P19 (4.1, 2.8); P20 (4.2, 2.8); P21 (4.2)
```


References

[1] L. Alsedà, M. Chas, J. Smítal, On the structure of the ω-limit sets for continuous maps of the interval, Inter. Journal of Bifurcation and Chaos, 9, No. 9 (1999), 1719-1729.
[2] F. Balibrea, J. Smítal, A characterization of the set $\Omega(f) \backslash \omega(f)$ for continuous maps of the interval with zero topological entropy, Real Analysis Exchange, 21(2) (1995/6), 622-628.
[3] F. Blanchard, E. Glasner, S. Kolyada, A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.
[4] L. S. Block, W. A. Coppel, One-dimensional Dynamics, Lecture Notes in Math., vol. 1513, Springer-Verlag, Berlin, 1992.
[5] R. Bowen, Entropy for group endomorphism and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
[6] A. M. Bruckner, J. Smítal, A characterization of ω-limit sets of maps of the interval with zero topological entropy, Ergodic Theory \& Dynam. Syst., 13 (1993), 7-19.
[7] V. V. Fedorenko, A. N. Sharkovsky, J. Smítal, Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc., 110 (1990), 141148.
[8] G. L. Forti, L. Paganoni, J. Smítal, Strange triangular maps of the square, Bull. Austral. Math. Soc., 51 (1995), 395-415.
[9] G. L. Forti, L. Paganoni, J. Smítal, Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc., 59 (1999), 1-20.
[10] Z. Kočan, The problem of classification of triangular maps with zero topological entropy, Annales Mathematicae Silesianae, 13 (1999), 181-192.
[11] S. F. Kolyada, On dynamics of triangular maps of the square, Ergodic Theory \& Dynam. Syst., 12 (1992), 749-768.
[12] S. F. Kolyada, A. N. Sharkovsky, On topological dynamics of triangular maps of the plane, in Proceedings of ECIT-89, Batschuns, Austria, World Scientific, Singapore, (1991), 177-183.
[13] A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak, V. V. Fedorenko, Dynamics of one-dimensional mappings, Mathematics and its Applications (Dordrecht), Kluwer Academic Publishers, (1997).
[14] P. Šindelářová, A counterexample to a statement concerning Lyapunov stability, Acta Math. Univ. Comen., 70 (2001), 265-268.
[15] P. Šindelářová, A zero topological entropy map for which periodic points are not a G_{δ} set, Ergod. Th. \& Dynam. Sys., 22 (2002), 947-949.
[16] P. Šindelářová, A zero topological entropy map with recurrent points not F_{σ}, Proc. Amer. Math. Soc., 131 (2003), 2089-2096.

[^0]: Key Words: Triangular maps, zero topological entropy, equivalent conditions
 Mathematical Reviews subject classification: Primary 37B20, 37E99, 54H20
 Received by the editors October 14, 2003
 Communicated by: Richard J. O'Malley
 *The research was supported, in part, by the Grant Agency of Czech Republic, grant No. 201/00/0859, and by the Czech Ministry of Education, project MSM 192400002. The author would like to thank Professor J. Smítal for his guidance and suggestions.

