ON INFINITE GROUPS

W.R. ScorT

1. Introduction. Several disconnected theorems on infinite groups will be
given in this paper. In $2, a generalization of Poincar€’s theorem on the index
of the intersection of two subgroups is proved. Other theorems on indices are
given. In §3, the theorem [3, Lemma 1 and Corollary 1] that the layer of ele-
ments of infinite order in a group G has order 0 or 0(G) is generalized to the
case where the order is taken with respect to a subgroup. In $4, it is shown that
the subgroup K of an infinite group G as defined in [3] is overcharacteristic
[2). In §5, characterizations are obtained for those Abelian groups G, all of
whose subgroups H (factor groups G/H) of order equal to 0o (G) are isomorphic
to G (in this connection, compare with [7]). Again the Abelian groups, all of

whose order preserving endomorphisms are onto, are found (see [61]).

2. Index theorems. If // is a subgroup of G, let i(H) denote the index of
H in G. The cardinal of a set S will be denoted by o (S).

THEOREM 1. et Hy be a subgroup of G, 0. € S. Then
i(NHy) <Tli(HY).

Proof.
8,8 € NH,
if and only if
g8 €Hy forall o €S,

Thus each coset of MH, is the intersection of a collection of sets consisting

of one coset of H, for each o, and the conclusion follows,

CoroLLARY 1. (Poincaré) The intersection of a finite number of sub-
groups of finite index is again of finite index.
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CoroOLLARY 2. If i(H) =B, then G has a normal subgroup K such that
i(H) < BB,

Proof. Let N(H) denote the normalizer of H, and CI(/) the conjugate
class of H. Then

HCNH), o CL(H))=i(N(H)) < B.

Thus if K is the intersection of the conjugates of #, Theorem 1 gives i(K) < BB,

REMARKS. For every infinite cardinal 4, there is a simple group G of order
A (for example, the ‘‘alternating’’ group on 4 symbols). Thus G has no sub-
groups of index less than or equal to B if 28 < 4. In particular, if 4 is such
that B < A implies 28 < 4, then G has no subgroup of index less than its
order A. This is in sharp contrast to the behaviour of Abelian groups, which
have 24 subgroups of index B for X, < B < 4, A > 8, [4]. It is an unsolved
problem as to whether there exists a group G of order 4 with no subgroups of
order 4, for 4 > R,.

Let U denote the point set union, and + and 2 direct sums (the lattice union

of subgroups will not be used). If T is a nonempty subset of a group G, let

ip(T) =min 0(S) suchthat UTxa =G, « €S.

Define i, (T') similarly, and let i (T) be the smaller of ip(T)and i (T).

THEOREM 2. If H;, i=1,.++,n, are subgroups of G such that i(H;) >
A > Ry, then i (UH;) > A.

Proof. The theorem is true for n =1. Induction on n. If, contrary to the
theorem, i (UH;) < A, then, say,

with 0(S) < A. Since i(H,) > A, there exists an x € G such that
Hlxn (UaHlxa)
is empty. Hence

Hyx C Ug (UPH; )% -
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Therefore

[enii~]

H; C
1 i

i

n
Hi(eu(Uaxax'l))= U ( U Hi)xﬁ,
2 BES T\ =2

i

where 0(S?) < A. Hence

G=U(

n n n
U [i,-) xa= U U U lixgm= U U Hzxy, o(S)<A.
a€S \ =1

i a€s BES’ =2 vES’ =2

This contradicts the induction hypothesis. Hence the theorem is true.

REMARK. For every infinite cardinal 4, there is a group G of order 4, con-

taining an increasing sequence {f, } of subgroups, each of index A, such that
UH, = G.
Let 1/4 =0 for 4 > &,

THEOREM 3. If H; is a proper subgroup of G, (i =1,+++,n) and 21/i (H;)<
]., then UHZ #G.

Proof. Let Hy,+++,H, have finite index, the others infinite index (if r = 0,

the theorem follows immediately from Theorem 2). Let
r

D=nNH.
i

Then D has finite index in G, and it is well known that (U; H;) n Dx is empty

for some x € G. Hence, if U} H; =G, then Dx C U",| H;, whence U", H; has

finite ““index’’ in contradiction to Theorem 2. Therefore U;’ H; #6.

3. Layers. Let T be a subset of G, and let n be a positive integer. Let
L(n, T)={g|g" €T, g ¢T for 0 <r <nj,

L(m’ T)={g|g"£T,n=1,2,...}.

For T =e, the L (n, T) have been called layers. The following theorem general-
izes [3, Lemma 1],

THEOREM 4. Let G be an infinite group, H a subgroup, P a set of primes

and
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S=( u ULup,H))uL(oo,H).
pEP A

Then 0o(S) =0 or o(G).

Proof. Deny the theorem. Let x €S. If x € L(Ap, H) then el (p, H).
Hence we may assume that x € L (00, H) orx € L (p, H), p € P.

Case 1. 0(N(x))=0(G), where N(x) is the normalizer of x. Then o (N (x)—-
S)=0(G). If yeN(x)~S, then y" € H for some r such that (r, p) =1 (if p
exists). If xy €S then also (xy)"” € H for some n such that (n, p) =1 (if p

exists ). Thus

(xy)m - xrnyrn €H,

and ¥ € H. But (rn, p) =1 if p exists, and, in any case, we have a contra-

diction. Hence xy €S and
0(8) > o(x(N(x)-S5)) =0(N(x)=S)=0(G),
a contradiction.
Case 2. o(N(x)) < 0(G). Then o (Cl(x)) =0 (G).

Case 2.1. 0(H)=0(G). Then o(G) right cosets of N(x) intersect H.
Thus there are 0(G) elements of the form A 'xh. But if (A"'xAh)™ € H then
x" € H, whence n = Ap and h~'xh € S. Therefore 0(S) =0(G), a contradiction.

Case 2.2. o(H) < 0(G). We have, since 0(S) < 0(G),

(1) 0(G)=0(Cl(x))= 3 o(Cl(x)n L(n,H)).
(n, p)=t
n <oo

If 0o(G) =&, and 0(x) = w, then since H is finite,
Cl(x) CL(w, H) CS,

a contradiction. If 0(G) = ®,, and o(x) =m, then Cl(x)n L(n,H) is empty
for n > m. Hence, by (1), there exists, regardless of the size of 0(G), an n
such that (n, p) =1 and

o(Cl(x)nL(n, H)) > o(H)o(S).

Let
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An, T)=1g | g"€ T},

Then A(n,H) > L(n,H), hence

o(Cl{x)nA(n,H)) = Zho(Cl(x)ﬂ A(n,h)) > o(H)o(S).

Hence there exists an hq € H such that

o(Cl(x)nA(n, ko) > 0(S).

There is then a b € G such that (571 xb)" = kg, whence

x € Cl(x)n A(n, bhob™t).

If

g €CL(x)n A(n,bhob™ "),

then

q" = bhob™! =x".
Hence if ¢” € H, then

" =g el
and p | nr, whence p | r. Thus ¢ € S in any case. We have
0(S) > o(Cl(x)nA(n, bhob ")) =0 (b(Cl(x)n A(n,ho))b™ ")
=0(Cl(x)nA(n,ho)) > o(S).

This contradiction shows that the theorem is true.

CoRrROLLARY. If H is a subgroup of the group G, then o(L(w,H)) =0(G)
or 0.

Proof. In Theorem 4, let P be the empty set.

4, An over-characteristic subgroup. Neumann and Neumann [ 2] have defined

a subgroup K of G to be over-characteristic in G if and only if (i) K is normal,

and (ii) G/K ~ G/H implies K C H.
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Define (see [3]) a subgroup K of an infinite group G as follows. Let £ (x)
be the set of g € G such that x is not in the subgroup generated by g, and let
K be the set of x € G such that 0 (E(x)) < o(G).

THEOREM 5. If G is infinite, and K is defined as above, then K is an over-

characteristic subgroup of G.

Proof. (i) K is normal since it is fully characteristic [3, Theorem 61

(ii) Let G/K =~ G/H.

Case 1. K is finite. Then [3, Corollary 3 to Theorem 8]

K, =K(G/K) =e.
Hence K(G/H) = e. Now
0(G/H)=0(G/K)=0(G).

If there exists a k € K ~ H, then

o(E(EH)) < 0(E(k)) <0(G)=0(G/H).

Hence kH € K(G/E). This is a contradiction, Hence K CH, and K is over-

characteristic.

Case 2. K is infinite. Then [3, Theorem 5] K is a p™ group, and [3, Theo-
rem 8] G/K is finite. If there exists a k € K ~ H then

implies k€ K — H, and
o(k"H) > p™*t.

This contradicts the finiteness of G/H. Therefore K C H, and since G/K is
finite, K = H. Hence K is over-characteristic.

5. Abelian groups with special properties.’ If G is an Abelian group such
that 0 CH C G implies G ~ E for subgroups /i, then it is trivial that G is 0 or
cyclic of prime or infinite order, and conversely. This naturally leads to the

problem of finding those groups which possess the following property:

1For the facts used without proof in this section, see [1l
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(Py) G is Abelian, and if H is a subgroup of G such that o (H) =0(G) then
G >~ H.

THEOREM 6. G has property (Py) if and only if (i) G is finite Abelian,
(ii) G is a p™ group, (iii) G is a direct sum of cyclic groups of order p, p a
fixed prime, (iv) G is infinite cyclic, or (v) G is the direct sum of a non-

denumerable number of infinite cyclic groups.

Proof. 1f G is of one of the above five types, then it is either trivial or
well-known that G has property (P ).

Conversely, suppose that G is infinite and has property (P;). Let T be the

torsion subgroup of G.

Case 1. o(T) < 0(G). Then (see, for example, [3, proof of Theorem 9,
Case 1]) there is a free Abelian subgroup H of G such that o(H) =0(G).
Hence G ~ H. If the rank of G is non-denumerable, we are done. If the rank of
G is countable, then G is countable and contains an infinite cyclic subgroup.

By (Py), G is infinite cyclic.

Case 2. o(T)=0(G). Then G ~ T, that is, G is periodic. If G, is a non-
zero p-component of G, then G =G, +Hp, hence G = G, or G =~ H,, a con-
tradiction unless H, = 0. Hence G is a p-group. Thus G =D + R, where D is a
divisible (that is, nD = D) and R a reduced (no divisible non-zero subgroups)
p-group. Hence G ~ R or G ~ D, that is G is reduced or divisible.

Case 2.1. G is a divisible p-group. Then G = 22C, where C, is a p™ group.

If there is more than one summand, then there is a subgroup

H=C*+2.C,,

o # Co, where C* is a proper subgroup of Cy,. Hence o(H) =0(G), but H is

not divisible, a contradiction. Therefore G is a p™ group in this case.

Case 2.2, G is a reduced p-group. Then G has a cyclic direct summand C
of order, say, p”. Zorn’s lemma may be applied to sets S of cyclic groups
C, of order p™ such that 2-Cq, C, €S, exists and is pure in G (that is, a
servant subgroup of G). There is then a maximal such set 5*, and if K = 2 Cq,
C, € S*, then K is a pure subgroup of bounded order. Hence K is a direct
summand, G = K + A. It is clear that A has no cyclic direct summands of order
p". This implies, by property (P;), that 0(4) < 0(G), hence G =~ K. If, now,
n > 1, there is a subgroup H of K of order 0(G) such that # £ K. Therefore

n=1
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Theorem 6 has a dual.
(P,) G is Abelian, and 0 (G/H) =0 (G) implies G ~ G/H.

THEOREM 7. G has property (P3) if and only if (i) G is finite Abelian,
(ii) G is infinite cyclic, (iii) G is a direct sum of cyclic groups of order p,
(iv) G is a p™ group, or (v) G is the direct sum of a non-denumerable number

of p™° groups.

Proof. 1f G is of one of the above five types, then it is clear that G has
property (P,).

Conversely suppose that G is infinite and has property (P,).

Case 1. 0(G/T)=0(G). Then, by (P,) G is torsion:free. Let C be a cyclic
subgroup of G. Then 2C is cyclic, and G/2C has an element of order 2, hence
0(G/2C) < 0(G). Therefore 0(G) =Ry, and 0(G/C) is finite, hence G is

cyclic.

Case 2. 0(G/T) < o(G). Hence 0(T) =0(G). Let S be a maximal linearly
independent set of elements, B the subgroup generated by S (set B =0 if S is
empty). Then Tn B =0, hence T is isomorphic to a subgroup of G/B, and
therefore 0(G/B) = 0(G). But G/B is periodic, hence G is periodic. It follows,

just as in the proof of Theorem 6, that G is either a divisible or areduced

p-group.

Case 2.1. G is a divisible p-group. Then G = 2-C,, where Cg is a p™ group.
If the number of summands is non-denumerable, we are done. If not, then G is

homomorphic to a p* group, and o(G) = ®;. Therefore by (P;), G is a p~
group.

Case 2.2. G is a reduced p-group. Then, almost exactly as in Case 2.2 of
Theorem 6, it follows that G is the direct sum of cyclic groups of order p.

REMARK. Sz€lpdl [7] has shown that if G is an Abelian group which is
isomorphic to all proper quotient groups, then G is a cyclic group of order p or

a p~ group. Theorem 7 may be considered as a generalization of this theorem.

Szele and Szélpal [6] have shown that if G is an Abelian group such that
every non-zero endomorphism is onto, then G is a cyclic group of order p, a
p> group, or the rationals. The following theorem may be considered as a

generalization.
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(P3) G is Abelian, and if o is an endomorphism of G such that 0 (Go) =0 (G)
then Go = G.

TuEOREM 8. G has property (P3) if and only if (i) G is finite Abelian,
(ii) G is a p™ group, or (iii) G is the group of rationals.

Proof. 1f G is of one of the above three types, then it is clear that (P;)
is satisfied.

Conversely, suppose that G is an infinite group satisfying (P3).

Case 1. G is torsion-free. Then if pG # G for some p, the transformation
go =pg is an isomorphism of G into itself, so that 0(Go) =0(G), Go £G, a
contradiction. Hence pG =G for all p, and therefore G = 2 R,, where R, is
is isomorphic to the group of rationals. If there is more than one summand, then
there is a projection o of G onto 2 R,, 0 # 0o, a contradiction. Hence G is

the group of rationals.

Case 2. G is not torsion-free. Then G = A + B where A is finite (and non-
zero) or a p™ group. Thus the projection ¢ of G onto the larger of 4 and B yields
a contradiction unless B = 0. But in this case, since G is infinite, G = 4 is a
p° group.

Finally (compare with Szele [5]) consider the following property.

(P4) G is Abelian, and if o is an endomorphism of G such that 0 (Go ) =0(G)

then o is an automorphism of G

COROLLARY. G has property (P4) if and only if (i) G is finite Abelian,

or (ii) G is the group of rationals.
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