
FAMILIES OF TRANSFORMATIONS

IN THE FUNCTION SPACES Hp

P. SWERLING

I. Introduction

Let the interior of the unit circle be denoted by Δ; and let the set
of functions single-valued and analytic in Δ be denoted by 31.

It is well known that certain subsets of SI can be made into Banach
spaces by the introduction of suitable norms. In particular, if /es<H,
and if, for 1 <1 p <I oo,

(1.1) ^<(f, ^)={^JJ/frOl^p, v < -

^fp(f; r ) = sup \f(z)\ , p== oo
\*\<r

and if sup ^ ( / r)<^oo, then / is said to be in the set Hp. Also, Hp

r<l

is a Banach space with

(1.2) ||/|μ^sup^(/; r)
<l

A proof of these statements, together with a discussion of many
properties of the spaces Hp, can be found in [8].

This paper is concerned with certain transformations in the spaces
Hpl.

Let ω(z) be a function of z which is analytic in Δ and such that
H s ) | < l for zeΔ. If /e2ί, then so is the function defined by f[ω(z)].
For / e SI, we define

(1.3) TJ=g <^f\ω{z)]^g{z) for ze Δ.
df

Tω is clearly an additive, homogeneous transformation.
It is well known [4] that if feHp and α>(0) = 0, then TωfeHp and

ll^ω/i^ίi/l In other words, if ω(0)=0, then ϊ ^ e [£?*]. (the set of all
linear bounded transformations on Hp to Hp), and | |TJ |< : i . Our first
task is to prove the following.
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1 In the following, all statements about Hp refer to l^p^oo unless further
qualified.
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THEOREM I.I. // ω e 21 and Hz)l< 1 for ze Δ, and if K 0 ) | = α < l ,
/ I I /y \1/P

then Tωe[Hp] and \\Tω\\<^( — - 7%ere is αί least one such ω for
\ 1 — a /

which the equality holds.

Proof, For p=oo, the theorem is trivial. For 1 <Ip<^ oo, a simple
proof (for which the author is indebted to the referee) is as follows.

For feHp, let u be the least harmonic majorant of |/ | p in Δ (see
[6]). Then Tji is a harmonic majorant of \Tωf\p. Also,

and

where β=ω(0). The Poisson integral for u shows that

Putting cc = \β\, it follows that

To complete the proof, we note that the following statement holds.
Define the transformation La (0 <I a < 1) by

Then the function

is an eigenfunction of LΛ:LΛf=λf, belonging to the eigenvalue

provided 13Ϊ5y | < 1/p. This follows trivially from the fact that feHp

provided 15R^|< 1/p.
The result stated in Theorem I.I can be sharpened as follows.

COROLLARY I.I. For any ω (ωe%, mapping Δ into or onto itself),

(I 4) « Til < inf \β+ ICI ψ ± MV 1 +\ΓJη, 01 \V"'
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where

Proof. For ζeJ, define Lx by

Then

where

97 6 J, C e ^

so that

II Tω | | < : | L - , II II L-x\ \\LηTωL,\\

Now, ^ ~ ^ takes 0 into -ζ; -*—X takes 0 into
1—Cs 1 — ^

and J ^ L ) + ζ/l + ζa/*±l) takes 0 into

Applying Theorem I.I, we obtain (1.4).
We are thus assured that a transformation Tω defined by Tωf(z)

=f[ω(z)] is a member of [Hp], 1 ̂  p ̂  00. § II is devoted to a study
of semigroups and groups of these transformations. Section III contains
a discussion of two examples which illustrate the theorems of § II.

II Families of Transformations in Hp

A. Definitions and preliminary results. Consider a family of func-
tions {ω(z; t)}— also denoted by {ωt{z)} —where zeA and t belongs to a
set J7~ of complex numbers. The individual functions will be denoted
by ω(z; t) or by ωt(z), according to convenience.

Let the set ̂  satisfy the following conditions.

(CII.l) ( i ) // tlf t2 e ̂ ς then tx + tz e ̂ 7
(ii) ά?~ contains the origin and some ray originating at the

origin.
(iii) Every two points in J7~ can he connected by a path1 in J?7

2 Here a path is defined to mean a finite number of rectifiable Jordan arcs joined to-
gether; see [3, pp 13, 14].
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Let the family {ω(z; t)} satisfy the following conditions:

(CII.2) ( i ) For each t e j/~ ωt e 2ί, and ωt maps Δ into (or onto) itself.
(ii) For tlf t2e f/J and ze Δ,

(iii) ω(z; 0)=2 for ze Δ.
(iv) For each ze Δ, ω(z; t) in differentiabW τυith respect to t for

t 6 Jy\ Also, if

then P e ? t .

We can immediately state the following.

LEMMA II .1. For fixed zeΔ ,

(Π.l) ±lω(z; t)l=PWz; ί)]
Ob

Proof. ω[ω(z\ t); h]=ω(z; t + h) for t, h e J

Therefore

ω(z; t-hh) — ω(z; t)=ω[ω(z; t); h] — ω(z; t)
h h

_ω[ω(z; t); h] — ω[ω(z; t); 0]
~~ """ ' ' h~ ""

Letting h->0 (in J7~), we obtain (II.1).
The family of transformations {Tω } defined by (1.3) with ω=ωt will

henceforth be denoted simply by {Tt}. This family forms a semi-group
(possibly a group) of linear bounded transformations in the spaces Hfi.
(The boundedness is shown by Theorem I.I.)

We define the generator A of the family {Tt} by

(II.2) Af =lim T*f~f, / e H
p

c->o t

the limit taken in the strong sense in Hp. The domain of A, denoted
3 Here and in the following, " differentiability with respect to t for fG£Γ" implies that

the difference quotient approaches the same limit no matter how t is approached (as long
as the approach is made entirely in 3).
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by J2ϊ(A), is defined to be the subset of H" for which the limit in
(II.2) exists as t -> 0, te^(the limit to be the same for all modes of
approach within jίΓ to 0).

It follows from (II.2) that, for fe &(A), and each ze Δy

This is true since, for fixed ze Δ, f(z) is a bounded linear functional

of /, [7].
Now

=£-/[«(«; ί)]U=/'l>(*; t)}§Mz; t)\t,a
at at

or

(Π.4) Af(z)=P(z)f'(z) zeΔ, fe Ξ)\A)

It is thus clear that £& (A) is contained in the subset of Hp consist-
ing of those elements / for which fr{z)P{z) defines an element of Hfl.

B Differentiability properties of the family {Tt}

THEOREM II. 1. Let f be in Hβ, and tQ be in J7\ let g(z)=P(z)f'(z)
and suppose that

(i ) There exists a neighborhood . 4fQ of t0 and a positive constant
M such that every point t of .yfζo can be connected to t0 by a
polygonal line in Λζo f\ S~ of length <±M\tύ-t\;

( i i ) T t g e H * f o r t { ]

(iii) || Ttg-Thg | - > 0 θ 8 ί - > U (t e J T ) .

Then, Ttf is strongly differentiable with respect to t at t() and

(Π.5) |

Before giving the proof, the following formal derivation might be
of interest
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t -

This is however not a rigorous proof, even when fe Q>{A), since s=ί
—10 may not be in . ^ for all ί 6 ^ ^ ^ ^ 7

A rigorous proof is as follows.
Let f[ω(z; ty]=h(z; t) and let

(II.6) D(z; t ;

. . d

t —1 0

If z—re®, and if A,(z; ί) is denoted by h,(z; t), then, from (II.1),

D(z; t; Q=
t —

=~- \\ht(rem; r)-/ i ((re ί a; ta)]dr

where t is chosen in ΛH and the integral is taken along a polygonal
line in ^ Γ Γ\ ̂  connecting t and t0 and of length ^M\t — to\.

First suppose that 1 <̂  p < oo. Then

2π

— έ0 J ί 0

Let r=r(s), 0 < I s < * l , r(0)=ί0,
the arc length. Then [4], [1]

ί Γ T ϊ Γ
\t — to\3o

Hence,

P ) UP

dθ\

= ί . Here «•? is a constant times

- A i ^ β 1 8 ; Q
p ) UP

dθ\

r)
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" dβ}1'"I\ [ ; τ) - hire"; t0)
r<l (27ΓJ

ds

=τA-, Γlr'(s)l 1 TrO-T,0g jdsiLM sup |l Tτg-Ttog\

Now, by (iii), as t -> £0, the quantity sup || ϊ 1 ^ —Γ^ll goes to zero.
O^SϊSl U

Thus 1D || -> 0 as t -> ί0.
For p==oo, the proof follows similar lines.

COROLLARY II.1-1. Letf be in Hp, t0 be in j/f
Suppose condition (i) of Theorem II. 1 holds and in addition, suppose
that

(a) \ω(z; to)\ < r < 1 / o r z e Δ

( b ) <̂ (̂ ; ί) is continuous with respect to t at tQ, uniformly in z for
ze Δ.

Then, Ttf is differentiate with respect to t at t0 and (II.5) holds.

Proof. By (b), there exists a neighborhood <Λ^ of t0 such that
\ω(z; ί ) |<r '<l for zeΔ, te^ς f\ ^

Now, g(z) is analytic in Δ. Therefore for t e *Λζo'f\ J7^ Ttg(z)=
g[ω(z; t)] is bounded in Δ and therefore TtgeHp.

Also, Ttg(z) is continuous with respect to t at t0, uniformly in z for
ze Δ. Hence sup \Ttg{z) — Ttg(z)\ -> 0 as £-*£„.

THEOREM II.2. Suppose

(i) Condition (i) o/ Theorem II. 1 &oMs /or £o=O;

(ii) || T , / - / ! - > 0 α s ί - > 0 ( ί 6 j Γ ) / o r eί;βr?/ / e £ΓP.

Then, & {A), the domain of the generator A (defined by II.2), is the set
of elements feHp for which g(z)=ff(z)P(z) defines an element g of Hp.

Proof. Let ^ denote the set of elements / e Hp such that g(z)=
fr{z)P(z) defines an element g of Hp. We already know (last paragraph
of IIA) that & (A) C K To show that gf C & (A), one must verify
conditions (ii) and (iii) of Theorem II. 1 for / e S^ ίo=O.

Since / 6 ^ implies geHp, it follows from Theorem I.I that Ttg
e Hp for all teJ/7 Also, condition (iii) of Theorem II.1 is obtained for
to=O by applying condition (ii) of Theorem 11,2 to the function g.
Equation (II.5) becomes
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(Π.8) Af=g where g(z)=P(z)Γ(z) .

THEOREM II.3. Under conditions (i) and (ii) of Theorem II.2, A is
a closed transformation. Also £&(A) is dense in Hp.

Proof Let fn be in 3f (A); fn ->/ (in the norm of Hp) Afn ~>geHp

(in the norm of Hp). Then [7]

/»(*) / ( ) )
[uniformly on compact subsets of Δ,

P{z)fn'{z)^g{z)\

that is, g(z)=P(z)f'(z) for ze Δ.
Therefore, since geHp, then, by Theorem II.2, fe^(A) and Af

=g. See [2, Chap. 11] for the fact that & (A) is dense in Hp.

C, The family of transformations generated by a given operator of
the form Af(z)=P{z)fr(z). Suppose P is a given function in 21. The
following question arises: Is there a set ^f in the complex plane and
a set of functions {ωt} satisfying, respectively, conditions CΠ.l and
CII.2? If so, how, knowing just P(z), can one determine the family
{ωt} and the maximum set ^~?

To investigate these questions, additional conditions will be imposed
on the given function P{z). First,

(CII.3) l!P(z) is analytic in Δ except, possibly, for a single pole.

Let the function Q(z) be defined by

(Π.9)

The path of integration is chosen in Δ so as not to pass through
any singularity of ljP(z); also, zQ is chosen so as not to be a singularity
of ljP(z). Q(z) may be a many-valued function.

Q(z) depends on the choice of zQ; however, as will become clear
below, it is not worthwhile to express this dependence in the notation.
Clearly, all definitions of Q (corresponding to different choices of z0)
differ from each other by additive constants.

The following property of Q is worth noting.
Let ZL and z2 be in Δ, and not singularities of 1/P(z); let Q(1)(zi),

Q&{zx) be two values of Q at z=zι; and let Q^(z1)-Q^(z1)=h. Let
Q(1)fe) be a value of Q at z=z2. There exists a value of Q at z=z2,
which may be denoted by Q(2)(z2), such that Qcl)(22)-Q(a)(«2)=A, This is
clear from the definition of Q and from (CII.3).



FAMILIES OF TRANSFORMATIONS IK THE FUNCTION SPACES U» 1023

We shall further assume:

(CII.4) If zγ and z.z are in Δ, are not singularities of ljP(z), and z1φz2,
then Q{zλ) φ Q(z2).

This may, of course, be regarded as a condition on P(z).
Now suppose P e § ί is given satisfying (CII.3) and (CII.4), and that

a set jjΓ and a family {ωt} exist satisfying (CII.l) and (CII.2). From
(II.1) and (CΠ.2-iii), regarding z as fixed for the moment, one can
write

(11.10) d ω(z; t)=P[cυ(z; t)] zeΔ
dt

ω(z; 0)=z

Let z be fixed in Δ and not a singularity of l[P(z). Then, from
(11.10), ω(z; t) must satisfy

(11.11) Q[ω(z; t)]==Q(z) + t.

Now, for fixed t e <9\ <o(z; t) must be an analytic function of z in
Δ, mapping Δ into itself.

Let IQ be the image under Q of Δ (excluding the possible singulari-
ty of 1/P(z) The set IQ includes all values of Q(z) which can be ob-
tained by integrating in (II.9) along paths which are entirely in J . If
o)(z; t), for fixed t e ^ i s defined for all zeΔ, and such that \ω(z; £) |<
1, then (11.11) implies that this t must translate IQ into a subset of
itself: IQ+tC.IQ.

Let J^ be the set of translations of IQ into or onto itself. (Clearly
^ Γ does not depend on the choice of z0 in defining Q.) Then ^ C ^Γ.

On the other hand if P being given4, ^ contains a subset j / ~ *
satisfying conditions (CII.l), then a family {ωt} satisfying (CII.2) exists
(with ί e ^ y * ) .

Define, for te^~*, zeΔ,

'^r^'z) + tl z not a singularity o f - λ

[P(z)

z, z a singularity of

where Q~j denotes the function inverse to Q.
This definition defines ω uniquely. If Q(z) refers to a^r

rparticular
branch of Q, then ω is uniquely determined (in Δ) because of (CII.4);
moreover, by the property of Q mentioned on p. it is seen that the
same point ω is defined no matter what branch of Q is used in (II :12).

and satisfying (CΠ. 3) and (CΠ. 4).
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It is also clear that ω(z; t) does not depend on the choice of z0.
The function ω(z; t) thus defined is analytic in z for each teJ7~*.

This is clear if z is not a singularity of ljP(z). If zι is a singularity
of llP(z) in Δ, it is necessary to show that ω(z; t) is (for fixed t) con-
tinuous at z=z1; that is, (from 11.12) ωt(z)-+zι as z->zL.

Since zv is a pole of 1/P(z)f one can say, by the definition of Q,
that there exist points ωt(z) approaching zι as z~>zly such that (11.12)
is satisfied. But, by (CII.4), these points are the only ones in Δ for
which (11.12) is satisfied.

The other conditions of (CII.2) are readily verified for the functions
ω(z; t) as defined by (11.12).

The preceding results may be summed up as follows.

THEOREM 11.4. Let P(z) be in 31, satisfying (CII.3) and (CII.4).
Let Q(z) be defined by (II.9); let IQ be the image of Δ under Q, let S7^ be
the set of translations of IQ into or onto itself.

Then, there exists a set /y~ and a family {ωt} satisfying (Gil.1) and
(CII.2), if and only if ,y'g contains a subset jy"* satisfying (CII.l). The
maximum set j / ~ is the " direct sum " of all subsets of /yq which satisfy
(CII.l). Here "direct sum'1 is defined as follows: If {GΛ} is a collec-
tion of subsets of the complex plane, each containing the origin, the direcct
sum of the sets {G*} is defined to be the set consisting of all elements of
the form t=tι-h ••••f£w where n is a finite (positive) integer and where
U e \J GΛ.

Oύ

The last statement follows from the fact that the direct sum of
subsets of SQ satisfying (CII.l) is also a subset of J7£ which satisfies
(CII.l).

One result of the previous theorem is the following.

THEOREM II.5. If P(z)e% satisfying (CII.3) and (CII.4), and if
there exists a set Sf" and a family {ωt} satisfying (CII.l) and (CII.2),
then 1/P(z) can have only a pole of first order in Δ.

Proof. If 1/P(z) had a pole of order higher than the first, then
IQ would have a bounded (and non-null) complement; therefore J ^ would
consist only of the point t=0.

Thus, if Co is the singularity of llP(z), then Q(z) can be written

(Π.13) Q(z)=Qo In ( s -

where QL(z) is analytic in Δ.
Theorems II.6 and II.7 refer to families of transformations generat-

ed by P(z) satisfying (CII.3) and (CII.4).
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THEOREM Π.6. // ω(zλ\ t)=z1, ^ e J , for t^2πikq0, k=0, ±1, ±2,
• , then z1=ζQ.

Proof. Q[ω(z; t)~\ = Q{z)Λ-t for zφζ^
Therefore Q[^] = Q[^] + ί if zφζ*.
Therefore t=2πikqQy k=0, ± 1 , ••• .

THEOREM II.7. If ω{zλ; t)=ω(z2; t)y te^'then z1=z2.

Proof. Suppose first that zlf z.2φζQ. Then ω(zx; t)=ω(z2; t) would
imply Q(z1)=Q(z.z) or, by (CII.4), zλ=z%. On the other hand, if, say,
Si=Co, then ω(zu t)=z1=ω(z2; t) and so z2=z1 by Theorem II.6.

Thus, conditions (CII.3) and (CII.4) when imposed on the function
P(z) imply that the family {ωt} is a family of schlicht functions.

It is clear that the functions ωt as well as the set J7~ are unalter-
ed if the definition of Q is altered by the addition of an arbitrary
constant.

It is also easy to see that multiplying Q (that is, multiplying 1/P)
by a constant cφ 0 yields essentially the same family of transformations:

Let J/Γ { ί̂} correspond to P(z) and let J7^f', {ω't,} correspond to

P(z). (Here the primes do not, of course, imply differentiation.) Then
c

clearly, J7 '—cJ77 Also, for t'e ,

cQ[ω'(z; tf)\=cQ{z) + tf,

or

Qlω'(z; t')]=Q(z) + — ,
c

so that

(11.14) ω'(z; t')=ω(z; - ^ ) V e ^>', V e &;

In other words, there is a one-to-one correspondence between the

transformations corresponding to P(z) and those corresponding to P(z);
c

the correspondence is given by (11.14).
Now consider, for t e .C7~T\ IQ, the parameter defined by

Then βe Δ and (11.12) becomes, writing ω[z; t(β)] simply as ω(z; β),

(Π.16) ω(z; β)=Q~1ίQ
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Here β is defined on Q-ι[j7~C\ h~\*
It is always possible to define Q in such a way5 that J/'dlq and

therefore y π 4 = ^ In such a case, (11.15) and (11.16) hold for all
ί e ^ " For example, in defining Q by (II.9), it is clear that Q(zo)=O
for zQeΔ. Thus, for Q defined as in (II.9) with zQeΔ, we have β=Q-1(£)
=φ0; t).

It is, however, often possible and more convenient to define Q such
that S~ is the closure of IQ. It is also often possible to extend the
definition of Q to the boundary of Δ in such a way that the boundary
of Δ goes (under Q) into the boundary of IQ. (An example of this is
given by the family of transformations studied in the next section.) In
such cases, (11.15) holds for all tej?~ and, in (11.16), β may be a point
on the boundary of Δ.

The law of composition of the transformations Tω =T β in terms of
the parameter β is

(11.17, \ " " "
[β9=w(βi; β2)

This can be shown as follows.

so

<o[ω(z; β{); β^ωiz; ί

By simply looking at the set IQ, one is usually able to determine
many of the properties of the family {Tt}. For example, one may de-
termine (a) whether or not such a family exists for the given P(z); (b)
what the maximum parameter domain J^~ is; (c) whether {Tt} is a
group or a semigroup; (d) which of the functions ωt transform Δ onto
itself and which transform Δ into but not onto itself;

D. Possible applications* The above results provide the basis for
obtaining a variety of theorems by rephrasing known results in the
theory of transformations in Banach space in terms of transformations
in the function spaces Hp of the kind studied above. Three possible
categories of results are:

(a) Representations of the transformations Tt in terms of the ge-
nerator A or the resolvent of A ([2] contains many such formulas).

(b) Application of results in the theory of analytic Banach-space-
5 The addition of a constant to Q changes IQ but leaves £Γ unaltered.
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valued functions of a complex variable ([2], [7], [9])
(c) Other theorems concerning properties of semigroups or groups

of transformations in Banach space.

III. Two Special Cases

A. The family {Tw} defined by Twf(z)=f(ιvz), \w\^l.
Let

(IΠ.l) P(z)=~-z

andβ

Λ Z d ζ - - I n z .

Then IQ is the open right half plane: ?H(z)^>0. ^ζ is the closed
right half plane: 3ΐ(£)^>0. Clearly, ^ itself satisfies conditions (CII.l)
and is therefore the maximum domain ^7~ of the parameter t. We
have

(111.3) ω(z; t)=ze-% zeΔ, tej/Q

or, if we let

(111.4) w=e~l

then, writing ω\z; t(w)] simply as ω(z; w),

(111.5) ω(z; w)=wz zeΔ, \w\<Ll

The corresponding family of transformations {Tw} is then given by

(ΠI.6) TJ^g

where g{z)=f{wz)

The generator A is defined for those feHp for which the limit

T»f~f \w\ ̂  1
1

exists in the Hp norm. Thus,

(III.7) Af(z)= -zf'{z) for fe & (A).

For l ^ ' P < o o , *&(A) is the set of functions feHp for which
f'{z) defines an element of i P . This follows from Theorem II.2. The
crucial point in applying Theorem II.2 is in verifying condition (ii) of

G Here #o~l is not in ά, but in this case this is immaterial,
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that theorem. This amounts to the following. Let h be in Hp (l<Lp
<oo), and let Twk(z)=h(wz) for M<11. Then Twh~>h in the norm of
Hp as w->l in the closure of Δ. It is not difficult to prove this.

Also, for 1 <I p < oo, A is a closed operator with domain dense in
IP.

For p=oo, (III.7) still holds, but one cannot verify condition (ii)
of Theorem II.2 and it is eassily seen that S> (A) is not dense in H°°.

B The family {La} defined by LJ{z)=f(p^λ, - 1 < a < 1.

Let

(III.8) P(z)=(l-z>)

and8

Then IQ is the strip l3(z)|<Cπ /4. ^ i s the real axis. Clearly
satisfies conditions (CII.l) and is therefore the maximum domain J7~ of
the parameter t. We have

ω(z; t)= ^ + t a n h ί te,9e, zed.
l-{-z tanh t

If we let

(III. 11) α=tanh£,

then, writing ω[z; t(a)] simply as ω(z; a),

(111.12) ω(z;a)=z±a , zeΔ, -
lfα^;

The family of transformations {La} is given by

(ΠI.13)

where

The norm of LΛ is

8 The path of integration lying entirely in
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The generator A is defined for those feHp for which the limit

f
*->o a

exists in the Hp norm. Hence

(111.15) Af{z)={l-z*)f'{z) for fe &f (A).

For l < l £ > < c o , £& (A) is the set of functions fePp for which
(1—zλ)f'{z) defines an element of Hp; also, A is a closed operator with
domain dense in Hp. As with the previous example, these statements
do not hold for i?~.
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