DISTRIBUTIVITY IN BOOLEAN ALGEBRAS

R. S. PIERCE

1. Introduction. Let « be an infinite cardinal number; suppose B
is an a-complete Boolean algebra, that is, every subset of B which con-
tains no more than « elements has a least upper bound in B.

DEFINITION 1.1. B is a-distributive if the following identity' holds
in B whenever S and T are index sets of cardinality <« :

(1) /\GES(\/'rETatrf)=\/¢€F(/\desa/o'§o(a)) ’ where F=T°.

This paper studies «-distributive Boolean algebras, their Boolean
spaces and the continuous functions on these Boolean spaces. A survey
of the main results can be obtained by reading Theorems 6.5, 7.1, 8.1
and 8.2.

2. Notation. Throughout the paper, a denotes a fixed infinite
cardinal number. The term «-B.A. is used to abbreviate a-complete
Boolean algebra. Only a-complete algebras are considered, although
some of the definitions apply to arbitrary Boolean algebras. We speak
of a-subalgebras, «-ideals, a-homomorphisms, a-fields, etc., meaning that
the relevant operations enjoy closure up to the power «. For example,
an «a-field is a field of sets, closed under a-unions, that is, unions of «
or fewer element.

The lattice operations of join, meet and complement are designated
by «, ~ and (’) respectively. The symbols 0 and « stand for the zero
and unit elements of a Boolean algebra. Set operations are represented
by rounded symbols: \J, N and < respectively denote union, inter-
section and inclusion. If A and B are sets, B—A is the set of elements
of B which are not in A; the complement (in a fixed set) of A is de-

signated A°. The empty set is denoted by 0. The symbol A stands for
the cardinaljty of the set A. Finally, for typographical reasons, we use
the symbols 2* and exp (a) interchangeably.

Received February 17, 1956. The research in this paper was done, in part, while the
author was a Jewett fellow of the Bell telephone laboratories.

! The notion of a-distributibity was introduced in [1]. It is assumed that the least
upper bound an the right side of the equality (1) exists. However, by Corollary 3.4 below,

it would suffice to make the equality in (1) contingent on the existence of this least upper
bound.
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3. Alternative characterizations of a-distributivity.

DEFINITION 3.1. A subset 4 of an «-B.A. B is called a covering of

B if l.u.b. A=u. The covering A is called an a-covering if Z'g a. A
binary partition of B is a pair consisting of an element of B and its

complement. If A and A are coverings of B, then A is said to refine
A if every Ge A is < some aeA.

PrRoOPOSITION 8.2, Let B be an a-B.A. Then the following are equiva-
lent properties of B :

(i) B s a-distributive ;

(ii) 4f {A,lceS} is a set of a-converings of B and S<a, then
there exists a covering A which refines every A, ; B

(iii) 4f {A,l0€ S} is a set of binary partitions of B and S < «, then
there exists a covering A which refines every A,.

Proof.? (i) implies (ii). Indeed, if we index each 4, by a set T
of cardinality <a, say A,={a,|teT} (allowing repetitions), then
{/\ veslourlp € TS} is a covering which refines every A,.

(ii) implies (iii), obviously.

(iii) implies (i). Let A,,={a,., (a.,)} for all oS, reT . Because
the cardinality of Sx 7 is < «, there exists a covering A which refines
every A,,. Suppose 0£b< A,es(\V/rer@,,). Since lu.b. A=wu, there
exists a e A such that a ~ 5540. Then for each s€ S, we can find re T
such that a ~ a,,7%0. Denoting this r by ¢(s) defines ¢ € F'=T5. But
A refines A,ycoy, 80 0 < @y for all 6. Hence, &< Ajesllopy. 1t fol-
lows that b ~ (Nses@orr) Z0. Since b can be arbitrarily small,
Aoes(\V,e10,,) is the least upper bound of the set {/\,es@oul¢ € F'],
that is, (1) is satisfied.

COROLLARY 8.3. An «-B.A. is a-distributive of and only if (1) is
identically satisfied under the conditions S <a, T=2 and a,=(a,.).

Proof. By the argument that leads from (i) to (ii) in 3.2, the
hypotheses of 3.3 imply (iii) of 3.2.

COROLLARY 3.4. Let B be an «-B.A. which s not a-distributive.

2 The referee has pointed out that there is overlap between the first part of this paper
and the independent work of Smith and Tarski [5]. In particular, 3.3 and 3.4 appear in [5]
as Theorems 2.5 and 2.2, while our Corollaries 6.5 and 6.6 are special cases of Theorem 3.6
in [B]. It is a pleasure to acknowledge the contribution of a conscientious referee to the
improvement of this paper.
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Then there exists b~ 0 in B and a set of pairs {[c,i, ¢.] = Bloe § S<al
such that co A Cpn=0 and c; -, c.,=b for all s€S and NosesCopcry=0 for
all pe TS (T=[1, 2]).

Proof. By 3.3, if B is not a-diﬁtributive, there exists a set of

complementary pairs {[as, .l €S, S< a} such that the unit of B is
not the least upper bound of the set of elements A\ es@ovr, ¢ €T7.
Thus, there exists 5540 in B such that b ~ (Aseslopr)=0 for all p e T'%.
Then ¢, =b A~ @, and ¢,,.=b ~ a,, have the required properties.

4. Examples of a-distributive Boolean algebras. Every a-field of sets
is «-distributive. Moreover, from Definition 1.1.

(4.1) Every a-subalgebra of an «-distributive B.A. is a-distributive ;

(4.2) Every 2*-homomorph of an a-distributive B.A. is a-distributive.

Using (4.2), it is easy to construct a-distributive algebras which are
not «a-fields of sets (following Horn and Tarski [2, p. 492], or Sikorski

[4, p. 253]): let B be the B.A. of all subsets of a set X with X—
exp (exp («)). Let I be the a-ideal of all subsets M of X such that

M < exp(a). Then (see Tarski [8], or the remarks following 6.6 below),
there exists no prime a-ideal of B which contains I, and consequently
B|I has no prime «-ideals. Hence, B/I is not an a-field. On the other
hand, by (4.2), B/I is «-distributive.

It is easy to see that (4.2) cannot be strengthened to assert that
every a-homomorphic image of an a-field is a-distributive. In fact, by
the theorem of Loomis (see [3]), every %,-B.A. is the $&,-homomorph
of an - -field. But not every %,B.A. is &,-distributive: an atomless
measure algebra in which all nonzero elements have positive measure is
not &,-distributive.

5. The representation of a.distributive algebras. In this section,
we show that every «-distributive B.A. is the a-homomorph of an «-
field. If a=2f then by (4.2) any a-homomorphic image of an a-field is
B-distributive. This shows (as Sikorski observed in [4]) that the eclass
of a-homomorphs of a-fields is rather elite when a > exp(%).

For any Boolean algebra B, let X(B) denote the Boolean space of
B, Then the points of X(B) are the prime ideals of B and the topology
is imposed by taking all the sets X(a)={Pe X(B)|a¢ P}, with a€ B, as
a neighborhood basis. As Stone [6] has shown, X(B) is a totally dis-
connected, compact, Hausdorff space and the correspondence a— X(a) is

an isomorphism of B onto the Boolean algebra of open-and-closed sets
of X(B).

DEFINITION 5.1, A set T'< X(B) is called a-nowhere dense if there
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is an a-covering A of B such that T'=(,e.X(@)) = Nae.X(a).

(5.2) A closed set T'S X(B) is topologically nowhere dense in X(B)
(that is, T contains no open subset of X(B)) if and only if there is a
covering A of B such that T'=(U..X(a))°. In particular, the a-nowhere
dense sets are just the closed, nowhere dense sets which are a-inter-
sections of open® sets.

LEMMA 5.3. If B is an a-distributive B.A., and iof {T,lceS} is a

set of a-nowhere dense sets in X(B) with § < a, then \J,esT, is nowhere
dense in X(B).

Proof. By 5.1, Ta=(UaEAUX(a))°, where A, is an «a-covering of B.

By 8.2, there is a covering A which refines every A,. Then 7=
(UeesX(a))* is a nowhere dense set (by (5.2)) which contains every 7',.

THEOREM 5.4. If B is an «-distributive B.A., then B 1is the a-
homomorphic image of an a-field of sets.

Proof.* Let F' be the a-field generated by the open-and-closed sub-
sets of X(B). Let I be the a-ideal of F' generated by the «-nowhere

dense subset of X(B). Consider the collection F' of sets in F which are
congruent modulo I to some X(a) with a € B. The a-completeness of B
implies that F is an a-field; since F contains every X(a), F=F. By
5.3, X(a)eI only if a=0. Hence, F/I is isomorphic to B.

6. Quotients of a-distributive algebras. We wish now to character-
ize the ideals I of an a-distributive B.A. for which B/I is a-distributive.

DEFINITION 6.1. Let S be an index set with §__§a. For each s € S,
suppose A,={a,,|reT} is a subset of the a-B.A. B. Denote

(2) [Moesdo= {/\aesaa;@W e T*}\J {0} .

The sets £ < B which are of the form [[.,es4., with each A, a disjoint
pair of elements of B, are called P, subsets of B.

PROPOSITION 6.2. Let B be an a-distributive B.A. and suppose I is

3 Note that since X(B) is compact, every closed set which is an a-intersection of
open sets is also an a-intersection of open-and-closed sets.

4 This theorem is a special case of known results. (See [1] and the following abstracts
from B.A.M.S. vol. 61 (1955): Smith 210, Chang 579, Scott 675 and Tarski 677.) We in-
clude the proof for the sake of completeness. The argument is the same as the topological
proof of Loomis’ theorem, given, for instance in Halmos’ Measure Theory, p. 171.
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an a~ideal of B. Then B[l is a-distributive of and only if every P, sub-
set of B which is contained in I has a l.u.b. in I.

Proof. Suppose B/l is a-distributive. Let E=][,esd, be a P, set
with £ < 1. Then

E={e,lpe F=T°}\J{0} .
where e,= N\,esooryy 1=[1, 2]. Let a — a be the natural homomorphism
of B onto B/I. By the a-distributivity of B/I,
Noes(@on To) =\/ per€,=0

and hence

\/werew =< Noes(@orn0,0) €T .
Conversely, suppose B/l is not a-distributive. Then by 3.4, there exists
040 in B/I and ‘

(C,<B/I|lseS, S<a}
such that

Ca':[aa'ly caz:l
with ¢, ~Cr=0, o Cn=0 and

IIU’ESC!U'= {0} »

Choose an element be B whose image in B/I is b. Next, pick counter-
images

[c(rb ca'z] g B

of the pairs C, in such a way that ¢, ~C,,=0 and c,._¢,=b. Then
11sesCs is a P, subset of B which 1s contained in I and whose least
upper bound is b (since B is a-distributive), which is not in I.

PROPOSITION 6.3. Let B an «-B.A. Then « subset E of B is a P,
subset if and, assuming B is a-distributive, only if

(a) OekE,

(b) the elements of E are disjoint,

(¢) lLu.b. E exists in B,

(d) there exists E, = E defined for each o in an index set S with
S <«, such that lu.b. E, exists for all o and the sets K, distinguish
the nonzero elements of E, that is, if e~ € are nonzero elements of E,
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then there is an E, which contains e or &, but not both.

Proof. The necessity of (a)-(c) is clear from 6.1. The subsets E,
of (d) are obtained by letting E,=[ec Fle<a.,]. Evidently, l.u.b.
E,=a, ~(l.ub. E).

To show that (a)-(d) are sufficient, let a=l.u.b. E, a,,=lu.b. E,
and a,.=lLu.b. (E—~E,). By (b), an=a(a,) and for eecE, either
e<a, and e a,=0, or vice versa. We prove that F=[],ecs4..

Suppose ¢ € F' and ee€ E satisfy

e/\/\aeSaa'(p(a') # 0 .

Then e, 4y, 70 for all 6€ S, s0 e <dype,. Consequently,

e= /\trGSa’a«?(a)
(by (b) and (d)). Thus, [l.esd, S E. On the other hand, for e¢=40 in
E, define ¢ e F' by ¢(o)=1 if ez E,, ¢(6)=2if ez E—E,. Then 0#~e=
€ n/\oesBopr, and therefore e=/\,eslopr. Hence, < [loesd..

COROLLARY 6.4. Let B be a 2*-B.A. Then E< B is a P, subset if
and only if 0e E, the elements of E are disjoint and E < 27,

Proof. The necessity is clear. To prove the sufficiency, observe
that since E < 2% it is possible to find a one-to-one map 4 of E into
the set of all two-valued functions on a set S of cardinality <<a«. For
each s€ 8, let

E,={ee E|[(e)](o)=1} .

It is clear that the system {E,|s<S} satisfies condition (d) of 6.3.

COROLLARY 6.5. Let B be a 2*-B.A. which is a-distributive. Let I
be an a-ideal of B. Then B/I is a-distributive if and only of I is a 2%-
1deal.

Proof.* If C< I satisfies fg_ 2% then using Zorn’s lemma, it is
possible to find a set E of disjoint elements such that E<C, l.ub. E
=lu.b. C and every ee E is contained in some ce C (so that £ < 1).
By 6.4, E\/[0] is a P, subset of B. By 6.2, Lu.b. (E\/[0)el. Thus,
lLub. Cel

5 See footnote 2. As noted in Smith and Tarski [5], the assumption that B is a-
distributive in 6.6 is unnecessary. This condition was used only to prove the sufficiency
in 6.2.
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COROLLARY 6.6. Let B be a 2*-complete, a-distributivite B.A. Sup-
pose « 18 weakly accessible from the infinite cardinal 3. . Let I be a -
ideal of B such that B/I is a-distributive. Then I is a 2%-ideal.

Proof First, observe that if £ is a singular cardinal and I is an
y-ideal for all 7 < ¢, then I is a &-ideal. Using this fact, 6.6 follows
from 6.5 by transfinite induction on «.

It should be remarked that the methods and results of this section
are related to the circle of ideas developed by Ulam and Tarski in [9]
and [8]. For example, it follows directly from 6.6 that if B is a 2%
field, where « is weakly accessible from 3, then any prime pS-ideal is
also a 2%-ideal (see [8], Theorem 3.19).

7. The lattice of continuous functions on X(B). Stone has proved
(see [7], p. 186) that a Boolean algebra B is a-complete if and only if
the lattice of real valued, continuous functions on its Boolean space is
conditionally a-complete. This result immediately suggests the

THEOREM 7.1. Let B be a Boolean algebra. Then B is a-distributive
iof and only iof the lattice C(X(B)) of real valued, continuous functions on
the Boolean space of B is «a-distributive’.

Proof. Assume first that C(X(B)) is conditionally a-complete. Then
the set of all characteristic functions of open-and-closed subsets of X(B)
form an «-sublattice of C(X(B)) which is clearly lattice isomorphic to B
(see the proof of Theorem 12 of [7]). Consequently, if C(X(B)) is «a-
distributive, so is B.

Conversely, suppose B is a-distributive (and a-complete). Then by
Stone’s result, cited above, C(X(B)) is conditionally a-complete and we
have only to verify the relation (1) of 1.1.

First consider the special case where each function a,, takes only
finitely many real values. Let A,.={b,.,|n=1,2, ---} be a finite set of
disjoint elements of B such that \/,b,,,=u« and «a,, is constant on each
set X(b,.,). By 3.2, there is a covering A of B such that A refines
every A,.. If be A, then every a,, is constant on X(b). Since a—
(a]X(b), a|X(b")) is a direct decomposition of C(X(B)), the restriction
homomorphism 7,: @ — a|X(b) preserves arbitrary joins and meets. More-
over, m, sends all a,, into the conditionally complete sublattice of constant
functions on X(b). This sublattice, being isomorphic to the chain of
real numbers, is evidently a-distributive. Hence,

6 That is, C(X(B)) is a conditionally a-complete lattice which satisfies the identity (1)
of Definition 1.1 when the elements a,, are functions which have a common upper bound
and a common lower bound.
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Noes\Vre 17 (Gor) = \/(pEI"/\VE S”[;(azw(w) .

Using this remark, we show that A,\/,a,, is the least upper bound in
C(X(B)) of the set {/\seslouonlp e T*}.

Suppose f = Noloyr, for all ¢. The if be A, 7,(f) = Nomri(@opor)
for all ¢, so

ﬂlz(f) r>= \/tl’/\aﬂb(afﬂﬂ(cr)) = /\a\/f”b(am—) = ﬂl)(/\u\/TalTT) .

Thus f(P)=(/\,V.%.)(P) pointwise on the dense set \J,c.X(b) and
therefore, by continuity, f> A.,\/.4.,. By definition of the least upper
bound, Ao\.ter=\ e/ \olopco) -

Now consider the general case of arbitrary functions a,,. Since
X(B) is compact and totally disconnected, the Stone-Weierstrass theorem
guarantees the existence (for each o€ S, r e T and integer n) of functions
for, taking only finitely many real values, such that |f,.—a..|<1/n.
Suppose f e C(X(B)) satisfies f = /\oGouy for all ¢ e TS, Then

f __Z /\a(f0¢(v)_ 1/”’)

for all ¢. Hence, by the result of the special case,

F Z Ve \o(Foor—10)=(o/\of sp) —1/n=(\o\/+f o) —1/n
:>—,. (/\0'\/7(“71_ 1/’)’&)) - 1/92:(/\ 7\/Ta’f7'r) - 2/?’& .

Since = can be arbitrarily large, f > A,\/.¢. Thus, /,\.,Q=
\/fl’/\va'tw(tr)-

8. The continuous functions on X(B). In this section we consider
the individual continuous functions on the Boolean space of an -
distributive B.A.

LEMMA 8.1. Let B be an X,-distributive B.A. Let X(B) be the
Boolean space of B. Let Y be a separable metric space. Then any con-
tinuous mapping f of X(B) into Y s locally constant on a dense subset
of X(B), that s, the set of points P of X(B) such that f is constant
on some meighborhood of P is dense in X(B).

Proof. Let {N,, N,, -+, N,, ---} be a countable neighborhood basis
of Y. Set M,=f"'(V,). Since Y is a metric space, N, is an open F,
(that is, a countable union of closed sets). By the continuity of f, so
is M,. But X(B) is the Boolean space of an &,-B.A., so the closure
of any open F', in X(B) is open (see [5], Theorems 17 and 18). Hence,
elements b, € B exist so that M, =X(b,).

Let A4,=[b,, b,]. Then there is a covering A of B which refines all
A,. By 5.2, U,.X(a) is dense in X(B). It will be sufficient to prove
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that f is constant on X(a) for each ae 4.

Suppose f(P)~ f(Q). Then there exists N, such that f(P)e N,,
f(Q) ¢ N,;. Thus Pe M, < X(b,), but Q¢ M, since f(M;)= N,. Hence,
Qe X(b,). Consequently, P and @ cannot lie in the same set X(a) with
a€ A. In other words, f is constant on each X(a).

THEOREM 8.2. Let B be an §:-B.A. and let X(B) be the Boolean
space of B. Then a mecessary and sufficient condition that B be -
distributive is that every real valued, continuous function on X(B) be
locally constant on a dense subset of X(B).

Proof. Necessity is a special case of 8.1. Suppose then that every
real valued continuous funection is locally constant on a dense set. Let
A,=[a,, a,] be a countable set of binary partitions of B. Let ¢,¢
C(X(B)) be defined by ¢,(P)=0 if Pe X(a,), ¢(P)=2 if Pe X(a,). Set
F(P)=1¢(P)/3". Then f is continuous on X(B). Note that f(P)=
f(@) if and only if ¢,(P)=¢,(Q) for all n (because the points of the
Cantor set have unique representations in the form > ..6,/3" with §,=
0, 2). By assumption, f is locally constant on a dense set. Thus, there
is a subset A of B such that \J,,X(a) is dense in X(B) and f is con-
stant on each X(a) with ae A. This implies 4 is a covering of B and
every ¢, is constant on each X(a), so that A refines every A4,. By 3.2,
B is {,-distributive.

9. Unsolved problems.

(9.1) What properties of the Boolean space of B characterize «-
distributivity ? One can deduce from 3.4 the following result, which,
seemingly, is only slightly weaker than the converse of 5.3: if B is
an a-B.A. which is not a-distributive, then there is a nonempty open
subset of X(B) which is contained in a 2%union of a-nowhere dense
sets.

(9.2) Is the completion by Dedekind cuts of an «a-field (or more
generally, and «-distributive B.A.) itself «a-distributive ?

(9.3) Is every 2%-complete, «a-distributive B.A. the 2*homomorph
of a 2*field? By 6.5, it would be enough to prove that every a-distri-
butive, 2*-B.A. is the a-homomorph of a 2*field.
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