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l Introduction* In solving certain characteristic boundary-value
problems by the method of separation of variables [2], the problem
arose of expanding an arbitrary function f(x) in terms of the eigenfunc-
tions of the equation (A-hλB)u=0, where A is a second-order and B a
first-order differential operator. In this paper we consider a special
case of this problem, namely the following:
Expand a function f(x) in terms of the eigenfunctions of the equation

(1.1) u" + q(x)u-hλ(p(x)u — u')=0,

where w(0)=w(l) = 0. There has been a long series of investigations
concerned with the corresponding self-adjoint problem for the equation
(A — /()u=0, which often occurs in connection with the boundary-value
problems of mathematical physics. However, the problem we are con-
cerned with here does not seem to have been considered previously.
F. Browder [1] has considered the eigenfunctions of A + λB where A
and B are general partial differential operators, but he has always
assumed that B is positive definite. We shall show that the lack of
definiteness in B gives rise to peculiar results in the expansion theorem.
R. E. Langer [3] has considered the expansion theorem for the following
equation, which is similar to (l.l)1.

u" 4- {pnλ + p10} uf + {vJz + Vnλ + p2ϋ} u = 0 .

This equation of course reduces to (1.1) if we put

Pio=P22=O, p n = - l , p2i=p, P2o=q

However, Langer in his paper made the assumption that the roots of
ri + pnr + pτl=0 were distinct and nonvanishing. For (1.1), it is clear that
r=0, r = + l, and hence Langer's conditions do not apply. In fact, the
results we shall obtain are strikingly different from those of Langer.

Since the operator B is not self-adjoint, we must also consider the
adjoint of (1.1), namely
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1) A detailed treatment of this expansion problem and related questions has been
given by Titchmarsh [4].
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(1.2) v/ + q(x)v + λ(pv±v')=0,

where ^(0)=^(l)=0. Let un(x) and vn(x) be the eigenfunctions of (1.1)
and (1.2) respectively, corresponding to the eigenvalue λn. It is well
known that

l unB*vmdx=Q ,
Jo

We normalize the solutions so that

\ unB*vndx=l.
Jo

Then we prove the following theorem.

THEOREM. Let q(x) be continuous and p(x) be such that the second

derivative exists and is continuous. If F{x) is of bounded variation in

(0,1) and if

(1.3) F(0 + )-rexp[-P(0, l ) ] F ( l - H 0 , P(ξ, x) =

then the series

(1.4) Σ αnan(a0,
n=-oo

where

converges to [F(x + 0) + F(x—0)]. If F(x) does not satisfy the condition
Δ

(1.3) then the series (1.4) converges to

flfa) = I W{x 4- 0) -f F{x - 0) - c exp [P(0, α?)],

where

A -P(0 ) 1)} .

2. Expansion Theorem. In this section we first derive an orthogo-
nality relationship which will indicate the form of the expansion if it
exists; then we derive a contour integral representation for the ex-
pansion.

Denote the operator d2ldx2 + q(x) by A and its adjoint by A*; A=A*.
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Denote the operator p — d\dx by B and its adjoint, p + djdx, by S*. We
shall now derive the orthogonality relationship

( 1 ) Γ un(x)[p(x)vm(x) + v'm(x)]dx=0 , fov mφn.
Jo

We begin with the differential equations

( 2 ) < + g(a?K + 4(?>(«K-O = 0 , or (A + i n 5 K = 0 ,

( 3 ) vZ±q(x)vm + }m(p(%)vm + v'm) = O , or (i4* + ; w 5*)v f Λ =0 .

Multiplying (2) and (3) by vTO(a;) and %„(#) respectively, we obtain

( 4 ) Un(x)vm(x) + g(a?)wn(»)vm(α;) 4- 4p(#K»0Φro(#) - 4<(#K»0*0=0 ,

( 5 ) v'ή(x)un(x) 4- q(x)vm(x)un(x) + ?mp(φm(x)un(x) + Λmv'm(x)un(x) = 0 .

Subtracting (4) from (5) we have

( 6 ) <0ΦOT(α0 ~ < ( # K

which can be written in the form

( 7 ) [vm(x)K(x) - Un(χ)v'm(x

If (7) is integrated over the interval (0, 1), it becomes

( 8 ) ίvm(x)K(x) - un{x)v'm(x)t - 4 I u'n(x)vm(x)dx - λm \ vm{x)un{x)dx
υ Jo Jo

Jo

By an integration by parts it follows that

( 9 ) - 4 1 a4(<Φm(ff)Λ&= - 4 1 [WW(^m(»)]n - \ ̂ n(»)^(»)^l
Jθ ( ° Jo j

Therefore (8) becomes

(10) \vjx)un{x) - un{x)vm{x)iύ - Λn[un(x)vm(x)fQ + λΛun{x)vm(x)dx

- 4 \ v'J,x)un(x)dx + {λn-λm)\ p(x)un(x)vm(x)=0 .
Jo Jo

Imposing the boundary conditions u(l)=*u(0)=v(ϊ)=v(0)=0, we find
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(11) ( 4 - λm) \ un(x)v'Ίn{x)dx 4- (4 - λm) \ p(x)un(x)vm(x)dx=O .
Jo Jo

Combining the two integrals in (11) we obtain

(12) {h~

from which the desired orthogonality relationship (1) follows.
Now assume an eigenfunction expansion exists, and let

n

Then

[p(x)vm(x) 4- Vm(x)]F(x)= Σ UnUnWlPWVmi®) + ̂ m(#)]
n

As a consequence of (1) we have

(13) \ F(x)[p(x)vm(x) + vl7l(x)]dx==aΛ um(x)[p(x)vm(x) + v/

m(x)']dx .
Jo Jo

Hence, we obtain

Γ1

I JL \*^/l i^V / Wl\ / "* UΊϊl\*^) |^*/ </

J o

We derive now a formula for the Wronskian of the differential
equation

(15) u" + q(x)u + λ(pu-u')=0 .

Let uλ and u2 be two fundamental solutions of this equation. We have

(16) u'ι -h qux 4- λ{puι — u[)=0

(17) w^ 4- qii z 4- ̂ (p^ 2 — ̂ 2) = 0 .

Multiplying (16) by u.z and (17) by uλ and then subtracting we obtain

which can be written in the form

d , ')-Mu '
dx

Consequently, the Wronskian is given by
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Let ux(x) and u2(x) be solutions of (15), and let vx(x) and v.λ{x) be
solutions of the adjoint equation

(18) v" + q(x)v + λ(ρv + v) = 0 .

Consider the evaluation by residues of the integral

(19)
2πiJ LJo C(λ)

2πil* K ;\J C(λ) )

For λ=λn the Wronskian vanishes, and hence the function C{λ) has
zeros. We may therefore write

(20) \-£ ulχ)S^S^iU±<iUl dλ
2iJ C(λ)

y An) Γ"ίϊ\
O {λn)

and

l{X) C(λ)

- vv (x λ) weMε, *n)+v2(ξ, 4)]
U {λn)

where the integrals have been evaluated by means of their residues at
the zeros of C(Λ).

The vanishing of the Wronskian implies that

/ΰ(λ)

Using the relation above we rewrite (21) as

(22) Σ Λ( W . K)\ F(ξ) \m*£iJ+?ψ.A) U
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Using (20) and (22) and combining the two integrals we obtain the
desired expansion of (19), namely,

(23) Σ u , ( x , ^ F ( ξ ) \ ^
J o ( C(λn)

Using the relations obtained from the vanishing of the Wronskian we
may write (23) as

(24) Σa.ίαr, ^[F(ξ)\^>^'^+ v^' *•> }dξ .

3* Asymptotic evaluations. In this section asymptotic forms will
be derived for the quantities uu u29 C(λ), pv1-\-v{, and pv2~\-v'2 which
appear in (19). These forms will be used in the section following this
to show that the value of the integral (19) taken over a large contour
in the λ plane is F(x) in the interval 0 < # < l , if F(x) satisfies certain
conditions.

In equation (16) we make the substitution uι=eλxβwι. Then (16)
becomes

Write this as follows:

(25) ^ ' +
λ-2p

λ-2p {λ-2pf

Note that g(x) is bounded as |Λ|-*oo.
It can now be easily verified that the solution of (25) satisfies the

equation

2 si
w =— ^—

' Vλ2{

P(0, x)\
— \

J
— \

Vλ-2p{x) Vλ-2p{0) Jo Vλ-2p{x) Vλ-2p{ξ)

W7t(0) = 0, wΊ(0) =

In (26) we make the substitution

w1=llλ exp [\σ\xj2]Z1(x),

where a is the real part of λ% Then we obtain
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~ V/λ-2p{x) Vλ^

Now

λ Ά λ
and ^ ^^---——-r

V V

, a n d ^ ^ ^ r

Vλ-2p(x) Vλ-2p(0) Vλ-2p(x) Vλ-2p(ξ)

are both bounded as U|->oo by some constant Cl9 say. Also

\λ\

and hence

Therefore μ, and consequently ^i(ίc), is bounded as |Λ|-» oo.
From (26), then,

2sinh|y-P(0>a;)

l = Vλ-2p(x) VT-2pφ)

exp| -j^\σ\-Wχ-ξ)-P(ξfX)\-<

and

Γ 1 Ί Γ 1
e x p —— ( \σ\ — λ)x — P(O,x)\ — exι>\ — - - - ( M

L 2 J L 2
are obviously bounded by some constant C2, say. Consequently

C C fx

\λ | Jo

Let μ be the maximum value of Zλ(x) in the interval 0<Cx<^l. Then
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1 . i*

l/T-

Now, the second term on the right-hand side of this equation is equal to

•r
Jo

- 2d(ξ)

=0

Also

{Vλ - 2p(x) VΓ-2p(d) )-1 = j - •

and therefore we have in the interval

Wl(x)=

2sinh ) p|-P(0, x)

λ + 0
exp l ^ - I a I x j

Similarly, substituting %2=exp --(α?—l) w2 into (17) yields the

equation

wt(x)=
2sinhf J(α?-1)-

- s : 2 sinh {i- (α-ξ) -P(ξ, x)}g(ξ)wt(ξ)dξ

In this case we let

w,=

and by arguments essentially the same as those previously given Z2(x)
can easily be shown to be bounded. Finally, using arguments similar
to those given for wx(x) we obtain
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Now

WΛX) =

2p'(x) sinh I i(x-ξ)-P(ξ, x)\)

v λ — Δp\ξ) 1/ — £iP\*£)) )+

Since we have already shown that wι(ξ)=-x^^^Z1(ξ), where Zt(ξ)
A

is bounded, it is quite easy to show that

Since

VT-230(07 Vλ-2v{x) Vλ-2p{0) λ

where p is the minimum value of p(%), we have

eχpΓA| β |α;l
cosh I λ-x- P(0, α?) j + ol ^ | - ±

Γ eχp

By similar reasoning,

wί(a?)= -̂- cosh I x ( α j - l ) - P ( l , α?)| + O

Using the fact that

ιφ)=w[(x) exp [γ^J+ 2

 e χ P [

and
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iφs)=w'2(x) exp [A (x -1) ] + λ- exp [A (x -1)

we obtain for

M,= 1 {exp[>-P(0, a?)]-exp[P(0, x)]}

u, = J {exp [ φ - 1 ) - P(l, α?) - exp [P(l,»)]}+ θ ( ^

^ - P ( O , αO]-pexp[P(0, a?

- l ) - P ( l , α?)]-pexp[P(lfaj)]}+θ(i-)

Also, the Wronskian ω(x) is equal to

- p exp [λx - P(0,1)] + p exp [P(0, a?) + P(l, «)]

-(<?-ίί) exp [/i(2ίc-l)-P(l, a?)-P(0, aj)] + (;-p) exp [λc-fXO, 1)]

+ p exp [Λ(a;-l) + P(0,1)]-?) exp [P(0,

i 2 p P ( 0 , l ) ] - e x p [ φ - l ) + P(0,1)]}

, l)]-exp [ φ -

Since ω{x)=C{λ)eλx, we obtain

C(λ)= J {exp[-P(0, l)]

For . ^ ; < 0 , we obtain

^ - P ( 0 , a?)]-exp [P(0, a;)]}

i= 1 {exp [ φ - l ) - P ( l , α)]-exp [P(l, ar)]}
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-p) exp [;(a?-l)-P(l, a?)]-p exp [P(l, x)]}

For ^ Λ < 0 we also obtain, by an argument analogous to that given
for &

and

)= X {exp|>-P(0, l ) ] -

If we make the substitution u(x)=eλxv{x) in equation (15) we obtain
our adjoint differential equation (18). Consequently

Now

)= A exp ( ^ - ) Wι(aτ) + exp ( ^ ) w[(x),

and therefore,

i/U-22)(0)~
Γ to- -PίO, x)]-sinhΓ f̂- -P(0, aj)
L 2 J L 2 ί

2p'(ξ) sinh[i-(α?-f)-P(f, «)]«;,

S I / /? —— S Ύ\\ Ύ\ IV A ^ ^ LΛ jJ\Jϋ i JM*)_ {cosh Γlfa-^-
( L 2
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- sinh [L(χ-ξ)-P(ξ, z)]j g(ξ)w1(ξ)dξ

VΓ~2^\ Γ λx 1 2p(x)h\^
= vΛ~Mχ) exp - **- +p(0, x) +

λ/λ-2p(0) L 2 -J Vλ-2p(0) (λ-2p(x)Y'2
p +p(0, x) +

λ/λ-2p(0) L 2 -J Vλ-2p(0) (λ-2p(x)Y

g{ξ)Z1{ξ)dξ

It is evident that in the above equation, the expressions

{) {λ-2p{xψλ

and

are both at least of order exp[|q|g/2] ^

For

while for .^/ i<0 this expression is of order

U s i n g t h e f a c t t h a t - V ^ - 2 p ( g ) = 1 + o ί 1 ) , W e c o n c l u d e t h a t
Vλ~2p(0) v ^ y
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and

We have also

and, therefore,

In this case we find by arguments similar to those given for ψx(x) that
for

exp Γ—(a?-

and for

4 Proof of the expansion theorem. We have already seen that
the integral (19), taken over a contour in the Λ-plane enclosing the
eigenvalues of the system (A-hλB)u=0, u(0)=u(l) = 0, is equal to an
expansion of the form (23). We shall now show that this integral,
taken over a circle whose radius tends to infinity in the Λ-plane2), tends
to F(x), provided F(x) satisfies certain conditions. It is evident that
this circle is a contour of the sort described above.

A precise statement of the theorem we shall prove is as follows.

THEOREM. Let F(x) be a function of bounded variation for 0<I#<il
and let un(x) be the eigenfunctions of the system (A + λB)u = 0, u(0)=u(l)
=0, where A is the operator d2jdx2-\-q{x) and where B is the operator
— dldx-hp(x). Furthermore, let vn(x) be the eigenfunctions of the system
adjoint to (A + W)u=0, u(0)=u(l)=0; and let C{λ)eλx be the Wronskian
of the equation (A-hW)u=0. If

2) We require, of course, that our contour does not intersect the eigenvalues of the
system. Since the eigenvalues are discrete, it is always possible to choose such a contour.
In fact from the form of C(λ) we see that the large eigenvalues tend to λn = 2>nπί + 2P(0, 1);
consequently if we define the radius of our ntΊι circle, Rn, as (Uw | + Mw+l|)/2, then for
sufficiently large n our contour will not intersect any eigenvalues. In this manner we
obtain our desired sequence of circles with radii tending to infinity as %-»<».
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(27) F(0 + ) + exp[-P(0, 1)JF(1-) = O,

then the series

(28) Σ un{x)\F{ξ)\^ψl±v'M 1 dξ

Jo I C(λn) )

converges to F(x) at every point where F(x) is continuous in

At all other points the series (28) converges to — F ( x + 0) +—F(x—0).
Δ Δ

If F(x) does not satisfy the boundary condition (27), then the series (28)
converges to

Using the notation of the previous section we may write the integral
(19) in the form

π% J C(λ) U
}. { ^ \F(ξ)Φ1(ξ)dςdλ + K f %
27Γ2/ J C(λ) Jo 2π% J C(λ)

Denote the first integrand by γ(x, λ), and the second integrand by φ(x, X).
For &λ^>0 we find from our previously developed forms that

\ exp[-P(0, l ) ] -

It is quite easily seen that in the term

(29)
exp[-P(0, l ) ] -

we may immediately pass to the limit as |Λ|—>co, since this limit exists.
Also, the terms

and

both can be seen to tend to zero when integrated over the semi-circle
CΊ for which .^?Λ>0 and whose radius tends to infinity. Since the
limit of (29) as |Λ|->oo is — exp[P(0, #)], w e conclude that

(30) } . \ r(x, λ)dλ= -ex?lpf9>xΆ [ Γexp [-«
Δπ% Ĵ Ί 2πl jcι Jo
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Now

( Y λ ξ exp [P(0, ξ)]F(ξ)dξ=F(0 + )(Y λ ξexp[P(0, ξ)]dξ- [Vλ<
Jo Jo Jo

- explP(0,

Integrating by parts, we have

λ Jo

— ] and Ol~-\ contribute zero when integrated over] a d Ol

the contour, while

=[2 ίF(0-h)dθ=πiF(0 + ) .
Jf

Since F is of bounded variation we can write F(0 + )-F(ξ)=h(ξ)-k(ξ),
where h(ξ) and k{ξ) are positive, steadily increasing, and tend to zero
as ?->0. We write the integral from 0 to x as the sum of two integrals:

1 expL-

Note that 0<--^L_<ςα as \λ\->

Now

and both of these order terms integrated over C1 tend to zero. By the
second mean-value theorem,
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where
VUT '

Since limΛ(f)=O, we see that this order term tends to zero when in-

tegrated over the contour. Similarly, the corresponding terms with

h(ξ) replaced by k{ξ) tend to zero. Using these results together with

equation (30) we have

, a?)],
2m Jσt 2

Consider for . We have

-#+p(o, f)]+o(^-λi

Multiplying the numerator and demoninator of the term in braces by
e\ factoring eλx out of the resulting product and multiplying the integral
term by eλx, we obtain

r(x n _ exp[P(l, α?)]-
exp[/l-PTθ, l)]~exp[P(0,

. J>(f)|exp Wa?-

Again, since

exp[-P(l, »)]-
expR-P(0,l)]-exp[P(0,

= _ e x p r F ( 0 ^ i

and

ί*

BO that
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1 . f γ{x, λ)dλ= e x p

o

[ P ( 0 ' x)] \ dλ [>(?) exp U(x-
2πi Jc2 2τn Jrί Jo

where C2 is the semicircle for which &Λ<0 and whose radius tends

to infinity. Write

\*F(ξ) exp [λ(x-ξ) + P(0, ξ)]dξ=F(x-0)\Xe^*-*>exτ?[P(0, ξ)]dξ
Jo Jo

- (V0"-" exp [P(0,
Jo

Integrating by parts we obtain

T
Jo

exp [;(α?-f) P(0 6)]dfl

= -2f(ar-O) exp [JP(O, or)] Q / e^\ Q / 1 \
/I V /i / V yi2 / '

The terms θ(e j , and θ( Λ then give zero when integrated over

the contour, while

x ) i d ; i = _ _

We again make use of the bounded variation of F to write F(x — 0)
—F(ξ)=l(ξ)—m(ξ), where l(ξ) and m(ξ) are positive, steadily decreasing
and tend to zero as ξ tends to x.

Proceeding as before we write

[P(0, ξ](F(x-0)-F(ξ))dξ=[XeλCχ-°exv[P(Q, ξ)](l(ξ)-m{ξ))dξ

Jo

Jo

In this case

[P(0,

and both of these order terms tend to zero when integrated over the
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contour, while by the second mean value theorem, this time applied to
a monotonic decreasing function, we obtain

1 eλCχ-ξ' exp [F(0, £)]Z(£)df=O L_

Since l(ξ) tends to zero as ξ tends to a?, the above order term also tends
to zero upon integration over C2. Consequently, we have

ί r(x,λ)dλ
2π% Jc

>P(0,. α)]_ Γ_ - F ( a r - 0 ) exp
2τrΐ

Combining our results for ^ / i > 0 and ^ / ί < 0 , we obtain

(31) -λΓ <£ γ(x, λ)dλ= - I F(0 + ) exp [P(0, x)} + UF{X- 0) .
2π% J 2 2

Consider now φ φ(x, λ)dλ. From our previously developed forms we
2πi J

obtain for

φ(x Λ = 1 exp[λx-P(0, x)]-exp[P(0, xyj + Oi^lλ) }
1 exp[-P(0, l)]-exp[-/i + P(0, l)] + O(Ί//i) ί

Factoring eKx out of the term in brackets and combining it in the integral
term we obtain

Φ(x λ)= \expί-^0' ^)]- e χPi-^±P(9' x).±PiΨ)
Uxp[-P(0, ϊ ) ] - e x p [ i + P(0 l] + O(l/i)

Since

u i — l e x p [ - P ( δ , l ^ e x p C i + PίO l)] + O(l/i) ) '

and

we conclude that
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1 . \ φ(x, λ)dλ= ex*ψx> W ί Γ F(ς
2πl

Proceeding as before we write

, ξy\(F\x+O)-F{ξ))dξ,

and again integrating by parts, we obtain

F\x+0)[ eλίχ-° exp

F( + 0) exp [P(l, a)] + θ ( ^ W ) + 0 (

Again by arguments the same as those given twice before, the last two
order terms both tend to zero when integrated over the contour. If
we write

then by arguments essentially the same as those given for the corre-
sponding term in γ(x, λ), the integrals above tend to zero when inte-
grated over the contour. Hence we have

M Φ(χ, xydx
2τeι icλ 2πi

For ^ / ! < 0 we obtain

φ(x n= { p [ ( , ) ] e p [ ( ,
lexp[-P(0, l)]-exp[-/i4-P(0,
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Multiplying the denominator of the term in braces and the integral term
by eλ we obtain

K ' } \ exp [i-P(0, a;)]-exp [P(0,

Since

lim J « P ΰ ? - P ( O , αO]-exp[Λ + P(0, a)] + 0(1/;)] [ p ( 1 } ]

iM—l exp[/i-P(O, l)]-exp[P(O, 1)] + O(l/;,) ί

and

we have

Again write

F{ξ) exp W l -

- Γ ewl-« exp [P(l, ί)](F(l-) - F(ξ))dξ
Jx

Integrating by parts we obtain

x
As before, the last two order terms tend to zero when integrated over
the contour, as well as the integrals

Γ ew"« exp [P(l, ς)](F(l-)-P(ξ))dξ
J
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Thus we have

2πί)c

Combining the results for ^ Λ ^ > 0 and for &λ<CO, we obtain

(32) -_*-.-<£ φ(α, ^ = | F ( O ; + 0 ) - -J exp [-
2π^ J 2 2

From (31) and (32) we obtain3)

(33) -A- I r(», l)dλ+ - 1 - (f φ(α?, ^ ) ^ = - ί ^ ( ^ - 0 ) + ~
27r& t/ 2π^ J 2 2

- A exp [P(0, a?)]2?XO + ) - -|-exp [-P(x, 1)]F(1-) .

But we have already shown from our residue expansion given in § 2

that (33) is equal to

JoJ ( C ( λ ) )

We have, therefore,

(34) Σ un{x) [ F(ξ) {βM*g)ψ±\ I dξ
J° I C (4) J

3) From the nature of the order terms and the fact that no singularities occur on
the contour we see at once that we need only consider the cases SJlλ'yO and ίRΛ<0.
To be precise we imagine our circle in the λ plane to be made up of 6 parts:

- Y ^ a r g λ ^ - | + ε , - | - + ε ̂  arg λ ^ y - ε , ™ - ε ^ a r g ; ^ | - , | ^ a r g / ϊ ^ γ

+ ε, ^- + ε ^ a r g λ ^ - •—- e, and - ^ - ε ^ a r g Λ ^ _ - y (where ε>0). We have

shown that as ε->0, the integrals taken over those parts of the contour which tend to
Cι and C2 tend to our desired result. The integrals over the remaining parts of the
contour certainly tend to zero as ε->0, since the order terms are the same as in the
corresponding cases we have considered, and they also tend to zero over the parts of the
contour that we have not considered. The contributing terms in each case are of order
Be, where B is a bounded function and hence these terms tend to zero as ε -»0 .
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F(x0) +

- -i {exp [P(0, x)]F(0 + )+ exv[-P(x,

2 2

- i - exp [P(0, a?)] {.F(0 + ) + exp [- P(O,

Hence, if the boundary condition (27) is satisfied, (34) converges to
Λ F(x + 0). If F(x) is continuous, then F(x-0)=F(x + Q)
2

and we have

(35) ± «»(*) Y F(ξ) j - w w ϊ ' ^ f ; . . j dξ=F{x).

Finally, since C'(λn) is a constant for each value of n, we may define

and (35) applied to the case F(x)==uΛ(x) shows that \uΛB*Vndx = l.
Jo

Consequently

F(x)=fiun(x)\1

Jo

which is the form of the expansion indicated in the Introduction
(equation (1.4)).

The authors wish to thank Mr. Bertram Levy for his assistance in
preparing this paper for publication.
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