MEASURES ON BOOLEAN ALGEBRAS

J. L. KELLEY

This paper is concerned with the general problem of the existence of
measures on Boolean algebras. A measure on a Boolean algebra & is
a finitely additive, non-negative function on .o~ which assumes the
value one at the unit element of the algebra .©7. It is known that
measures on Boolean algebras always exist, and in some profusion (see,
for example, [2]). We are concerned primarily with the existence of
measures which are strictly positive ; that is measures which vanish only
at the zero element of the algebra. Not all Boolean algebras possess
strictly positive measures, and workable necessary and sufficient condi-
tions for the existence of a strictly positive measure have not been
given. We shall give such conditions. Our results seem to represent
definite progress on the general problem, although the relationship be-
tween our conditions and various conjectures is not clear. In particular,
I do not know whether there is necessarily a strictly positive measure
on an algebra .o~ which satisfies the condition: & — {0} is the union
of a countable family {.o7,}, such that each disjoint subclass of the class
., contains at most » members. Tarski has conjectured that this is
the case.

In the first section we define, combinatorially, for each subset <z of
a Boolean algebra .o a number, I(<#), called the intersection number
of <#. It is then showed that there is a strictly positive measure on
. if and only if .o~ — {0} is the union of a countable number of sets,
each of which has positive intersection number. The intersection number
is also evaluated precisely in terms of measures on & ; I(<Z) is the
maximum, for all measures m on o7, of inf {m(B): B € &#}. A dualized
formulation of these results in terms of coverings is obtained.

The second section is concerned with the existence of countably ad-
ditive measures. Necessary and sufficient conditions for the existence of
such measures have been given by Maharam [3], but these conditions are
not entirely satisfactory. The contribution to the problem made here is
simply this: an algebra supports a countably additive strictly positive meas-
ure if and only if it has a strictly positive measure and is weakly count-
ably distributive. (See the second section for definitions). The condition
of weak countable distributivity appears thus as a very natural requirement
which enables one to derive countably additive measures from finitely
additive ones; the fundamental difficulties lie in the finitely additive case.

It has been shown that some of the natural conjectures on the
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existence of measures, or of countably additive measures, imply the
Souslin hypothesis (cf. [2] and [3]). In the third section of this paper
some results of this sort are obtained. Assuming the falsehood of the
Souslin hypothesis, a linear continuum is constructed that has appallingly
pathological properties. A condition in terms of Boolean algebras which
is equivalent to the Souslin hypothesis is given. The last section deals
with measures which dominate, or are dominated by, a non-negative
function having certain convexity properties. _

We shall assume, unless specifically stated otherwise, that the Boolean
algebra .o is the algebra of all open and closed subsets of a compact
totally disconnected Hausdorff space X; the Boolean operations of (finite)
join and meet are then simply union and intersection, and X is the unit
of the algebra. This assumption is justified since, via the classical
Stone theorem, every Boolean algebra can be isomorphically represented
in this fashion.

Intersection numbers and covering numbers. Let <# be an ar-
bitrary non-void subeclass of a Boolean algebra .o. For each finite
sequence S = {S,, -+, S,> of (not necessarily distinct) members of #
denote by n(S) the number n of terms in the sequence and let i(S) be
the maximum number of members with non-void intersection. If K, is
the characteristic function of S; then #(S) = sup {3 {K, (¥); % =1, «--m}:
x ¢ X} . The intersection number I(<#) is defined to be inf {¢(S)/ n(S);
S a finite sequence in <7 }.

1. PROPOSITION. If m is a measure on . and <# is a non-void
subclass of .o~ then inf {m(B): € &%} < I(<#), where I(<7) is the
intersection number of <7 .

Proof. Let r =inf{m(B): B € <#}, and let K, be the charcteristic
function of S, where S=<{8,, ---,8S,) is a finite sequence in 7.
Then {3 {K,:i=1,-++,n} dm=> {m(S):¢1=1, ---,n} > rn, and
therefore Y {Ki(x):?=1,---,n} > rn for some x in X. Hence the
maximum number #(S) of elements of S which intersect is at least rn,
and #(S)/n(S) > ». Taking the infimum for all S, we have I(<Z) > 7.

The preceding proposition can be restated: I(<#) > sup inf {m(B):
B € &#}, where the supremum is taken over all measures m on .o7.
The principal result of this section implies that equality holds here and
the supremum is assumed.

2. THEOREM. If <# is a non-void subclass of a Boolean algebra .o~
then there is a measure m on & such that inf{m(B):Be %} =
I(<#), where I(<Z) ts the intersection number of <7 .

Proof. Let C be the class of all continuous real valued functions
on X, with the usual supremum norm, let F" be the class of characteristic
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functions of members of <%, and let G be the convex hull of
F. We assert that if f e G then ||f|| > I(<#). For suppose that
|33 {t;K;:i=1, «++, q}||=7, where K, is the characteristic function of a
member S; of &%, 0 <t, <1 for each 4, and > {t,:72=1,---,q} =1.
For arbitrary e >0 we then have |[(1/n) 3\ {p.K :1=1,++-,q} || <7r
+ e for suitably chosen positive integers p,, ---,p, with > {p,:t1 =1,
.-+, q} =n. Upon considering the sequence in <& obtained by counting
each S; the integer p, times, we see that at least » I(<#) of the mem-
bers of that sequence intersect, whence I(<Z) < || (U/n) > {p.K;:1 =1,
«++,q} || < r + e. Consequently I(<#) < r and the assertion is proved.

Let H be the open sphere in C about 0 of radius I(<#); i.e.
H={f:||fll < I(<#)}. Since the norm of each member of G is at least
I(<#), each member of the combinatorial sum G + H is somewhere
positive. If P is the class of non-negative members of C and @ is the
cone {s(¢g+h)+tp:s >0, t>0, geG, he H, pe P}, then no member of
Q@ is everywhere negative. In view of the Hahn-Banach theorem, there
is therefore a hyperplane separating @ and the function which is identi-
cally — 1; that is, there is a linear functional ¢ such that ¢ ( — 1) <¢(f)
for all £ in Q. We may suppose that ¢(—1)= —1, and because
Q is closed under multiplication by positive scalars, we must have ¢ (f)
> 0 for fin Q. For e > 0, the function constantly equal to — I(<Z) + e
belongs to H, hence f— I(<#) + e € Q for all £ in G, and therefore
o (f — I(#) + e) < 0. Thus ¢(f) > I(<#) — e for all positive ¢, and hence
¢ (f) > I(<z) for all f in G. Finally, for each A in &7 let m(A4) be ¢
of the characteristic function K, of A. Then m is non-negative, finitely
additive, m(X) = 1, and m(B) > I(<#) if B € <#, because in this case
the characteristic function K, belongs to G. The theorem is then proved.

3. COROLLARY. For each non-void subset <7 of .7 the intersection
number I(<#) is the maximum of the numbers inf {m(B): Be <z} for
all measures m on 7 .

4. THEOREM. There is a strictly positive measure on a Boolean
algebra &7 if and only if & —{0} is the union of a countable number
of classes, each of which has a positive intersection number.

Proof. If o — {0} is the union of classes <%, with I(<Z,) > 0
then, choosing measures m, on . with inf {m,(B): B ¢ <2,} > 0, the
sum 3 {2="m, :n an integer} is a strictly positive measure. On the
other hand, if m is strictly positive on & then .o — {0} is the union
of the classes {B: m(B) > 1/n}, and each of these classes has a positive
intersection number by virtue of Proposition 1.

We may derive directly from the preceding results a necessary and
sufficient condition for the existence of a measure which is ‘‘small’’ on
a subclass «~ of an algebra .o, since m(4) < r for each A in & if
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and ounly if m(B) > 1 — r for each member B of the class <7 of comple-
ments of members of . This dualization leads to an interesting
description of the intersection number of <& in terms of the class &,
which we now give.

For each finite sequence S =<S,,---,S,> in &7 let m(S), the
multiplicity of covering, be the minimum number of times that each
point of X is covered by elements of S. If K, is the characteristic
function of S; then m(S) = inf {3, {K;(z):1=1,---,n} :2x € X}. Let
n(S), as before, be the number n of elements of S, and for each non-
void class & of .o~ let the covering number C(z’) be the supremum
of m(S)/n(S) for all finite sequences S in «”. Intuitively, this may be
interpreted: 1/C(%#") is the outer measure of X obtained by using
coverings by elements of ~, assigning members of =  measure one,
and permitting ‘‘multiple’’ coverings.

The connection between intersection and covering numbers is given
by the

5. PRropOSITION. If <7 is a non-void subeclass of the algebra o7
and & is the class of complements of members of <7, then I(<Z) +
Clz)=1.

Proof. Let S be a finite sequence in .o~ . The number n(S)—i(S)
can be described: it is the smallest number such that some set of
(S) elements of S intersect, and, in terms of the sequence S’'=<{S/,
-++, S,/> of complements S of S={S§,, -+, S,>, the number n(S) — (S)
is the smallest such that the remainder, after omission of some set of
n(S)—1i(S) elements from S’, does not cover X. In brief, n(S)—i(S) is the
multiplicity of covering of {S/,---,S,/>. We then have: 1 — I(<%)
=1—inf {¢(S)/n(S): S a finite sequence in <z} =sup {[n(S)—i(S)]/n(S): S
a finite sequence in <#} = sup {m(S")/n(S’): S a finite sequence in
7} = C(@).

In view of Corollary 3, the preceding proposition implies the

6. COROLLARY. For each mon-void subclass & of &7 the covering
number C(Z) is the minimum of the numbers sup{m(4): A e =},
where the minimum 1is taken over all measures m on & .

In view of Theorem 4, we have immediately the

7. COROLLARY. There is a strictly positive measure on &7 if
and only if &7 — {X} is the union of a countable family of subclasses,
each of which has covering number less than 1.

Countably additive measures. A Boolean algebra .o is complete if
and only if each subclass of .o~ has a supremum in .o (or equivalently,
each subclass has an infimum). We shall denote inf {B:Be .z} by
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A{B:Be <}, and sup {B:B e <%} by A {B:B € «##}. In general
these differ from N {B: B € %} and Y {B: B ¢ <} ; if the infimum
and supremum exist, then A {B: B e <} is the interior of M {B:B
e #},and VY {B:B e <7} is the closure of | {B:B € <#}. In case
.7 is complete, the interior of each closed subset of X is closed, and
the closure of each open subset is open.

In this section it will always be assumed that .o~ is complete and
satisfies the countable chain condition (that is, each disjoint subclass of
.7 is countable). The set of positive integers will be denoted by ),
and the class of all sequences of positive integers by w®. For n € w*,
and 7 € w, n,; is the 7th member of the sequence #.

The algebra o7 is weakly countably distributive iff for every double
sequence A;; of members of .o~ such that A4, ,., C A4,, for all + and
g, it is true that V {A{4di;:jew}:ie 0} = A{V{di, ¢ o}
n € w*} . The topological condition on X which is equivalent to weak
countable distributivity is simple and striking. Dixmier has shown [1]
that each first category subset of the Stone space of a hyperstonian*
algebra is nowhere dense, and the results of Horn and Tarski [2] imply
that a hyperstonian algebra is weakly countably distributive. We now
show that these two properties are equivalent for complete algebras
satisfying the countable chain condition. (I do not believe the following
theorem has been published previously, although it has been discovered
independently by John Oxtoby.)

8. THEOREM. A complete Boolean algebra &7 which satisfies the
countable chain condition is weakly countably distributive if and only
1if each subset of the Stone X which is of category I is nowhere dense.

Proof. We first note that a subset A of X is nowhere dense if
and only if A {B:Be .o and B D A} =0. Moreover, because &~
satisfies the countable chain condition, the infimum of any subclass <7
of o is identical with the infimum of some countable subeclass of <7,
and hence A is nowhere dense if and only if there is a sequence {B,}
of members of & such that A < B, and A, B, =0. Of course, {B,}
may be assumed to be monotonically decreasing.

Assuming .97 is weakly countably distributive, suppose C is a subset
of X which is of the first category. Then C = | ,A;, where each A,
is nowhere dense, and there are members B, ; of ., monotonically
decreasing in j, such that A4, c N ,B,, and 0 = A, B, for each <.
Hence 0 =V, A;Bi; = Ax ViBmi. But ViBi,nL_ D U4, = C for each
n, and it follows that C is nowhere dense.

* That is, the Stone space of a measure algebra. The term ‘‘hyperstonian’’ seems un-

fortunate. In spite of my affection and admiration for Marshall Stone, I find the notion of
a Hyper-Stone downright appalling.
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To prove the converse, suppose that each subset of X which is of
the first category is nowhere dense, and that A4; ;e & and 4, ,,,C 4, ,
It is easy to see that V; A; A;s © A, Vidin,. Suppose that B is a non-
void member of o7 such that BC A, V4., and BNV,;A,A4;, is void.
Since B N AA;; is void, B does not intersect the interior of ()4, ,,
and hence B N [);4;; is nowhere dense. Therefore B N U, ,A4; ; is of
category one and hence nowhere dense. We may then choose a non-zero
member C of & such that C < B and C N U.MN),;4:, is empty. Using
compactness, choose n; such that CNA,,, is empty. Then CN AnViAmi
is void, which contradicts the fact C — B.

Making use of this proposition, we have no difficulty in establishing
the

9. THEOREM. Let 7 be a complete Boolean algebra with a
strictly positive measure m. Then there is a strictly positive countably
additive measure on &7 if and only if & s weakly countably
distributive.

Proof. Horn and Tarski [2] have established the fact that each
algebra (not necessarily complete) which has a strictly positive countably
additive measure is weakly countably distributive. On the other hand,
let m be a strictly positive measure on &~ and let <# be the g-algebra
of subsets of X which is generated by .. Then m has a unique
extension n which is a countably additive measure on <#. (This may
be established by using m and coverings by members of .o~ to define
an outer measure p on <#Z, and showing that the o-algebra of p-
measurable sets contains .9; or alternatively, one may use m to define
a positive linear functional on the class of continuous linear functions
on X, and use the Riesz-Kakutani representation theorem for such
functionals.) Let b = sup {#w(B):B € <& and B nowhere dense}. We
assert that this supremum is attained, for if {B;} is a sequence such
that b = sup {W(B,):tew} then D = {B,;:7 € w} is also nowhere
dense, in view of our hypothesis, and clearly b = n(D). Now define
n, by n(Ad) = n(A — D). Then, in view of its definition, %, vanishes
at every nowhere dense set. Moreover, n, is strictly positive on &7, for
if A is a non-void member of .97 there is a non-void member B of &
such that Bc A — D, and n.(4) > n.(B) = m(B) > 0. Finally, n, is
countably additive on o7, for if {A4,} is a disjoint sequence in .9 then
the set E=VY{4;:7 ¢ 0w} — U {4;:7 € ®} is nowhere dense, hence
n{E)=0, and n(V{4;:1ew})=n(U{4::7 € w})=3 {nfd):7 e w}.
The theorem is then proved.

Souslin lines. We first review a few definitions. A linear continum
is a non-void set X with a linear ordering > such that X has a first
and a last element and such that there are no jumps or gaps. In terms
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of the order topology, these requirements can be stated: X is compact
and connected. A linearly ordered set X is of real type iff there is an
order isomorphism of X onto a subset of the class of real numbers.
The interval algebra of a linearly ordered set is the Boolean algebra
generated by the half-open intervals (a:b] = {x:a < x < b}, where a
and b are arbitrary points of X. It is well known (and easy to prove)
that a linear continuum X is of real type iff the order topology is separable
(that is, there is a countable dense subset of X), and this is the case
iff there is a strictly positive measure on the interval algebra of X. If
the interval algebra satisfies the countable chain condition, then X is
said to satisfy the countable interval condition.

We shall call a linear continuum X a Souslin line iff X satisfies the
countable interval condition, and no non-void interval in X is of real
type. We now show that, if the Souslin hypothesis fails, then there
exists a Souslin line.

10. PrROPOSITION. Let X be a linear continuum which satisfies the
countable interval condition but is not of real type. If R is the relation
{(y, y) : ® = y or the interval [y, x] is of real type or the interval [z : y]
is of real type}, then the quotient X/R is, with the induced order, a
Souslin line.

Proof. As a preliminary we show that if 7 is a family of intervals
in X which is linearly ordered by inclusion, and if each member of 7~
is of real type, then U{7T:T e .77} is also of real type. If o is
countable this result follows from the fact that a countable union of
separable subsets of X is itself separable. But .~ may always be
assumed to be countable for: we may by transfinite induction choose a
subfamily {7,} of .~ which is well ordered by — and covers U {T: T
€ 7}, and such a well ordered family must be countable since other-
wise the class of sets of the form T,., — T, yvields an uncountable dis-
joint family of intervals.

It follows easily from the above that an equivalence class modulo the
relation R is either a closed interval or consists of a single point, and
that the family .7~ of such intervals must be countable and disjoint.
The quotient map @ of X onto X/R is then continuous relative to the
order topologies for X and X/R, and X/R is therefore compact and
connected. Finally, suppose that I is a separable interval in X/R, that
A is a countable dense subset of I, and that B is a countable dense
subset of U {F': Fe 7). Let C be a countable subset of X such that
B c C and C intersects Q-'[x] for each x in A. We assert that the
closure C- of C contains Q[ I], for: if J is an open interval disjoint
from C- then J is disjoint from |J {F: F ¢ 7}, hence @ is a home-
omorphism on J, whence Q[J] is disjoint from A, and therefore Q[J]
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is disjoint from I. Thus Q-[I] is separable, and this, in view of the
definition of R, contradicts the fact that I is a proper interval. Conse-
quently X/R can contain no separable interval, and is therefore a
Souslin line.

It is now easy to show that a Souslin line has very curious
properties. Recall that a regular open set is an open set which is the
interior of its closure. For a compact Hausdorff space (or for any space
which is of the second category at each of its points) the Boolean algebra
of regular open sets is naturally isomorphic to the algebra of Borel sets
modulo the ideal of Borel sets of the first category, for: the class of
all Borel sets A such that the Boolean sum of A and some first category
set B is regular and open is easily seen to contain the Borel algebra,
and no non-void regular open set is of category I.

11. LEMMA. Let X be a Souslin line. Then a subset A of X s
separable 1f and only if it is nowhere dense, and this is the case if
and only if the set A is of the first category.

Proof. A separable subset of X is nowhere dense in view of the
definition of a Souslin line; conversely, if A is nowhere dense the set
E of endpoints of intervals complementary to A~ is countable, and
choosing a member of A between each pair of points of E whenever
possible yields a countable dense subset of A. Finally, each nowhere
dense set is of the first category, and the countable union of sets which
are nowhere dense, hence separable, is separable, and hence nowhere
dense.

12. THEOREM. The algebra &7 of regular open subsets of a Souslin
line X has the properties:
(i) each disjoint subfamily of .o~ is countable,
(ii) the algebra .o is complete,
(iii) the algebra .o~ is weakly countably distributive,
(iv) there is no strictly positive measure on .o, and in fact
(v) if m is any measure on .o then there is a countable subfamily
7 of o7 such that m(B) =0 for Bin <Z and VY {B:B ¢ #} = X.

Proof. The assertion (i) is clear, and (ii) follows from (i) together
with the faect that .o~ is countably complete. To show that .o is weakly
countably distributive let us consider .o as the algebra of Borel subsets
of X modulo sets of the first category, and suppose that A, ; is a double
sequence of Borel sets such that A4;; D A, ;., for all © and j. We may
suppose that each A, ; is closed. It is always the case that B= A {V
{Ain:tewl:ine w} DV {A{A,;:jew}:iew}=C. Letussup
pose that I is a non-void open interval whose intersection with C is of
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the first category, (and hence nowhere dense). Then I contains a non-
void open interval J whose closure is disjoint from C. Via compactness,
choose for each ¢ an integer =, such that Ami fails to intersect J.
Then B, in view of its definition, is disjoint from .J, and we have
showed that B N (X — C) is nowhere dense. Thus B is congruent to C
modulo the class of sets of the first category, and .o is weakly count-
able distributive.

If there were a strictly positive measure on .~ then the map
carrying each point ¢ of X into the measure of the interval [a, ], where
a is the first point of X, would be an order isomorphism of X into a
set of real numbers. Thus (iv) is proved, and assertion (v) follows from

a simple argument based on the fact that every closed interval in X is
itself a Souslin line.

REMARK. Part (iv) above may easily be strengthened; for example:
there is clearly no strictly monotonic real valued function on o~

It is not difficult to give a precise equivalence to the Souslin hypo-
thesis in terms of properties of Boolean algebras. Let us call a
maximal chain in a Boolean algebra (that is, a maximal linearly ordered
subclass) a segment. A Boolean algebra is atomless if and only if each
non-zero element is the sum of two disjoint non-zero elements.

13. THEOREM. The following statements are equivalent:
(i) (the Souslin hypothesis) each linear continuum which satisfies the
countable interval condition is of real type,
(ii) each segment in an atomless Boolean algebra which satisfies the
countable chain condition is of real type, and
(iii) 4f &7 1is the algebra of regular open subsets of a linear continuum,
and if 7 is complete, atomless, weakly countably distributive, and
satisfies the countable chain condition, them each segment in o7 is of
real type.

Proof. We first show that (i) implies (ii). If & is a segment in
atomless Boolean algebra .o which satisfies the countable chain condi-
tion, then it is easily seen that there is no uncountable disjoint family
of intervals in .&. Moreover, since .o is atomless, there are no gaps
in & (that is, between any two distinct members of & there is a third
member which is distinet from both). It follows that the (order)
completion of & is a linear continuum satisfying the countable interval
condition, and, assuming the Souslin hypothesis, is of real type. Thus
& is of real type.

Clearly (ii) implies (iii). That (iii) implies (i) is an immediate
consequence of the properties of a Souslin line, and the fact (Proposition
10) that a Souslin line exists if the Souslin hypothesis fails.
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Dominated measures. Maharam has showed [3] that if a Boolean
algebra o7 satisfies certain conditions then there is a continuous outer
measure on .S; that is, there is a non-negative real valued function p
such that if A = V{4,:n € w} then p(4) < 3, {p(4,:7n € 0}, and, if
{4,) is a monotonically decreasing sequence with 0 = A {4, : 7 € w} then
p(A,) converges to zero. It seems possible that this result might be
strengthened by showing that each outer measure dominates a measure.
This leads to the general problem of Hahn-Banach type: if <Z is a
subalgebra of .o~ and if m is a measure on <# which is dominated there
by a non-negative function p such that p(A) + p(B) > p(4A U B), is it
then possible to find a measure on o7 which is an extension of m and
is everywhere dominated by »? The extension theorem just proposed
is false, even for finite algebras. However, a similar result can be
established if the premises concerning the function p are strengthened,
and, although the result fails to apply to Maharam’s theorem, it appears
to be of some interest in itself.

14. THEOREM. Let .o be a Boolean algebra, let p be a non-negative
monotonic real valued function on o7 such that p(A)+4p(B)>p(AU B)
+p(A N B) for all members A and B of .o, and let m be a measure
on a subalgebra <z of o7 such that m(B) < p(B) for B in <z. Then
there is a measure m on .7 , which is an extension of m, such that
n(A) < p(4) for all A in 7.

Proof. The proof is first reduced, by means of a compactness
argument, to the case of a finite Boolean algebra. For each pair &
and < of finite subalgebras of .o~ such that X e¢ & C &% and & C
< let Q(z, <o) be the set of all non-negative functions q on .o which
satisfy the requirements: ¢ is finitely additive on <, q(C) = m(C) for
C in &, and ¢(A) < p(4) for A in 7. The class Q(=, &) is, by
virtue of the Tychonoff product theorem, compact relative to the topology
of pointwise convergence on o7, and Q(z’, ') D U7, @) if &' C
" and &' < <r. Proof of the theorem is equivalent to showing that
the intersection of the classes Q(=, &), for all & and <7, is non-void,
and in view of compactness it is sufficient to show that each class
Q(#z, =r) is non-void.

The problem is then reduced to that of extending m from a sub-
algebra & to a finite containing subalgebra <, and we may assume that
<7 is a minimal algebra properly containing <. In this case, using
the known structure of finite Boolean algebras, & is generated by a finite
class C, C, ---, C, of disjoint non-void sets, and <r is generated by
D, D, C,---, C,, where DN D' is void and D U D' = C. The ex-
tension of m requires the choice of a number m(D) such that the following
inequalities are satisfied :
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m(D) + m(A) < p(D U A) for all A in & with AN C void, and
m(D U D') — m(D) + m(B) < p(D'NB) for all B in & with B U C void.
Thus extension is possible if and only if m(D) can be chosen so that
m(C) + m(B) — p(D'UB) < m(D) < p(DUA) —m(A) for all members A
and B of & which are disjoint from C, and this inequality can be
attained if the left hand member never exceeds the right hand for all
such choices of A and B. Rewriting, the proof reduces to establishing
that m(C) + m(A4) + m(B) < p(D U A) + p(D' U B) for all members A
and B of & which are disjoint from C. But

m(C) + m(4) + m(B) = m(C U A U B) + m(A N B)

<P CUAUB)+pANB)<pDUA+pD' N B,
the last inequality being derived from the assumption on p as applied
to the sets DU A and D’ U B. Thus the extension of m is always
possible, and the theorem is proved.

There is a dual to the preceding theorem which may be obtained as
follows : Suppose m is a measure on the subalgebra <z and that m
dominates a non-negative function p such that p(4) + p(B) < p(A U B)
+p(ANB) forall Aand B in .o7. Then, setting g(4)=m(X)—p(X—A4),
it is easily verified that m and ¢ satisfy the conditions of the preceding
theorem. There is therefore an extension n of m which is every-
where dominated by ¢, and it follows that # dominates p. Hence:

15. COROLLARY. Let &7 be a Boolean algebra, let p be a non-negative
monotonic real valued function on o such that p(A)+p(B)<p(AUB)
+ p(A N B) for all A and B in o7, and let m be a measure on a
subalgebra <z of &7 such that m(B) > p(B) for B in <z. Then there
is @ measure n on .57, which is an extension of m, such that n(A)>
p(4) for all A in 7.

ADDENDUM

Since writing this paper I have received the following communications.
From Professor A. Horn (June 18, 1959) :

A. ““...Lemma 11-this property is actually characteristic of Souslin
lines: A linear countinuum in which the separable subsets coincide
with the nowhere dense subsets is a Souslin line, and conversely.
This is true because if we have an uncountable disjoint family of
intervals, then a set formed by choosing one point from each
interval is nowhere dense and non separable. Thus we have a
new and intersting formulation of Souslin’s problem s«..”’

B. [---- Incidentally, it is interesting that Theorem 14 is not
valid (even for monotonic p), if <& is not a subalgebra and m is
merely a partial measure (in the sense of [2]) on &7 ---]
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From Professor Roman Sikorski:
March 25, 1959.

A. (1) The proof of Theorem 2 can be simplified. Theorem 2 is
a particular case of the following general theorem :

(*) Let X be a partially ordered Banach space such that
0 <2 <y implies (x| < |y|. For every convex set S of non-nega-
tive elements there exists a functional f > 0* such that |f| =1
and inf_ ¢, f(x) = inf, e |2].

Theorem (*) follows immediately from a general theorem on
the existence of a functional satisfying a given set of inequalities.
This general theorem is due to Mazur and Orlicz (Studia Math.
13, (1953), 137-179). A simple proof of Mazur-Orlicz’s theorem
was given by me (ibidem, p. 180) and by Ptak (also in Studia Math.).

(2) Your Theorem 9 can be proved simply without using Stone
spaces. In fact, suppose that m is a finite measure on a Boolean
algbra <#. The formula

m' (A) = inf (m(4,) + m(4,) + --+) for A e &%
(where inf is extended over all disjoint decompostions A =4, + A4,
+ +--) defines a ¢ -measure on <& (viz. m' is the greatest o
-measure < m). Itis easy to verify that if m is strictly positive
and B is weakly o -distributive, then m’ is strictly positive.

The remark (2) is due to Professor Ryll-Nardzewski.
April 3, 1959
B. I would like to inform you that Professor Ryll-Nardzewski has

found the following analogue of your Theorem 4 for o-measures:

(*) There exists a strictly positive o-measure ¢ on a Boolean
algebra <# if and only if <% — (0) is the union of a sequence
{<#,} such that, for every =,

(1) the intersection number I(<#,) is positive ;

2 if A,c A4, (m=1,2,---) and A, + A,+ --- € &,
then there exists an m such that A4, € <Z,.

Necessity. Take as <z, the class of all A e <7 such that
HA) > 1n.

Sufficiency. There exists a measure g, such that g/,(4) >
1(<7,) for every A € <7,. Let

ta(A) = inf lim, ££,(4,)

where inf is extended over all sequences A, € <Z such that
A=A+ A,+-+-- and A,CA,,,. By definition, p, is a o-measure
and p,(4) > I(<z,) for A e <z, on account of (2). The o-measure

1 j.e. such that flx) =0 for x=0.
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_ 1 1
(A) = —2“#1(14) =+ “z"é#Z(A) + e

is strictly positive on B.
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