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Abstract

There is a list of about 50 properties which characterize continuous
maps of the interval with zero topological entropy. Most of them were
proved by A. N. Sharkovsky [cf., e.g., Sharkovsky et al., Dynamics of
One-Dimensional Mappings, Kluwer 1997]. It is also well known that
only a few of these properties remain equivalent for continuous maps of
the square. Recall, e.g., the famous Kolyada’s example of a triangular
map of type 2∞ with positive topological entropy.

In 1989 Sharkovsky formulated the problem to classify these condi-
tions in a special case of triangular maps of the square. The present
paper is a step toward the solution. In particular, we give a classi-
fication of 23 conditions in the case of triangular maps of the square
which are non-decreasing on the fibers. We show that the weakest is
“no homoclinic trajectory”, the two strongest, mutually incomparable,
are “map restricted to the set of chain recurrent points is not Li & Yorke
chaotic”and “every ω-limit set contains a unique minimal set”.

1 Introduction.

As is well-known, there is a long list of properties characterizing continuous
maps of the interval with zero topological entropy. The most representative
one can be found in [13] (see also [7], [11], [12]). Below we present a reduced
list of 27 properties, regardless of the fact that the last four properties were
recently found not to be equivalent to the others (cf. Šindelářová [14]–[16],
Alsedà et al. [1]).
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In 1989 A. N. Sharkovsky [12] asked the question which of these properties
are equivalent in the case of triangular maps of the square. This problem
seems to be very difficult. Until now there are only partial results showing
that many of these conditions are not equivalent (cf., e.g., [8], [9], [11], [12]).
A systematic approach to the problem, containing also some positive results
can be found in [10]. The main problem is caused by the fact that, for general
triangular maps of the square, the properties “the map has zero topological
entropy” and “the map is of type not greater than 2∞” are not equivalent [11].
However, they are equivalent in a special case when the triangular maps are
non-decreasing on the fibers. Therefore, the present paper is devoted just to
these special maps.

In Section 2 we recall some known results. In Section 3 we prove some
implications and in Section 4 we present examples of triangular maps showing
that some implications are not true. Non-trivial new results are given in
Lemmas 3.4, 4.4, and 4.5. The main result, a survey, is given at the end of
the paper as a diagram.

In the sequel, I = [0, 1] is the unit compact interval, I2 the unit square,
and X a compact metric space with a metric ρ. Let C(X, X) be the set of
continuous mappings of X into itself, N the set of positive integers, and N0

the set of non-negative integers. For ϕ ∈ C(X, X), let ϕn(x) denote the n-th
iterate of ϕ at x, for n ∈ N and x ∈ X. The set of cluster points of the
sequence (ϕn(x))n∈N is the ω-limit set ωϕ(x) of x. Let π : I2 → I be the
projection (x, y) 7→ x.

Let f : I → I, and gx : {x} × I → I, for x ∈ I. A map F ∈ C(I2, I2)
such that F (x, y) = (f(x), gx(y)), for any x, y in I, is a triangular map, f is
the base of F , and the set Ix := {x} × I is the fiber over x. Throughout the
paper, F always denotes a triangular map, and f its base.

We proceed with the list of properties of continuous maps of a compact
metric space into itself; the symbols used in them are explained below.

(P1) h(ϕ) = 0
(P2) h(ϕ| CR(ϕ)) = 0
(P3) h(ϕ| Ω(ϕ)) = 0
(P4) h(ϕ| ω(ϕ)) = 0
(P5) h(ϕ| C(ϕ)) = 0
(P6) h(ϕ| Rec(ϕ)) = 0
(P7) h(ϕ| UR(ϕ)) = 0
(P8) h(ϕ| AP(ϕ)) = 0
(P9) h(ϕ| Per(ϕ)) = 0
(P10) Every cycle is simple
(P11) Period of any cycle is a power of 2



Triangular Maps Non-Decreasing on the Fibers 521

(P12) There is no minimal set with positive topological entropy
(P13) ϕ has no homoclinic trajectory
(P14) ϕ| CR(ϕ) is non-chaotic
(P15) ϕ| Ω(ϕ) is non-chaotic
(P16) ϕ| ω(ϕ) is non-chaotic
(P17) ϕ| C(ϕ) is non-chaotic
(P18) ϕ| Rec(ϕ) is non-chaotic
(P19) ϕ| UR(ϕ) is non-chaotic
(P20) UR(ϕ) = Rec(ϕ)
(P21) Every ω-limit set contains a unique minimal set
(P22) No infinite ω-limit set contains a cycle
(P23) Every ω-limit set either is a cycle or contains no cycle
(P24) ϕ| Per(ϕ) is Lyapunov stable
(P25) Per(ϕ) is a Gδ-set
(P26) Rec(ϕ) is an Fσ-set
(P27) Every linearly ordered chain of ω-limit sets is countable

In the sequel, CR(ϕ) denotes the set of chain recurrent points of ϕ. Thus,
x ∈ CR(ϕ) if, for any ε > 0, there is a sequence of points (xi)n

i=0 with x0 = x
and xn = x such that ρ(xi+1, ϕ(xi)) < ε, for i = 0, 1, 2, . . . , n− 1. Ω(ϕ) is the
set of non-wandering points of ϕ; i.e., x ∈ Ω(ϕ) if, for any neighborhood U of
x, there is an n ∈ N with ϕn(U) ∩ U 6= ∅. By ω(ϕ) we denote the union of all
ω-limit sets of ϕ, and by Rec(ϕ) the set of recurrent points of ϕ; i.e., the set of
x ∈ X such that x ∈ ωϕ(x), while C(ϕ) = cl(Rec(ϕ)) is the center of ϕ. UR(ϕ)
denotes the set of uniformly recurrent points of ϕ; i.e., the set of x ∈ X such
that for any neighborhood U of x, there is an n ∈ N such that if ϕm(x) ∈ U ,
where m ≥ 0, then ϕm+k(x) ∈ U for some k with 0 < k ≤ n. By AP(ϕ) we
denote the set of almost periodic points of ϕ; i.e., the set of x ∈ X such that
for any neighborhood U of x, there is an n ∈ N such that ϕin(x) ∈ U , for any
i. Per(ϕ) is the set of periodic points of ϕ.

Denote by hρ(ϕ|M) the topological entropy of the map ϕ with respect to the
subset M and by hρ(ϕ) the topological entropy of the map ϕ. If no confusion
can arise we write h instead of hρ.

Let ϕ ∈ C(I, I) and let α = {x1, x2, . . . , x2n} ⊂ I, where n ∈ N0, be a cycle
of ϕ with period 2n such that x1 < x2 < . . . < x2n . Then α is a simple cycle
of ϕ, if either n = 0 (and α = {x} is a fixed point), or n > 0 and the sets
{x1, x2, . . . , x2n−1}, {x2n−1+1, . . . , x2n} are invariant sets with respect to ϕ2,
and each of them is a simple cycle of ϕ2.

Let α be a cycle of a triangular map F with period 2k, k ∈ N0, such that
π(α) is a simple cycle of the base f with period 2n = m, for some n ≤ k.
Then α is a simple cycle of F if, for every x ∈ π(α) and every z ∈ α ∩ Ix,



522 Zdeněk Kočan

{F im(z)| i = 1, 2, . . . , 2k−n} ⊂ Ix is a simple cycle of Fm| Ix (which is a
one-dimensional map Ix → Ix).

A subset M of X is a minimal set if M = ωϕ(x), for any x ∈ M .
Let x ∈ X be a fixed point of ϕ. A sequence (xn)∞n=1 of distinct points in

X such that ϕ(xn+1) = xn, for every n ∈ N, ϕ(x1) = x, and limn→∞ xn = x,
is a homoclinic trajectory related to the point x. A sequence (yn)∞n=1 of distinct
points in X such that ϕ(yn+1) = yn, for every n ∈ N, ϕ(y1) = yk, for some
k ∈ N (i.e., {y1, . . . , yk} is a cycle of period k), and limn→∞ ykn+i = yi for
i = 1, 2, . . . , k, is a homoclinic trajectory related to the cycle {y1, . . . , yk}.

A map ϕ is chaotic (in the sense of Li and Yorke) if there is a ϕ-chaotic
pair {x, y} ⊂ X; i.e., points x, y ∈ X such that

0 = lim inf
n→∞

ρ (ϕn (x) , ϕn (y)) < lim sup
n→∞

ρ (ϕn (x) , ϕn (y)) .

2 Known Results.

Throughout this section, X denotes a compact metric space, T the class of
triangular maps of the square, and Tm the class of triangular maps of the
square which are non-decreasing on the fibers.

Proposition 2.1. Let ϕ ∈ C(I, I). Then conditions (P1)–(P23) are mutually
equivalent.

Remark. The complete list of references can be found in [13]. In some papers
and books it was stated that for ϕ ∈ C(I, I), also properties (P24)–(P27) are
equivalent to (P1) (cf., e.g., [7], [11], [12], [13]), but actually this is not the
case. In [14] there is proved that (P24) is not equivalent to (P1), in [15] that
(P25) is not equivalent to (P1), in [16] that (P26) is not equivalent to (P1),
and in [1] it is proved that (P27) is not equivalent to (P1).

Proposition 2.2. Let ϕ ∈ C(X, X), and F ∈ T .
(i) If A ⊂ B ⊂ X are invariant sets of ϕ, then h(ϕ| A) ≤ h(ϕ| B).
(ii) h(f) + supx∈I h(F | Ix) ≥ h(F ) ≥ max{h(f), supx∈I h(F | Ix)}.

Proof. Property (i) follows from the definition of topological entropy, (ii) is
proved in [5] (cf. also [11]).

Lemma 2.3. [11] Let F ∈ T . For ϕ ∈ C(X, X), let A(ϕ, X) denote one of the
sets Per(ϕ), Rec(ϕ), UR(ϕ), C(ϕ), ω(ϕ), Ω(ϕ), CR(ϕ). Then π(A(F, I2)) =
A(f, I).
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Lemma 2.4. [4] If ϕ ∈ C(X, X), then

Per(ϕ) ⊂ AP(ϕ) ⊂ UR(ϕ) ⊂ Rec(ϕ) ⊂ C(ϕ)
ω(ϕ) ⊂ Ω(ϕ) ⊂ CR(ϕ).

Lemma 2.5. [3] Let ϕ ∈ C(X, X) be surjective. If h(ϕ) > 0, then ϕ is chaotic.

Lemma 2.6. [16] There is a map χ ∈ C(I, I) of type 2∞ such that
(i) χ has a unique infinite maximal ω-limit set ω̃ = Q ∪ P , where Q is a

Cantor set, and P = {pn}∞n=−∞ an infinite set of points isolated in ω̃
such that χ(pn) = pn+1, for any n;

(ii) cl(Per(χ)) = Per(χ) ∪ P ∪Q;
(iii) P ⊂ cl(Per(χ)) \ Per(χ);
(iv) any point in Per(χ) is isolated in ω(χ), and repelling;
(v) χ is monotone in a neighborhood of any p ∈ P .

Lemma 2.7. (13 6⇒ 1) [10] There is an F ∈ Tm with no homoclinic trajectory
such that f has positive topological entropy.

Lemma 2.8. (21 ⇒ 22) [10] Let F ∈ T . If every ω-limit set of F contains a
unique minimal set, then no infinite ω-limit set of F contains a cycle.

3 Implications.

In this section we prove some implications for functions in F ∈ Tm. However,
if the argument for the class T is almost the same, we prove the more general
statement. For the reader’s convenience we include some results that can be
found elsewhere, in particular, in [10].

Lemma 3.1. (1 ⇒ 13) Let F ∈ T . If h(F ) = 0, then F has no homoclinic
trajectory.

Proof. Let F have a homoclinic trajectory γ. Without loss of generality we
may assume that γ is a homoclinic trajectory related to a fixed point, since
otherwise it suffices to replace F by F k where k is the period of the cycle
related to γ. Then π(γ) is either a homoclinic trajectory or a fixed point. If
π(γ) is a homoclinic trajectory, then h(F ) ≥ h(f) > 0 (cf. Lemma 2.1). If
π(γ) is a fixed point x, then γ ⊂ Ix and F | Ix has a homoclinic trajectory.
Thus 0 < h(F | Ix) ≤ h(F ).

Lemma 3.2. For F ∈ Tm, condition (P11), that period of any cycle is a power
of 2, is necessary for any of the following conditions:
(P12) There is no minimal set with positive topological entropy.
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(P19) F | UR(F ) is non-chaotic.
(P20) Rec(F ) = UR(F ).
(P22) No infinite ω-limit set contains a cycle.

Proof. Let F ∈ T , let γ be a cycle of F with period p that is not a power of
2, and let π(γ) = α = {a1, . . . , aq}. Consider two cases.

CASE A. Assume q is not a power of 2. Then there is a minimal set Mf of
f with positive topological entropy, and in Mf × I there is a minimal set MF

of F such that h(F | MF ) ≥ h(f | Mf ) > 0. This proves that (P12) implies
(P11). By Lemma 2.5 there are points z1, z2 ∈ MF such that

lim inf
n→∞

|Fn(z1)− Fn(z2)| = 0 and lim sup
n→∞

|Fn(z1)− Fn(z2)| > 0.

Since MF ⊂ UR(F ) (cf., e.g., [4]), F | UR(F ) is chaotic and consequently,
(P19) implies (P11). By Proposition 2.1 there is a recurrent point x̂ of f
which is not uniformly recurrent, and by Lemma 2.3, Ix̂ contains a recurrent
point of F that is not uniformly recurrent. Hence (P20) implies (P11). Since
h(f) > 0 Proposition 2.1 implies that f has an infinite ω-limit set ωf (x0)
containing a periodic point a with period r. Take z0 = (x0, y), for arbitrary
y ∈ I. Then ωF (z0) is an infinite set and ω̃ = ωF (z0) ∩ Ia contains a point z.
We have F r| Ia : Ia → Ia and F r(ω̃) = ω̃. Now assume F ∈ Tm. Then F r| Ia

is non-decreasing and the sequence (F kr(z))∞k=0 has a periodic accumulation
point c ∈ ω̃ ⊂ ωF (z0), and this proves that (P22) implies (P11).

CASE B. Assume q is a power of 2, and G := F q| Ia1 : Ia1 → Ia1 has a
cycle whose period is not a power of 2. By Proposition 2.1, G has a minimal
set MG with positive topological entropy, G| UR(G) is chaotic, and G has a
recurrent point (a1, y0) which is not uniformly recurrent. Obviously, (a1, y0) ∈
Rec(F ) \UR(F ).

Lemma 3.3. (1 ⇔ . . . ⇔ 12) For F ∈ Tm, conditions (P1)–(P12) are mutu-
ally equivalent.

Proof. Take F ∈ Tm and assume h(F | Per(F )) = 0. Then, by Proposition
2.2(ii), h(f | Per(f)) = 0, and by Proposition 2.1, h(f) = 0. Since for every
x ∈ I, gx is non-decreasing, we have supx∈I h(F | Ix) = 0 and by 2.2(ii),
h(F ) = h(f). That is, h(F ) = 0. Thus (P9) implies (P1), and by Lemma 2.4,
(P1)–(P9) are mutually equivalent.

Let F ∈ T . If h(F ) = 0, then by Proposition 2.2(ii), h(f) = 0 and by
Proposition 2.1, every cycle α of f is a simple cycle with period 2n, for some
n ∈ N. For any x0 ∈ α, every cycle of F 2n | Ix0 is either a fixed point or a
cycle with period 2k, for some k ∈ N. That is, every cycle of F is simple, and
(P1) implies (P10). The implication (P10) ⇒(P11) is obvious.
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Let F ∈ Tm and let the period of any cycle of F be a power of 2. Then
period of any cycle of f is a power of 2 and h(f) = 0. Thus (P11) implies (P1)
since h(F ) = h(f).

By Lemma 3.2, (P12) implies (P11). So to finish the proof it suffices to
show that (P7) implies (P12). But this follows since every point of a minimal
set is uniformly recurrent (cf., e.g., [4]) hence if h(F | UR(F )) = 0, then there
is no minimal set with positive topological entropy.

Lemma 3.4. (18 ⇒ 20) Let F ∈ Tm. If F | Rec(F ) is non-chaotic, then
UR(F ) = Rec(F ).

Proof. Let F | Rec(F ) be non-chaotic. Then by Lemmas 2.3, 3.2 and 3.3,
h(F ) = 0 and hence, h(f) = 0. So, any isolated point of any infinite ω-limit
set of f is a wandering point (cf., e.g., [6]), and since Rec(f) ⊂ ω(f), we have
Rec(f) = Per(f) ∪W where W is the union of the perfect ω-limit sets of f .
Consequently,

Rec (F ) ⊂ (Per (f) ∪W )× I (1)

since π(Rec(F )) = Rec(f), by Lemma 2.3.
Now assume, contrary to what we wish to show, that z0 = (x0, y0) ∈

Rec(F ) \ UR(F ). Then x0 /∈ Per(f); this follows easily since F is non-
decreasing on the fibers. Hence, by (1), ωf (x0) = Q is a perfect set con-
taining x0. Thus, ωF (z0) is a subset of Q × I and contains a minimal set
M 6= ωF (z0). Let Mx0 = {y ∈ I| (x0, y) ∈ M}. Since y0 /∈ Mx0 , we have
either max Mx0 < y0 or minMx0 > y0. Assume without loss of generality
that maxMx0 < y0. Let m = minMx0 , and z = (x0,m). Then z ∈ M and
consequently, since M is a minimal set, z ∈ UR(F ). Since M is invariant and
z0 ∈ Rec(F ) \M , we have lim supn→∞ ρ(Fn(z), Fn(z0)) > 0.

On the other hand, there is a sequence (nk)∞k=0 of positive integers such
that limk→∞ Fnk(z0) = z. Denote by yk and mk the second coordinate of
Fnk(z0) or Fnk(z), respectively. Since F ∈ Tm, we have mk ≤ yk, for any k.
Thus,

m∞ = lim inf
k→∞

mk ≤ lim
k→∞

yk = m. (2)

Since M is invariant, (x0,m∞) ∈ M . Hence m∞ ≥ m. Consequently, by
(2), limk→∞ ρ(Fnk(z0), Fnk(z)) = 0 and F | Rec(F ) would be chaotic which
is impossible.

4 Examples.

In this section we present some examples of functions from Tm showing that
some implications are not true. The next two examples are known.
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Lemma 4.1. [9] There is an F ∈ Tm with the following properties:
(i) h(F ) = 0.
(ii) F | UR(F ) is chaotic.
(iii) Every ω-limit set contains a unique minimal set.

Proof. It follows easily by Theorems 3 and 4 in [9].

Lemma 4.2. [9] There is an F ∈ Tm with the following properties:
(i) h(F ) = 0.
(ii) F | Rec(F ) is chaotic.
(iii) F | UR(F ) is non-chaotic.
(iv) UR(F ) 6= Rec(F ).
(v) F has an ω-limit set containing more than one minimal set.
(vi) No infinite ω-limit set contains a cycle.

Proof. It follows easily by Theorem 10 in [9]. The corresponding map F is
even distributionally chaotic on Rec(F ).

Lemma 4.3. [10] There is an F ∈ Tm with the following properties:
(i) h(F ) = 0.
(ii) F | CR(F ) is non-chaotic.
(iii) UR(F ) = Rec(F ).
(iv) F has an ω-limit set containing more than one minimal set.
(v) F has an infinite ω-limit set containing a cycle.

Proof. The result is implicitly contained in the proof of Lemma 4.4 of [10].
We recall the construction. Let f(x) = kx, where k ∈ (0, 1) is a constant. For
δ ∈ (0, 1), let τδ, τ

∗
δ : I → I be such that

τδ (x) = (1− δ) x + δ,

τ∗δ (x) =

{
0 for x ∈ [0, δ]

1
1−δ x + δ

δ−1 for x ∈ (δ, 1] .

Thus, τ∗δ ◦ τδ is the identity on I. Put g0(y) = y and for n = 0, 1, 2, . . . ,

gfn(1) (y) =

{
τ1/(k+2) (y) for nk ≤ n < 1

2 (nk + nk+1)
τ∗1/(k+2) (y) for 1

2 (nk + nk+1) ≤ n < nk+1

for x ∈ (fn+1(1), fn(1)), x = λfn+1(1) + (1− λ)fn(1), λ ∈ (0, 1),

gx (y) = λgfn+1(1) (y) + (1− λ) gfn(1) (y)
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where (nk)∞k=0 is a sequence of non-negative even numbers such that n0 = 0
and limk→∞(1 − 1

k+1 )(nk+1−nk)/2 = 0. Since f and F | Ix, for every x ∈ I,
are non-decreasing, h(F ) = 0. We have ωF (1, 0) = I0 = Fix(F ) = UR(F ) =
Rec(F ) = CR(F ), and ωF (1, 0) is an infinite ω-limit set containing a cycle.
The other conditions are obvious.

In the proofs of the next Lemmas 4.4 and 4.6 we need symbolic dynamics,
in particular, the adding machine on the space Σ = {0, 1}N of sequences of
two symbols. We assume that Σ is equipped with a metric ρ of pointwise
convergence, e.g., ρ((x(i))∞i=1, (y(i))∞i=1) = 1/k if k is the first integer such
that x(k) 6= y(k). Let A : Σ → Σ be the adding machine which is defined by
A(x) = x + 10, where x ∈ Σ and 0 is the zero sequence; the adding is mod 2
from the left to the right.

Let f ∈ C(I, I) be a map of type 2∞ possessing the unique Cantor-type
ω-limit set Q such that f | Q is one-to-one. In this case the system (Q, f | Q) is
conjugate (i.e., homeomorphic) to (Σ, A) (cf. [6], for example). In the sequel,
we identify both systems and refer to f | Q as to the adding machine. Clearly
ωf |Q(x) = Q, for x ∈ Q. Hence Q is a minimal set for f . For details concerning
the adding machine and its representation as a factor of a continuous map of
the interval see, e.g., [6], [8], or [9].

Lemma 4.4. There is an F ∈ Tm with the following properties:
(i) h(F ) = 0.
(ii) F | Rec(F ) is chaotic.
(iii) UR(F ) 6= Rec(F ).
(iv) Every ω-limit set contains a unique minimal set.

Proof. The construction of such a mapping is based on the proof of Theorem
1 in [8] which states that there is a triangular map with properties (i) and (iii).
But our map is much simpler and has the other properties.

Let f ∈ C(I, I) be a map of type 2∞ possessing the unique infinite ω-limit
set Q such that f is one-to-one on Q (e.g., let f be the Feigenbaum map).
Then f | Q is the adding machine. To get F ∈ Tm it suffices to define its
restriction F | Q× I, non-decreasing on the fibers, and then extend it properly
to the whole of I2. This will give h(F ) = 0 since h(f) = 0. As already
mentioned, we assume without loss of generality that Q is the space (Σ, ρ).

For any k ≥ 1 and any a ∈ {0, 1}, let ϕ(k, a) be a non-decreasing continuous
map I → I with the properties:

ϕ (k, 1) ◦ ϕ (k, 0) = id (3)
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where id is the identity map of I, and

‖ϕ (k, a)− id‖ = δk → 0 as k →∞. (4)

Any ϕ(k, a) is a map of rank k. If x = x(1)x(2)x(3) · · · ∈ Q, then x(2i) is the
i-th control digit of x. For (x, y) ∈ Q × I let F (x, y) = (f(x), gx(y)) where
gx = ϕ (k, x (2k − 1)) if the first zero control digit is the k-th one, and gx is
the identity if x has no zero control digit.

Then F | Q×I is continuous. Indeed, let ρ(u, v) < 1/2k, for some u, v ∈ Q.
If there exists i ≤ k with u(2i) = 0 (= v(2i)), then gu = gv. Otherwise
‖gu − id‖ ≤ δm and ‖gv − id‖ ≤ δm, for some m > k. In any case ‖gu − gv‖ ≤
2δm which, by (4), implies limu→v ‖gu − gv‖ = 0 and hence, the continuity of
gx(y) in Q× I.

Next we prove some identities for F . Let 0 be the zero sequence in Q and
let y0 ∈ I. Denote by yj the second coordinate of F j(0, y0), for j ≥ 0. Let
m ≤ 2 · 4k. Then

ym = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ1 (y0) (5)

where every ϕi is a map of rank ≤ k + 1 since during the first 2 · 4k = 22k+1

iterations, the (k + 1)-th control digit of f i(0) is zero. If m ≥ 2, then ϕ2 ◦ ϕ1

is the block
β1 = ϕ (1, 1) ◦ ϕ (1, 0) = id

(see (3)) and this block β1 repeats in (5) periodically with period 4 (since
f i(0) begins with two zeros periodically with period 4). Hence, in (5) there
are, from the right to the left, the block β1, then a block of two maps, then
again β1, etc.

Similarly, if m ≥ 23, then ϕ8 ◦ · · · ◦ ϕ1 is the block β2 of the form

β2 = ϕ2 (2, 1) ◦ β1 ◦ ϕ2 (2, 0) ◦ β1

which, by β1 = id and (3), again gives β2 = id. Block β2 repeats in (5)
periodically with period 24 = 16. By induction we get that the block βk of
the first mk = 22k−1 maps in (5) amounts to the identity; so

ymk
= y0, for k ≥ 1, (6)

and for large m the structure of (5) is

· · · ◦ βk ◦ β′′k ◦ βk ◦ β′k ◦ βk

where β′k, β′′k , . . . are blocks of the same length mk as βk. Since the maps of
rank less than k + 1 are organized into blocks βi, i ≤ k, which by (6) can
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be cancelled, and since the number of appearances of ϕ(k + 1, 0) in (5), for
m = 2mk, equals to the number of n’s between 0 and 2mk for which the first
k control digits in fn(0) are ones; i.e., 2mk/2k = 2k, we get

y2mk
= ϕ2k

(k + 1, 0) (y0) , k ≥ 1.

Now we specify ϕ(k, 0) and ϕ(k, 1). For any y ∈ I, let

ϕ (k, 0) (y) = (1− δk) y, (7)
ϕ (k, 1) (y) =min {1, y/ (1− δk)} . (8)

So, it is clear that ωF (α, 0) = Q× {0} = M , for any α ∈ Q. That is, M is
a minimal set of F . Moreover, we want F to be such that ωF (0, y) ⊃ M , for
any y ∈ I. It suffices to let y2mk

→ 0 as k →∞. Thus, we have to specify the
parameters δk. Take, for example, δk = 1/k. Then

y2mk
= ϕ2k

(k + 1, 0) (y0) = (1− δk)2
k

y0 = (1− 1/k)2
k

y0. (9)

It remains to extend F | Q× I properly to get a map F ∈ Tm which is easy.
For any α ∈ Q and y ∈ I, the trajectory of (α, y) visits every neighborhood

of I0 and it follows that ωF (α, y) contains a point y0 ∈ I0. Consequently,
ωF (α, y) ⊃ ωF (0, y0) and by (9), ωF (0, y0) ⊃ M . It follows that M is a unique
minimal set in Q× I. Therefore every ω-limit set in Q× I contains a unique
minimal set, the set M . For any ω-limit set ω̃ not in Q × I, π(ω̃) is a cycle
of f . Since, for every x, gx is non-decreasing ω̃ must be a cycle as well. This
proves (iv).

Since limk→∞ fmk(0) = 0, the point z1 = (0, 1) is by (6) recurrent, and
since M is the unique minimal set in Q× I, it follows that z1 is not uniformly
recurrent. This proves (iii).

Points z0 = (0, 0) and z1 = (0, 1) are recurrent. By (9),

lim inf
n→∞

ρ(Fn(z0), Fn(z1)) = 0,

and by (6),
lim sup

n→∞
ρ (Fn (z0) , Fn (z1)) = 1.

That is, F | Rec(F ) is chaotic. This proves (ii).

Lemma 4.5. There is an F ∈ Tm with the following properties:
(i) ω(F ) is a proper subset of C(F ).
(ii) F | ω(F ) is non-chaotic.
(iii) F | C(F ) is chaotic.
(iv) UR(F ) = Rec(F ).
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Proof. As the base f of F take the function χ from Lemma 2.6. Then, by
Lemmas 2.3 and 2.6, C(F ) ⊂ C(f) × I and C(f) = Per(f) ∪ Q ∪ P . We are
going to find F such that

ω(F ) ⊂ C(F ) \ (P × (0, 1]), (10)
F | P × {0, 1} is chaotic. (11)

Moreover, all triangular maps (f, gx) used in the argument have the property
that gx(0) = 0, for any x. This yields

F (I × {0}) ⊂ I × {0} .

We proceed with several steps. In each step we construct a triangular map de-
fined on a subset of I2, whose base map is always the corresponding restriction
of f = χ from Lemma 2.6.

STAGE 1. Construction of a map F1 : (P ∪Q)×I → (P ∪Q)×I satisfying
(11) with F replaced by F1.

Let

ϕ (k, 0) (y) =max
{

0, y − 1
2k + 1

}
, y ∈ I, k ∈ N0, (12)

ϕ (k, 1) (y) =min
{

4y, y +
1

2k + 1
, 1

}
, y ∈ I, k ∈ N0. (13)

It is easy to see that, for any k,

ϕ(k, 1) ◦ ϕ(k, 0)(1) = 1. (14)

For x ∈ P ∪Q let

gx =

 ϕ(k, 0) if x = pn and n ∈ [2(2k − 1), 3(2k − 1)],
ϕ(k, 1) if x = pn and n ∈ [3 · 2k − 2, 2k+2 − 3],
id otherwise.

(15)

Let F j
1 (p0, 1) = (pj , yj), for j ∈ N0. Then, by (12)–(15),

y2(2k−1) = 1 and y3·2k−2 = ϕ2k

(k, 0) (1) = 1− 2k

2k + 1
. (16)

By Lemma 2.6(i), ωf (pn) = Q for any n, hence limn→∞ dist(pn, Q) = 0.
Since limk→∞ ϕ(k, 0) = limk→∞ ϕ(k, 1) = id, the map F1 is continuous on
(P ∪Q)× I, and (11) for F replaced by F1 follows from (16).
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STAGE 2. Extension of F1 to an auxiliary triangular map F2 : I2 → I2

such that
P × (0, 1] ∩ ω(F2) = ∅. (17)

By Lemma 2.6(i),(v), for any non-negative integer j there is an open interval
Vj such that Vj ∩ (P ∪ Q) = {pj} and f | Vj is strictly monotone. It is well-
known and easy to verify that pj divides Vj into two subintervals such that
one of them is non-wandering (and the other one is wandering, cf., e.g., [6]);
denote this non-wandering interval by Wj . Since f | Vj is strictly monotone
for every j, there is a strictly monotone sequence (ai

0)
∞
i=0 ⊂ W0 such that

limi→∞ ai
0 = p0, and

ai
j = f j(ai

0) ∈ Wj , for j ≤ 2i+3, i, j ∈ N0. (18)

Since f | Vj is strictly monotone for every j, and since Wj are non-wandering
intervals, for any i there is a minimal k = k(i) > 2i+3 such that fk(ai

0) /∈ Wk.
For 0 ≤ j < k denote by W i

j the compact interval with endpoints pj and ai
j .

Thus, by (18),

f(W i
j ) = W i

j+1, whenever j + 1 < k(i), i, j ∈ N0. (19)

By Lemma 2.6(iv), we may assume that no ai
j is periodic.

For x ∈ W i
j , j < k(i), let

gai
j

=
{

gpj
◦ gpj

if j = 3(2i − 1),
gpj otherwise, (20)

and if λ ∈ (0, 1), let

gx = λgai
j
+ (1− λ) gai+1

j
if x = λai

j + (1− λ) ai+1
j . (21)

Thus, we have defined gx on the union W of all W i
j . Since Q ∪ P is compact,

W ∪Q ∪ P = W ∪Q is also compact. Moreover, gx depends continuously on
x ∈ W ∪Q. (Note that ‖gpj

◦gpj
−gpj

‖ → 0 for j →∞, cf. (20).) Therefore F1

(obtained in Stage 1) can be extended onto the whole of I2, to get an F2 ∈ Tm

such that, for (x, y) ∈ W i
j × I, F2(x, y) = (f(x), gx(y)) where gx is given by

(20) and (21).
Let Ji ⊂ W0 be the compact interval with endpoints ai

0 and ai+1
0 . Then

F j
2 (Ix) =

(
f j (x) , 0

)
, if x ∈ Ji, j ≥ 3 · 2i+1 − 2. (22)

Indeed, for (x, y) ∈ I2 put F j(x, y) = (xj , yj). If x = ai
0 and y = 1, then

y3·2i−2 = gpi
3·(2i−1)

◦ gpi
3·(2i−1)

(
y3·(2i−1)

)
= gp3·(2i−1)

(
1− 2i

2i + 1

)
= 0,
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by (16), (20), and (13). Since F2 ∈ Tm and gx(0) = 0 for any x,

F j
2

(
Iai

0

)
=

(
ai

j , 0
)
, for every j ≥ 3 · 2i − 2. (23)

Now let x = λai
0 + (1 − λ)ai+1

0 , with λ ∈ I. Then, by (23) and (21), for
j = 3 · 2i+1 − 2 < k(i),

F j
2 (Ix) ⊂ λF j

2 (Iai
0
) + (1− λ)F j

2 (Iai+1
0

) ⊂ {(xj , 0)},

and (22) follows.
It remains to show (17). Assume (p0, z) ∈ ωF2 (x, y) = ω̃. Then Fm

2 (x, y) =
(xm, ym) ∈ W 0

0 × I, for some m > 0. Thus, by (22), Fn
2 (Ix) = (xn, 0), for

all sufficiently large n. Consequently, z = 0. Indeed, since F2(ω̃) = ω̃ and
π(ω̃) = P ∪Q (cf. Lemma 2.3), it follows that the only Fn

2 -preimage of (pn, z)
in ω̃ is (p0, 0) whence z = 0. For n < 0 the argument is similar.

STAGE 3. Construction of a map F3 : ((I \G)∪T )× I → ((I \G)∪T )× I
such that

F3| (I \G)× I = F2| (I \G)× I,

and
{p0} × {0, 1} ⊂ C(F3), (24)

where T ⊂ Per(f), cl(T ) = T ∪ P ∪Q, and G is a neighborhood of T , disjoint
from P ∪Q.

By Lemma 2.6(ii) there is a sequence (tr0)
∞
r=0 of periodic points in W 0

0 ,
with the periods (sr)∞r=0 such that s0 is arbitrary, sr ≥ 4sr−1, for r > 0, and
limr→∞ tr0 = p0. Denote f i(tr0) = tri , for i < sr, and let T be the set of tri , for
all r and i. Let G be an open neighborhood of T . The set G is specified in
Stage 5.

For any r there is a maximal integer n = nr such that tr0 ∈ Wn
0 . Then, by

(19), tri ∈ Wn
i , for i ≤ n. If n = 0 let gx = id, for any x ∈ {tr0, tr1, . . . , trsr−1

}.
Otherwise there is a maximal integer m = mr of the form 2k+1 − 3 such that
m ≤ n. Then let gtr

i
= gpi

for i ≤ m, and gtr
i

= id otherwise. By (16),
(tr0, 1) ∈ Per(F3). Since gx(0) = 0 for any x, we have also (tr0, 0) ∈ Per(F3).
Since limr→∞ tr0 = p0, (24) follows. It remains to show that F3 is continuous,
but this easily follows by Lemma 2.6(ii),(iv) since limi→∞ ‖gpi − id‖ = 0.

STAGE 4. Any extension F4 ∈ Tm of F3 satisfies conditions (iii) and (iv).
Indeed, (iii) follows by (24) and (16) since C(F4) ⊃ C(F3). To prove (iv)

note that, by Lemma 2.3, Rec(F4) ⊂ (Per(f) ∪ Q) × I. Since F4 ∈ Tm any
recurrent point of F3 in Per(f)× I is periodic and hence, uniformly recurrent.
Thus, Rec(F4) \ UR(F4) ⊂ Q × I. But Q ⊂ UR(f) and gx = id for x ∈ Q,
hence Q× I ⊂ UR(F4).
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STAGE 5. Construction of extension F ∈ Tm of F3 satisfying conditions
(i) and (ii).

The map F3 from Stage 3 has properties (i) and (ii) since, by (17),

P × (0, 1] ∩ ω(F3) = ∅. (25)

Therefore to get F it suffices to extend F3 not violating this condition. For
any t ∈ T , let Gt be an open interval with the closure disjoint from P ∪Q such
that Gt∩Per(f) = {t}, and containing no point ai

j . Moreover, let Gt∩Gd = ∅
for t 6= d in T . Such a family exists by Lemma 2.6. By the continuity of f ,
for any t ∈ T there is an open interval Ht such that

fs+i(Ht) ⊂ Gfi(t), for 0 ≤ i < s, (26)

where s is the period of t. Let H be the union of all Ht, and let F ∈ Tm be a
continuous extension of F3| ((I \H) ∪ T )× I, such that gx(0) = 0 for any x.
We show that

{p0} × (0, 1] ∩ ω(F ) = ∅. (27)

Let (p0, z) ∈ ωF (x, y), let Fn(x, y) = (xn, yn), and let limk→∞(xnk
, ynk

) =
(p0, z). We may assume that xnk

∈ W0 (cf. Stage 2). If xnk
∈ Ht for no k

and t, then (xnk
, ynk

) = Fnk
4 (x, y) → (p0, 0) by (22). On the other hand, if

xnk
∈ Ht for some t, then, by (26), xn ∈ fs(Ht) \Ht for some n > nk (since

xnk
6= t and t is repelling by Lemma 2.6). Consequently, by (26), ym = 0 for

some m > n. This proves (27). Now (25) follows by (27) since any ω-limit set
is invariant (cf. end of Stage 2).

Lemma 4.6. There are F1, F2, F3 ∈ Tm with zero topological entropy such
that:

(i) F1| C(F1) is non-chaotic and F1| ω(F1) is chaotic.
(ii) F2| ω(F2) is non-chaotic and F2| Ω(F2) is chaotic.
(iii) F3| Ω(F3) is non-chaotic and F3| CR(F3) is chaotic.

Proof. There is a map f1 ∈ C(I, I) with zero topological entropy, such that
ω(f1) = T ∪ P ∪ Q, where T = Per(f1), Q is a (minimal) Cantor set, P =
(pn)∞n=−∞. Moreover, pn is isolated in T ∪ P ∪Q and f1(pn) = pn+1, for any
n, and there is an x0 ∈ I with ωf1(x0) = P ∪Q. Consequently, C(f1) = T ∪Q.
Such a function can be found, e.g., in [6]. To get F1 let gx = id, for x ∈ T ∪Q.
By Lemma 2.3, C(F1) ⊂ C(f1)×I = (T ∪Q)×I. Therefore, F1 is non-chaotic
on C(F1), regardless of how gx is defined for x /∈ C(f1).

To finish the construction it suffices to get {p0}×I ⊂ ω(F1) with the points
z0 = (p0, 0), z1 = (p0, 1) forming an F1-chaotic pair. To do this we use similar
construction as in the proof of Lemma 4.4. Identify the integers 0, 1, 2, . . .
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with the iterates of 0 in the adding machine. For n < 0 let gpn = id, and for
n ≥ 0 let gpn

= ϕ(k, n(2k − 1)) if the first zero control digit is the k-th one.
The functions ϕ(k, 0) and ϕ(k, 1) are given by (7), and (8), respectively. As
in the proof of Lemma 4.5, there is a sequence (W 0

n)∞n=−∞ of compact, non-
wandering, mutually disjoint one-sided neighborhoods of the points pn such
that W 0

n ∩ (T ∪ P ∪Q) = {pn}. For x ∈ W 0
n , let gx = gpn , and extend F1 to a

map in Tm.
It is well-known that the trajectory of x0 must be eventually in the union

of the sets W 0
n (cf. [6]). Thus, we may assume x0 ∈ W 0

0 and f2k

(x0) ∈ W 0
0

for any k ≥ 0 [6]. To complete the argument note that, by (6),

F 22k−1

1 (x, y) = (f22k−1

1 (x), y) if x ∈ W 0
0 , k > 0.

This proves that {p0} × I ⊂ ω(F1), and lim supi→∞ ρ(F i(z0), F i
1(z1)) = 1.

Finally, by (9), lim infi→∞ ρ(F i(z0), F i
1(z1)) = 0.

Function F2 is defined similarly. By [2], there is a map f2 having the same
properties as f1, except that P is disjoint from ω(f2), and (pn)∞n=0 ⊂ Ω(f2).
Such a function can be obtained, e.g., by an arbitrarily small perturbation of
f1, making it constant in a one-sided non-wandering neighborhood of one of
the points pn, n < 0. It is easy to verify that F2 has the desired properties.

Finally, construction of F3 is simple. Let f3 be a map in C(I, I) with zero
topological entropy such that Ω(f3) = ω(f3) = T ∪Q, where T = Per(f3), and
Q is the unique infinite ω-limit set. Moreover, let f3 have a wandering interval
J such that ωf3(x) = Q whenever x ∈ J . It is well-known (and easy to see)
that then the trajectory of J is in CR(f3). Such a function f3 can be obtained
either by a simple modification of f1 or f2, or by blowing up the orbit, e.g., of
the critical point of the Feigenbaum’s map (cf. [6]). Now let p0 be an interior
point of J . For n ≥ 0 define F3 on {pn} × I similarly as F1, and let gx be the
identity for x ∈ T ∪Q. Then extend F3 onto the whole of I2.

5 Survey.

The 23 properties of maps in Tm which are considered in this paper are related
as follows.

The Main Theorem 5.1. Consider properties (P1)–(P23) of triangular maps
non-decreasing on the fibers listed in Section 1. The relations between them
are displayed by the graph on Figure 1 where a missing arrow means that there
is no implication, except for implications that follow by transitivity.
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m13

↓

�
 �	1–12

↘ ↓ ↙

m19 m20
�
 �	22, 23

↙ ↓ ↓

m18 m21

↘ ↙

m16 m17

↙ ↘

m15

↓

m14

Figure 1:

Proof. There are two groups of mutually equivalent properties, (P1)–(P12)
by Lemma 3.3, and (P22) ⇔ (P23) by [4]. Keeping (P1) and (P22) as rep-
resentatives of these equivalence classes we can list the remaining relations as
follows (brackets contain references, either to a lemma, or to other implica-
tions).
P1 ⇒ P13 (3.1)
P1 6⇒ P14 (4.1); P15 (4.1); P16 (4.1); P17 (4.1); P18 (4.1); P19 (4.1);

P20 (4.2); P21 (4.3); P22 (4.3)
P13 6⇒ P1 (2.7); P14 (4.1); P15 (4.1); P16 (4.1); P17 (4.1); P18 (4.1);

P19 (4.1); P20 (4.2); P21 (4.3); P22 (4.3)
P14 ⇒ P1 (14 ⇒ 19 ⇒ 1); P13 (14 ⇒ 19 ⇒ 13); P15 (2.4); P16 (2.4);

P17 (2.4); P18 (2.4); P19 (2.4); P20 (14 ⇒ 18 ⇒ 20)
P14 6⇒ P21 (4.3); P22 (4.3)
P15 ⇒ P1 (15 ⇒ 19 ⇒ 1); P13 (15 ⇒ 19 ⇒ 13); P16 (2.4); P17 (2.4);

P18 (2.4); P19 (2.4); P20 (14 ⇒ 18 ⇒ 20)
P15 6⇒ P14 (4.6); P21 (4.3); P22 (4.3)
P16 ⇒ P1 (16 ⇒ 19 ⇒ 1); P13 (14 ⇒ 19 ⇒ 13); P18 (2.4); P19 (2.4);

P20 (14 ⇒ 18 ⇒ 20)
P16 6⇒ P14 (4.6); P15 (4.6); P17 (4.5); P21 (4.3); P22 (4.3)
P17 ⇒ P1 (17 ⇒ 19 ⇒ 1); P13 (17 ⇒ 19 ⇒ 13); P18 (2.4); P19 (2.4);

P20 (14 ⇒ 18 ⇒ 20)
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P17 6⇒ P14 (4.6); P15 (4.6); P16 (4.6); P21 (4.3); P22 (4.3)
P18 ⇒ P1 (18 ⇒ 19 ⇒ 1); P13 (18 ⇒ 19 ⇒ 13); P19 (2.4); P20 (3.4)
P18 6⇒ P14 (4.6); P15 (4.6); P16 (4.6); P17 (16 ⇒ 18, 16 6⇒ 17); P21

(4.3); P22 (4.3)
P19 ⇒ P1 (3.2, 3.3); P13 (19 ⇒ 1 ⇒ 13)
P19 6⇒ P14 (4.2); P15 (4.2); P16 (4.2); P17 (4.2); P18 (4.2); P20 (4.2);

P21 (4.3); P22 (4.3)
P20 ⇒ P1 (3.2, 3.3); P13 (20 ⇒ 1 ⇒ 13)
P20 6⇒ P14 (18 ⇒ 20, 18 6⇒ 14); P15 (18 ⇒ 20, 18 6⇒ 15); P16 (18 ⇒ 20,

18 6⇒ 16); P17 (4.5); P18; P19; P21 (4.3); P22 (4.3)
The facts, that (P20) does not imply neither (P18) nor (P19) were recently

proved by J. Chudziak, Ľ. Snoha, V. Špitalský, and independently by G. L.
Forti, L. Paganoni, J. Smı́tal.

P21 ⇒ P1 (21 ⇒ 22 ⇒ 1); P13 (21 ⇒ 22 ⇒ 13); P22 (2.8)
P21 6⇒ P14 (4.1); P15 (4.1); P16 (4.1); P17 (4.1); P18 (4.1); P19 (4.1);

P20 (4.4)
P22 ⇒ P1 (3.2, 3.3); P13 (22 ⇒ 1 ⇒ 13)
P22 6⇒ P14 (4.1, 2.8); P15 (4.1, 2.8); P16 (4.1, 2.8); P17 (4.1, 2.8); P18

(4.1, 2.8); P19 (4.1, 2.8); P20 (4.2, 2.8); P21 (4.2)
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