EIGENFUNCTION EXPANSIONS ASSOCIATED WITH
A NON-SELF-ADJOINT DIFFERENTIAL EQUATION

BERNARD FRIEDMAN AND L. I. MISHOE

1. Introduction. In solving certain characteristic boundary-value
problems by the method of separation of variables [2], the problem
arose of expanding an arbitrary function f(x) in terms of the eigenfunec-
tions of the equation (A+AB)u=0, where A is a second-order and B a
first-order differential operator. In this paper we consider a special
case of this problem, namely the following:

Expand a function f(«) in terms of the eigenfunctions of the equation

1.1) W +g(x)u+ A(p(e)u—u)=0,

where u(0)=u(1)=0. There has been a long series of investigations
concerned with the corresponding self-adjoint problem for the equation
(A—2u=0, which often occurs in connection with the boundary-value
problems of mathematical physics. However, the problem we are con-
cerned with here does not seem to have been considered previously.
F. Browder [1] has considered the eigenfunctions of A+1B where A4
and B are general partial differential operators, but he has always
assumed that B is positive definite. We shall show that the lack of
definiteness in B gives rise to peculiar results in the expansion theorem.
R. E. Langer [3] has considered the expansion theorem for the following
equation, which is similar to (1.1).

w’' + {pud+potu’ + (D + Pl +pufu=0.
This equation of course reduces to (1.1) if we put
Dp=0n=0, pu=-1, Do =p, D=4

However, Langer in his paper made the assumption that the roots of
4 pur + p,=0 were distinct and nonvanishing. For (1.1), it is clear that
r=0, r=+1, and hence Langer’s conditions do not apply. In fact, the
results we shall obtain are strikingly different from those of Langer.

Since the operator B is not self-adjoint, we must also consider the
adjoint of (1.1), namely
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1) A detailed treatment of this expansion problem and related questions has been
given by Titchmarsh [4].
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1.2) v’ +g(@)v+ A(pv+v)=0,

where »(0)=v(1)=0. Let u,(x) and v,(z) be the eigenfunctions of (1.1)
and (1.2) respectively, corresponding to the eigenvalue 1,. It is well
known that

SlunB*vmdx=O , nFEm.
0
We normalize the solutions so that
S‘ B v dz—1.
0
Then we prove the following theorem.

THEOREM. Let g(z) be continuous and p(x) be such that the second
derivative exists and is continuous. If F(z) is of bounded variation in
(0,1) and if
(1.3) F(0+)+exp [—P(0, 1)]F(1—)=0, P, m)=S: p(E)dt

then the series

(1.4) S @),

N=—o0

where
an=|, FOwo,+ i)t
0
converges to ; [F(x+0)+ F(x—0)]. If F(x) does not satisfy the condition
(1.3) then the series (1.4) converges to

(@)= ; [F(@+0)+ F(z—0)—c exp [P0, )],
where

c=%{F(O+)+F(1—)exp[—P(O, 1} .

2. Expansion Theorem. In this section we first derive an orthogo-
nality relationship which will indicate the form of the expansion if it
exists; then we derive a contour integral representation for the ex-
pansion.

Denote the operator d*/dz*+q(x) by A and its adjoint by A*; A=A*.
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Denote the operator p—d/de by B and its adjoint, p+d/dz, by B*. We
shall now derive the orthogonality relationship

(1) S ()P0 (@) + vu(@) =0 , for motn.

We begin with the differential equations
(2) w,) + Q@) + (Pt —un)=0, or (A+2,Bu,=0,
(3) vt QT + An(p(@)Vy +v,)=0, or (A" +2,B%)v,=0.
Multiplying (2) and (3) by v.(®) and u,(x) respectively, we obtain

(4)  w/ (@)n(@) + q@)(2)0n(@) + 2 (@)U 2)0,(2) — At (@)0n(€) =0,
(5)  vp@)un(@)+ @(@)0n(@)un(@) + 7,,D(@)0 (@)t () + Ly 0@ () =0 .
Subtracting (4) from (5) we have
(6) Uy (2) V() = 0 (@) () + (2= 23 )D(X Vel ()0 0(27)

= Al ()0 (@) = V() a(2) =0

which can be written in the form
(7) jx [vn(@)un(@) = U (2)0,0(2) ] = A2 (2)0,0(@) = A V(@ )ik ()

If (7) is integrated over the interval (0, 1), it becomes

(8)  Ion@pts(a) —n@la)], 4 | wi@on(@)a— i | v (o)
(=) | Patn(o)oa(a)do=0.

By an integration by parts it follows that

(9) = d@ra@ds— =] @@, - @)

Therefore (8) becomes

10)  [oulaa(a) @i @], (@ on(a)] + 4| na(a)ol (@)

— zmS: V@)l @) + (A, — Xm)S:p(x)un(w)vm(x) —0.

Imposing the boundary conditions «(1)=u(0)=v(1)=v(0)=0, we find
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A)  Gam)| @@+ (i) PNz =0
Combining the two integrals in (11) we obtain
(12) (=200, (@) Dla)vn() + 0@ =0,

from which the desired orthogonality relationship (1) follows.
Now assume an eigenfunction expansion exists, and let

F(x)= >l a,un(x) .
Then
[p(@)vm(2) + V(@) ] F ()= %‘, Al (X)) [D(@) V(@) + Vipl(@)]

As a consequence of (1) we have

13) | F@@)0me) + 0@ dr—an] un@lpa)n(@) + o) @)

Hence, we obtain

” S:F(x)[p(x)vm(x)-l-v;n(x)]dx
p= 20—

[[e@p@rne)+ onnas

We derive now a formula for the Wronskian of the differential
equation

(15) w’ + ¢(x)u + pu—u')=0.

Let u, and u, be two fundamental solutions of this equation. We have

(16) uy +qu, + A(pu, —u;)=0

a7 uy + qu, + Apu,—u)=0 .

Multiplying (16) by u, and (17) by «; and then subtracting we obtain
U Uy — Uy Uy — AU Uy 4 AU, =0,

which can be written in the form

d . , , ,
dz (s —ut)) = A g —u2t7)

Consequently, the Wronskian is given by

w(x)=up, —uu;=C(2)e** .
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Let w,(x) and wu(x) be solutions of (15), and let v, (x) and wv,(x) be
solutions of the adjoint equation

(18) v+ q(@w+ Apv+v)=0.

Consider the evaluation by residues of the integral

(19) 1 §d2 H F(E)(p(éggg) +v1(8)) w,()de
b F(E)(D(E)vu(8) + v(8))
_ 1 us(@)[p(E)v:(8) +v1(§)]
" 2n S 110 (Sg § C(2) dl)dé
1 1(“’)[?’(5)%(5) + 'Uz(é)]
o S A (fﬁ cQ) d‘)dg

For 1=1, the Wronskian vanishes, and hence the function C(2) has
zeros. We may therefore write

1 w@)[pE)vé)+vi6)]
(20) 2mi C() di
— [p(?f)?)l(é‘, i"l)+?]1(§’ n)_'
2l &) C()
and
1 [D(&)v.(8) +v(£)]
(21) ri § 1) PO 0

_ [D(&)vu(&, 2,)+vilE, nﬂ
2 fn) c)

where the integrals have been evaluated by means of their residues at
the zeros of C(2).
The vanishing of the Wronskian implies that

B _ ,01(5) rrey ?’;(5)
w@=k@E),  w@="00 o= 1

Using the relation above we rewrite (21) as

(22) S ()@, *"’S r(s){p@)vl(céi(jn));(}v;(a )

=>u,(z, Zn)g F(E)fp(f)vl(&c/z%;vl(s, _ n)}
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Using (20) and (22) and combining the two integrals we obtain the
desired expansion of (19), namely,

(23) Sz, xn)j;F(s){ (), (E’c"()ﬁ AGED) }de .

Using the relations obtained from the vanishing of the Wronskian we
may write (23) as

(24) Sz, )| Pe{PE" (E,C:L();-)?Jz(éy v

3. Asymptotic evaluations. In this section asymptotic forms will
be derived for the quantities w,, u,, C(1), pv,+v;, and pv,+v; which
appear in (19). These forms will be used in the section following this
to show that the value of the integral (19) taken over a large contour
in the 4 plane is F(z) in the interval 0<Za<{1, if Fl(x) satisfies certain
conditions.

In equation (16) we make the substitution u,=e¢**”w,. Then (16)
becomes

+ <q+/1p—— z >w1=0 .
4
Write this as follows:

P’ 3p”
(25) w? [ G2y P T

T 3p 1
=—| p*+ o+ g |w
[p 1=2p  (1—2p)’ 74

= —g(x)w, .
Note that g(x) is bounded as |2|— oo.

It can now be easily verified that the solution of (25) satisfies the
equation

2 sinh{zg - P(0, w)} 2 smh{——(x £)— P(S, 90)}9(5)701(5)015
26) w— o2

Vi—2p@) Va—2p0) Jo Vii-2p(x) VI-2pE)
w,(0)=0,  w(0)=1.

In (26) we make the substitution
w,=1/2exp [lolr/2]Z,(2) ,

where o is the real part of 2, Then we obtain
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x{exp[ g (ol=2a—PO, m)] exp[ ,4(|G\+x)x+P(0 xﬂ
Z@)=—""" Vi op(@) V= 2p(0)

1 exp| ~ G (bl=A)z =9~ P, 2) [ —exp| = ) (bl+Da—8)+ Ple.2)|
i |

T Va—2p@)V 1—2p(8)
~9(8)Z,(&)de

Now

2 p
1V 1—2p(x) V' 2—2p(0) an V2i=2p(x) 1V 2—2p(€)

are both bounded as |4 — « by some constant C,, say. Also

| ex0| = Llol-Da=9—Pe,0) |- exo] = L (1ol D=9+ P, )|

and
l exp[—.;qa\—m—P(o, x)]—exp[— ;—(lol+i)x+P(O, x):H
are obviously bounded by some constant C,, say. Consequently

| Z(2)| < C,C,+ ‘f‘f REGHECIES

Let ¢ be the maximum value of Z(x) in the interval 0< x<(1. Then

p=co+ Gluf o1,

and hence
C.C,
SNrG] d

<
P’ GG,

1-9
[4]

Therefore z, and consequently Z(x), is bounded as |1|— .
From (26), then,

2 sinh{ﬁf;:? — P(0, w)}
U= e p(a) V2—2p(0)
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exp| Li@—e)+ Llok—Pe,2) |-exp] — Li@—0)+ Llole+ P |

_ lS
A Jo 1V A—2p(x)V 2—2p(&)
-9(8)Z.(6)d3
Now, the second term on the right-hand side of this equation is equal to
1
—expl:Elo]cc]
exp| L (= lo(@=8)—P(&, 2) |—exp| — (i +1oD@—8)+P(E.7)
S - 12— 2p(a) 1—2d(€)
-9(8)Z,(¢)dg
1
=o[,eff?[,zt'i‘,ﬂ]
/{2
Also

(V1-2pz) Vi-2p0))"=; +0( ),

and therefore we have in the interval 0<7z<{1

2 sinh{*¥ —p(0, ) exp| L [o]z
R — 2—}4 } L0 [2 }J

pe
Similarly, substituting u,=exp [-;— (:Jc—l)jlw2 into (17) yields the
equation
2 sinh{.g (@—1)—P(1, x)}

wO= N apey Va2p(0)

, 2sinh {5 (@—8)—P(& o) fo@w.o)d
L e vieme
w,(1)=0, wy(l)=1.
In this case we let

w.— P [1=2)[s]/2] Z,(x)
2 ,{ 2 ’

and by arguments essentially the same as those previously given Z,(x)
can easily be shown to be bounded. Finally, using arguments similar
to those given for w,(x) we obtain
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2sinh{%(w-—1)—P(1,w)} [exp[%(l—w)ldl:l]

wy(x) = ; +0 T
Now
R 2p/(x) sinh { *¥ —P(0, x)}
o _VA=20(@) o (de 0 i) L2
W@= i apo) M e TPODIT o a0) G—2p(@)

2p' () sinh { g-(x—é)—- P(&, @) }

e w(§)g(§)ds .
Va—2pE) (A—2p(x))*"* }

Since we have already shown that w1(5)=e}~pr['lzl[$]le(§), where Z,(¢)

is bounded, it is quite easy to show that

1
e exp| =lol@
l/,z:—fz,p,(ﬁc Shj Az —P(O,x)} +O{ [2 ]] .

W@= i ap0) P e B
Since

Vi—2p(x) _  A=2p(x)  _2-2p 1

Via=2p(0)  Vi—2p(x) V'2—2p(0) T (x)

where p is the minimum value of »(x), we have

1—2 p exp [%]"lw:l
wi@)=1"2P. cosh{ﬂsz—-P(O, w)}+o —AZ—] .

By similar reasoning,

1
exp (1—-2)|a]
wy(T)= %.‘.fl'l- COSh{ ; (x—l)—P(l,x)}.;.o[ [2 e ]] _

Using the fact that

A

u(z)=w(x) exp lijz-x:l-i- >

exp [ ; x]wl(x) ,

and
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N 2 A p
u(x)=wy(x) exp 5 (x—=1) |+ o €XD —i(w*l) w,(z) ,

we obtain for FZ1>0

w1 fexp [~ PO, 2)1—exalP(0, 211} +0( %)

w= 1 {explir—1)= P(L, »)—exp[P(L, @)1} +O( 1)

=~ (1= p) exp [iw— P(0, )] ~p exp [P0, )]} + ()

= {(0=p) exp [Aa—1) = P(L, 2)] - p exp [P(L, )]} +0( L)

Also, the Wronskian «(z) is equal to
U — UU,
= ; {(A—p) exp [A(22—1) - P(1, #) — P(0, x)] — (21— p) exp [A(x—1) + P(0, 1)]

—pexp [le—P(0, 1)]+pexp [P0, )+ P(1, x)]
—(A—p) exp [1(2x—1)—P(1, z)— P(0, )]+ (1—p) exp [Ax— P(0, 1)]

+pexp [Ax—1)+P(0, 1)]—p exp [P(0, ) + P(1, )]} + O(%;)
_A=2p e
— =27 {exp Liz— PO, D] —exp Liw—1)+ PO, D]} +0( %)
_ } exp [4z— P(0, 1] —exp [A(z—1)+ P(0, 1)]+ O(e;,) .

Since w(x)=C(1)e*, we obtain

C()=

PNURY

{exp [—P(0, 1)]—exp [— 2+ P(0, 1)]} +0( 11) .
For .#1<0, we obtain
U= 7}, {exp [4x— P(0, x)]—exp [P(0, x)]} + 0(%)

U= % {exp [(x—1)—P(1, x)]—exp [P(1, x)]} —l—O(?A%——D)
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= 3’ {(A—p) exp [Az— P(0, x)]—p exp [P(0, )]} + 0(} )

eNe-1
* {(1=p) exp [~ = P(L, @) —p exp [P(L, )} +0(* )

For . #1<0 we also obtain, by an argument analogous to that given
for . #2>0,

‘“(”)" {exp [2z—P(0, 1)]—exp [A(z—1)+ P(0, 1)J}+O( o,
and

C(A)=% {exp[—P(0, 1)]—exp [— -+ P(0, 1)]} +o(,€;) .

If we make the substitution w(x)=e*v(x) in equation (15) we obtain
our adjoint differential equation (18). Consequently

¢(@) = p()v,(x) + vi(x) = p(x)e u (@) + e "u; (@) — e u ()

=™ {(p(@) — D) + (@)}

Now
(%) =exp ({f ) (@) .
, iz iz ,
ul(oc)-r2 exp( 5 ) (m)+exp< 5 )wx(w),
and therefore,

g@)=e” * {p@) =} Jwi@)+ui@)

(7) 2>w1+w - ]‘?ﬁ ;%; {cosh[ 2~ P, x)]—sinh[*;—za(o, x)]}

2p/(2) sinh [ "~ P, x):l
Va0 (=2l

200 sinh| 2 (o—9)- PG x)]wl O
Al V2a=2p(€) (A—2p(x))*

_ S: :;ﬁ :’zf)((z)) {cosh l:i (x—2)— P(¢, 90)}
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. A
— sinh [5 (@—8)—P(¢, x)]} A(Ewi(e)de

2p'(2) sinh[ﬁg. —P(0, x)]

_ Vi—2p(x) — 4 po
e’“’[ g (’”)]Jr V' 1—2p(0) (A—2p(x))*

1V 1—2p(0)

2

0 Vi—2p(§) A—2p@)”
-9(6)Z,(§)ds

I i e C e S St L)

" vi—2p(@) _ £ ,
&mexp[ 2 4P o) |exp| £ 0+ lo)) |a@ze)d

It is evident that in the above equation, the expressions

2p'(x)sinh{3§_—P(o, m)}
Vi=2p(0) (—2p())"

and

D2p/(5){exp[ %,x—P(g, o)+ %(M —Z):l—exp]:—-%w+P(E, @)+ %(]al + z)]}
So 2/ 1—2p(€) (A—2p(2)'"
- 9(8)Z,(6)d¢

are both at least of order _exp_[llalac_/Z] .

For #1>0

* 1V 1—2p(x) _ A £ a
So zm_fp(—g) exp[ Lo e, x)] exp| (] l)] (&) Z(2)dz

of L )1

22

exp [—Ax/2] )

while for .21< 0 this expression is of order ;

Using the fact that. K{ﬂﬂ=l+0(}-), we conclude that
V' 1—2p(0) A

(@) —exp [— 2z + P(0, x)]+0(?f;i)+o(%) . @0,
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and
¢y (x)=exp [~ o+ P(0, x)]+0(2;f), R0
We have also
vy(@)=e"*u,(z)=e"*" exp [; (x— 1):|w2(x)=—— exp I: — 'g' (x+1) :I wy(x) ,
and, therefore,
gua)=pv+vi=exp| = L @+1) J{(p= @ +ui@)} -

In this case we find by arguments similar to those given for ¢,(x) that
for F1>0

¢u(x)—exp [— o+ P(1, x)]+0(e'm)
p
and for #1<0,

()= exp [—la+P(1, x)]+0(9;“) + 0(?) :

4. Proof of the expansion theorem. We have already seen that
the integral (19), taken over a contour in the JA-plane enclosing the
eigenvalues of the system (A+2iB)u=0, u(0)=u(1)=0, is equal to an
expansion of the form (23). We shall now show that this integral,
taken over a circle whose radius tends to infinity in the A-plane”, tends
to F(x), provided Fl(x) satisfies certain conditions. It is evident that
this circle is a contour of the sort described above.

A precise statement of the theorem we shall prove is as follows.

THEOREM. Let F(x) be a function of bounded variation for 0 <ax<1
and let u,(x) be the eigenfunctions of the system (A+1B)u=0, u(0)=u(1)
=0, where A s the operator d*/dx*+q(x) and where B is the operator
—d/dx+p(x). Furthermore, let v,(x) be the eigenfunctions of the system
adjoint to (A+ABu=0, w(0)=u(l)=0; and let C(A)e** be the Wronskian
of the equation (A+iBu=0. If

2) We require, of course, that our contour does not intersect the eigenvalues of the
system. Since the eigenvalues are discrete, it is always possible to choose such a contour.
In fact from the form of C(1) we see that the large eigenvalues tend to An=2nni+2P(0, 1);
consequently if we define the radius of our nt" circle, Rn, as ([dn|+|4n+1])/2, then for
sufficiently large » our contour will not intersect any eigenvalues. In this manner we
obtain our desired sequence of circles with radii tending to infinity as » — oo.
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(27) F(0+)+exp[— P00, DH]F1-)=0,
then the series
3 1 p(E)v(E)+vé) ] 4
(28) O R e £
converges to F(x) at every point where F(x) is continuous in 0<a<1.

At all other points the series (28) converges to ~%~F(x+0)+ %F(w—O).

If F(x) does not satisfy the boundary condition (27), then the series (28)
converges to

; Flz+0) + ; Fz—0)— ; -exp[P(0, 2)] {F(0+)+exp[— P(0, D]F(1—)} .

Using the notation of the previous section we may write the integral
(19) in the form

o § ) L P@p @i 1§ | ooz

Denote the first integrand by y(«, 1), and the second integrand by ¢(zx, ).
For “#1>0 we find from our previously developed forms that

(@ z)={92<p [A(x—1)—P(1, z)] —exp [P, 2)]+ O(1/2) }
’ exp [—P(0, 1)]—exp [— 2+ P(0, D]+0(1/2) )

([ P@{expr—se+ PO, 91+0(7 ")+ 0 (1)ae

It is quite easily seen that in the term

(29) exp [A(xz—1)—P(1, x)]—exp [P, x)]+0O(1/2)
exp [—P(0, 1)]—exp [— 2+ P(0, 1)]+0(1/2) ’

we may immediately pass to the limit as [2| - oo, since this limit exists.

Also, the terms
[moo{")az-o( )

| e )ae=0(3)

both can be seen to tend to zero when integrated over the semi-circle
C; for which <21>0 and whose radius tends to infinity. Since the
limit of (29) as |4]|—> o is —exp[P(0, )], we conclude that

L, @ par= —PIEO DN ey [— 224 PO, 1F(EIE2

and

30
(80) 2m i
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Now

o

go ¢ exp [P(0), 5)]F(E)dE=F(O+)S: ¢ exp[P (0, &)]dé— S:e““‘

- exp [P(0, ){F(0+)—F(é)} dé .

Integrating by parts, we have

PO+ )S:e-wexp [P(0, e)]d5=F(0+){[— 1 exp [— 1+ P(0, 5)]]:

+ 1 SO p(€) exp [— 2+ P(0, E)]dé}

:fﬁ;ﬂ‘l +o<e;m> +O(21> .

—-Ax
The terms O(ez > and O( }) contribute zero when integrated over
the contour, while

Sn F(O;r) da—= g"§ﬂ¢F<o+>d0=m'F<0+> :

Since F' is of bounded variation we can write F(0+)—F(&)=h(&)—k(§),
where Z(¢) and k(&) are positive, steadily increasing, and tend to zero
as £—0. We write the integral from 0 to 2 as the sum of two integrals:

| exp [ =22 PO, IFO+)—F(@)Ia={ exp [~ 26+ (0, €)10(e)— k()

1

= S/ M exp [ — A&+ P(0, E)(h(E) — k(€))de

£ exp -2+ PO, 1)~ k()

SV

Note that 0<C 14:<__x as || —> oo,

V2]

Now

. _ e expl—12121Y o (exp[—V/[2]]
S,—;ﬂexp[ I8+ PO, (Eaz=0( l”ﬁ_y)w(ﬂ_ ),

and both of these order terms integrated over C, tend to zero. By the
second mean-value theorem,
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1

S“‘“ 7 exp [— &+ P(0, &)]h(e)de

1

=h<1/51T) @ Sf’f*‘"eXp [— &+ P(0, £)]de=0 (@Q/ ZML)

where 0§6<ﬁ“ .

Since lim A(¢)=0, we see that this order term tends to zero when in-
£-0

tegrated over the contour. Similarly, the corresponding terms with
(&) replaced by k(§) tend to zero. Using these results together with
equation (30) we have

1 __S r(, Hdi=— ,,‘}aﬁF(oJr) exp [P(0, 2)] , B1>0.

2mi Je,

Consider 7(xz, 2) for &2 1< 0. We have

explie—1)~ (L) ~expl A1, x)]+0<e“ ”)
r@, )=9 - B a

exp[—P(0, 1)]—exp[— 2+ P(0, 1)]+0( )

S F(e){exp[ 26+ P(O, s)]+o<w )} de .

Multiplying the numerator and demoninator of the term in braces by
¢", factoring ¢ out of the resulting product and multiplying the integral
term by e, we obtain

(@ g)ﬂ{ exp [P(L, )] —exp [A(1—2)+ P(1, 2)]+0(1/2) ]
’ exp [1—P(0, 1)]—exp [P(0, 1)]+ O(1/2)

[ P exp ia-g)+ PO, 01+ 0(* ") e

Again, since #1<0,

lim exp [—P(1, )] —exp [/(1—~=x)+ P1, 2)]+O(1/2) _

== exp[A—P(0,1)]—exp [P(0, 1)]+0(1/2) —exp LPO, 2)],

and

JLrwo(7)ae=0( ),

so that
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o |, 7@ a1 TR0 42" pe) exp w2+ PO, o)1,

T T

where C, is the semicircle for which &% 1<0 and whose radius tends
to infinity. Write

S F(€) exp [A@—£&) + P(0, &)]de=F(z—0) So =5 exp[P(0, £)]de

=[[ee® exp [P, O1F@—0)-F(@)de -
0
Integrating by parts we obtain

Fa—0)[ 0 exp [P0, Ode=Fa—o) | ~¢7 R IPO AT

s 1 |, 2(&) exp Lz — )+ P(0, 1]

- —,F(wto)fz%p[li(oa,@] L0 ( ex) n o( xl) _

The terms O(re;jD), and O( )12> then give zero when integrated over

the contour, while

SC = E(??,‘;Q)_‘?;E[P,@g, D) gi—e — i F(x—0) exp [P(0, z)] .

We again make use of the bounded variation of F to write F(x—0)
—F(&)=I1(§)—m(&), where [(§) and m(¢) are positive, steadily decreasing
and tend to zero as & tends to =.

Proceeding as before we write

S:e“"f’ exp [P(0, E)(F(x—0)— F(¢§))dé= S: " =P exp [P(0, £)](U(&) —m(§))dé

=7 eePexp [P(O, 106 ~m(e)de

+ X . @ P exp [P0, &))(U(E)—m(£)dE .
LN

In this case

[rs oot exp [, & l(s)=0(£’|i;‘lﬁ> Fo(ei=ala),

and both of these order terms tend to zero when integrated over the
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contour, while by the second mean value theorem, this time applied to
a monotonic decreasing function, we obtain

1
S” | @9 exp [P(0, &))(&)deé=0 [ © Xp[m,ﬁ 14 HJJ] .
SN

Since [(£¢) tends to zero as ¢ tends to @, the above order term also tends
to zero upon integration over C,. Consequently, we have

1 .
o4 SC’ZT(QJ,Z)d)\

Iy

— —exp[=P(0, z)] S —F(z—0)exp [P(0,2) ;)
271 ey A

— ; Fz—0) (£21<0) .
Combining our results for <#1>0 and 1< 0, we obtain

IV, }m ff r(@, )di=— ; F(0+) exp [P(0, 2)]+ %(F(x—O) :

Consider now 9 % fﬁ ¢(x, )dA. From our previously developed forms we
)

obtain for <21>0

Bl 2)2{7 exp [ix—P(0, x)] —exp [P(0, 2)]+O0(e*2) }
"7 Uexp[—~P(0, D]—exp [~ 2+ P(0, 1)] +0(1/2)

S F(é){exp[ 2+ P(1, é)]+0( )}dg

Factoring e¢** out of the term in brackets and combining it in the integral
term we obtain

exp [—P(0, 1)]—exp [— 2+ P(0, 1]+ 0(1/2)

| Polexslie-g+ P, a1+0(7 7 ) .

B, )= {eXpl P(0, @)]—exp [— A&+ P(0, @)+0(1/1)}

Since #i>0,

exp [—P(0, 1)]—exp [— 2+ P(0, 1)]+ O(1/2)

S F(*)O( (: E))d§=0<%>;

lim {exp[ P(0, #)]—exp [— 2z + P(0, x)]+O(1/A)}

IA]>ee

exp [P(z, 1)],

and

we conclude that
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o], o, par= P DN T p exp [ —2) + P, )z
TL JO; 27[’(, 1Jx

Proceeding as before we write

| 7(6) exp e —)+ P(L, &)= Fa+ 0)| -0 exp[P(1, &)}de

- | exp D@9+ (L, 1(Fa+ 0 Fe)de,
and again integrating by parts, we obtain
Fla+ O)Slem"b exp [P(1, &)]de— Fla+ 0){[ 1 pxa-5 exp [P(1, 5)]]
+ 1 90) exp D=+ P(L, 2]
F(w+0)exp[P(1 CL)]—{-O( " ”)+0<9 ).

/)\'.!

Again by arguments the same as those given twice before, the last two
order terms both tend to zero when integrated over the contour. If
we write

SleXp [A(@—8)+P(1, HI(F(x+0)—F(§))ds
:S:*';/I}J exp [Hx—&)+ P, &)(F(z+0)—F(¢))ds
+Sl , exp [Mx—&)+P(1, &)](F(z+0)—F(&))ds

then by arguments essentially the same as those given for the corre-
sponding term in 7(w, 1), the integrals above tend to zero when inte-
grated over the contour. Hence we have

S| e, par= exI2@ D[ Pt 0esp L ol g L),
7t Joy 2m o 2 2

(=#2>>0).
For <22< 0 we obtain

Bz, )= { exp [1z— P(0, z)]—exp [P(0, 2)]+O0(1/) )

exp [—P(0, 1)]—exp[— 2+ P(0, 1)]+0(e*/2))

S F(E){exp[ 26+ P, E)]+O<;,_>+O< A)}d



268 B. FRIEDMAN AND L. 1. MISHOE

Multiplying the denominator of the term in braces and the integral term
by ¢* we obtain

exp [A—P(0, x)]—exp [P(0, )]+ O(1/2)

B, )= {e’fp,[*w ~ P(0, z)]—exp [P(0, E)thLl/i)}

[ Fofexna-g+pa, a1+0(7 ") +o( L)} e

Since

lim {exp [4z—P(0, ¥)]—exp [1+ P(0, )]+ O(1/2)
exp [1— P(0, 1)]—exp [P(0, 1)]+O(1/2)

Lron( "o })

}=exp [P(z,1)],

[PNEZS

and

[ #@0( }, )ae=o(3).

we have
1 S oz, Da= exp[—lf(zcy,,1>],§ S F(8) exp I(1— &)+ P(1, &)ldéda.
21 Jo, 2mi, Cpd=
Again write
S‘ F() exp [2(1—£) + P(1, &)ldé=F(1 —)S:e*““ﬁ’ exp [P(1, §)}d¢
— Sle"“‘@ exp [P(1, &)](F(1—)— F(&))dé .

Integrating by parts we obtain

F1-) | e90 exp [P, = F(1-){| —L e -0 exp [P(1, 9]

* } ‘ S:p(a exp [(1—8)+ P(L, &)lds}
—=HU=) L o(P)0( ).

As before, the last two order terms tend to zero when integrated over
the contour, as well as the integrals

g ;ew—@ exp [P(1, &)I(F(1—)— F(£))dé
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-1
[Tl Jexpria—g+ P, o100 - Fs.
? vy
Thus we have

1_,50 B, Ndi= —exp [Pz, 1)] SC F1-) 4

2 2t 2

- ; exp[—P(z, DIF(1-),  (£#1<0).

Combining the results for <#1>0 and for 1< 0, we obtain
@2 1 § d(@, Ndi= L F@+0)— L exp[— Pz, 1]F(1—-).
27 2 2

From (31) and (32) we obtain®

1 1 1 .1
@) L 3§r(x, z)dz+-2~ﬂ73§ #(a, Ddi= F@—0)+  Fa+0)

- é exp [P0, 2)]F(0+)— éexp [— Pz, D]F(1—).

But we have already shown from our residue expansion given in §2
that (33) is equal to

S, 1) | P {Ap@)ﬂl‘f’éﬂ(%”{(f RRAYE

= _EZ w(x, 2,) g; F(g){ p(E)v;(f,Cfln()z-l')?);(S,_ln) } )

We have, therefore,

Che)

(34) 2 0,() X: F() {,P(E)?,’nc(/f( );_“),1’;4(,5,)_ } d

3) From the nature of the order terms and the fact that no singularities occur on
the contour we see at once that we need only consider the cases RA1>0 and R1<0.
To be precise we imagine our circle in the A plane to be made up of 6 parts:

™ ™ ™ ™ i ™ T ™

—— _— — - Sl = =

2=arg/1: 2+e, 2+8garg1§2 g, 9 Egargxgz, zgarglgz
K ™ kY ™

+ &, 7+egarg/’tg—— ‘2"—8, and - g—egarglg—g (where &>0). We have

shown that as &-—>0, the integrals taken over those parts of the contour which tend to
C: and C, tend to our desired result. The integrals over the remaining parts of the
contour certainly tend to zero as &-0, since the order terms are the same as in the
corresponding cases we have considered, and they also tend to zero over the parts of the
contour that we have not considered. The contributing terms in each case are of order
Be, where B is a bounded function and hence these terms tend to zero as €é—>0.
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1

~ S F@-0)+ %F(m+ 0)

- % {exp [P(0, )]F(0+ )+ exp[— P(x, 1)]F(1—)}

1 1
=1 —0)+ —
o Fe=0+ 5 Fla+0)

— 5 exp [P0, D)IF(0-+) +exp [~ PO, DIF(L-)} .
Hence, if the boundary condition (27) is satisfied, (34) converges to
;F(a:—O)-k ;»F(erO). If F(z) is continuous, then F(z—0)=F(z+0)

and we have

(35) é U () S; F(E){ -W(E)vg(,é&t v(é) }dé =F(x).

Finally, since C’(4,) is a constant for each value of n, we may define

val€) _
Cuy e

and (35) applied to the case F(x)=wu,(x) shows that SlunB*Vndx:l.
0

Consequently
Fla)= Sula) |, FOWEV.©)+ Vi,

which is the form of the expansion indicated in the Introduction
(equation (1.4)).

The authors wish to thank Mr. Bertram Levy for his assistance in
preparing this paper for publication.
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