PERMANENTS OF CYCLIC MATRICES

M. F. TINSLEY

1. Introduction. Let A=[a;] be an n xn matrix with non-negative
real entries. The permanent of A, written P(A), is defined by

(1.1) P(A) = %] Q14 Qagy ** ¢ Ay s

where the summation extends over the n! permutations of the integers
U1y T3y *+*, 9,. Thus the permanent and determinant are alike in definition
except for sign changes. However unlike the determinant, the properties
of the permanent function are little understood. The object of this
paper is to determine for a certain class of matrices those matrices A
for which the permanent and determinant are equal in absolute value.
This property we write P(A) = | D(A)|. For such matrices the permanent
may then be evaluated by the determinant.

Let A = [a;] be an n x » matrix composed of 0’s and 1’s with row
and column sums equal to s. Let ¥ = [g,] be a permutation submatrix
of A. This means that 2 is a permutation matrix of order » such that
¢y, = 1 implies a,, = 1. With X we associate a permutation 3’ of the
letters 1,2, «-+, n

1.2) X' (i) =7 if and only if 0, =1.

It follows by definition then that P(A) = |D(A)| if and only if every
Y’ is even or else every 2’ is odd.

By a theorem due to Konig (1), the matrix A may be written as a
sum of s permutation matrices,

(1.3) A=m +7m+ o0 + 7.

For convenience we will say that A is defined by the s permutations
Ty, Ty +oe, wh 1f miwi = miwl, for each j and k, then A will be called
abelian. If fori=1,2,--.,8, 7 =(1,2, -+, n)% where 0 < d, < n, then
A is cyclic and will be said to be defined by the difference d,, d,, +--, d;
mod n.

Now let C be the 7 x 7 cyclic matrix defined by the differences
0,1,3, mod 7. The main result of the paper may be stated as follows:

Let A be an n x n abelian matrix with s = 8 ones in each row and
column. Then P(A) = |D(A)| if and only if s =3, n="Te and upon
permutations of rows and columms A is transformed into the direct
sum of C taken e times.
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Most of the results of this paper are taken from the author’s
doctoral thesis written at the Ohio State University under the super-
vision of Prof. H. J. Ryser. Theorem 1, 2, 3 and 6 are from that source,
the proof of Theorem 6 being essentially altered here.

2. Representation of Cycles. Let A be a 0,1 matrix of order n
with s ones in each row and column. By (1.3) we may write A = &, +
T, + «++ + w,. The matrix B=x;' A has ones on the main diagonal
and possesses the same permanent and, apart from sign, the same
determinant as A. Thus there is no loss in supposing A has ones on
the main diagonal. If now Y is a permutation submatrix of A any cycle
of 3’ also corresponds to a permutation submatrix of A. Hence
P(A) = | D(A)] if and only if all such cycles are even. We shall refer
to these cycles as the cycles of A.

If P(A)=|D(A)| and B= A — 7, then B has the same property
since any term in the expansion of D(B) also contributes to D(A4). Thus
any results for matrices A with P(4) = | D(A)| and s = 3 will also apply
to matrices with ¢ = 8 ones in each row and column. It develops, at
east for the class of abelian matrices, that the analysis for s = 3 is all
Ithat is necessary.

For the remainder of §§2,3 and 4 only cyclic matrices will be
considered. Let A be cyclic of order n and defined by the differences
0,d, and d,modn. Reading mod n, a cycle of A must have the form

a—>a+d,1—>a+dil+diz——>---——>a+dil+diz+ +dzj-

Here the d,’s are d, or d, and d, + d;, + -+ + d;; =0 (mod n). Now
arrange the d,’s in a circle as follows:

diy

d(z

ds, dis

Then no consecutive selection of ¢ of the d’s, 0 <t <j, has a sum
divisible by n. Otherwise there would be a cycle within a cycle.

Conversely, let d;, dy, +--, d; ; be a sequence formed from d, and d,
such that d, +d, + -+ +d,,; =0 (modn) and, when arranged in a
circle, no proper consecutive selection of the dy,’s has a sum divisible
by n. Then for each b=1,2, ..., m,

b—b+d,—b+d +d,—> - —b+d, +dy,+ - +d;

'3
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is a cycle of A.
Now foracyclea—»a+di1——>a+dii+dij—>~--—»a—i—dil—{— cee +d

ij!

let x, denote the number of times that d, occurs among iy diyy ooy dy 5
Then 7 = x, + «, and
(2.1) dx, + dx, =0 (mod n) .

DEFINITION. We say that the solution («,, x,) of the congruence
dx + dy = 0 (mod n) represents a cycle of the matrix A. More precisely,
let d2' + d;y' = 0 (mod n), where 0 < 2',%" and 0 < 2’ + %'. Suppose
there exists some arrangement of ' a’s and %’ B’s in a circle with the
following property; For all other solutions z*, y* of (2.1) such that
0=e*=2,0=y* <y and 0 < a* + ¥*, no consecutive selection of
¥ +y* a’s and B’s totals exactly x* a’s. Then the solution («', %')
represents a cycle. If no such arrangement exists (x', ¥') does not re-
present a cycle.

Note that if (y,, ¥,) represents a cycle then the cycle has length
Y, + ¥, and hence is even or odd according as ¥, + ¥, is odd or even.
Thus to determine if P(A) = |D(A)]| it suffices to study the solutions of
2.1).

ExAMPLE 1. The 7 x 7 matrix C defined by the differences 0,1, 3
mod 7 has permanent equal to determinant. For consider the solutions
of x + 3y =0 (mod 7): (4, 1), (1, 2), (5, 3), (2, 4), (6,5), (3, 6), (0,7), (7,0).
One readily shows that (2, 4) can not represent a cycle and that only
4,1), (1,2), (0,7) and (7,0) may. Since the sums 4+1,1+2, 0+ 7
are odd it follows that P(C) = | D(C)|. Similarly one shows that the
7 x 7 matrix defined by the differences 0,1,5 mod 7 has permanent
equal to determinant.

3. Primitive Solutions. In this section we study a general con-
gruence

3.1) ax + by = 0 (mod n) ,

where @ and b are positive integers not necessarily distinct and x, y are
non-negative integers.

Let (x,, v,) and (x,, ¥,) be solutions of (3.1). We write (2, y1)=(,, ¥.)
provided ®, =5,y =¥y, and (%, %) = (T %) if @, =, and ¥, = ¥,.
Furthermore, we write (x, %) > (%, ¥,) provided x, >, ¥y, =y, or
Xy = Loy Y1 > Yoo

Now let (x,, %,) be a solution of (3.1) such that both x, and y, are
positive.

DEFINITION. (%,, ¥,) will be called primitive if for every solution
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(w3, ¥) such that (0, 0) =< (a5, ¥o) = (0, ¥,) either (xg, y5) = (0,0) or
(5, ¥o) = (%o, Yo)-

Suppose now that the n x » matrix A is defined by the three dif-
ferences 0, d,, d, mod n. From the definition and the discussion of §2
it follows that primitive solutions of the congruence d,x + d,y = 0 (mod n)
must represent cycles of A. Thus the study of primitive solutions is
suggested as a starting point in our investigations. The first theorem
concerns the determination of the primitive solutions of (3.1).

Let n=mn, (mod d) and d = d, (mod n,), where 0 = d, < n, < d < m.
To simplify the notation we shall set FF = n/d and G = d/n,.

THEOREM 1. If the primitive solutions of «' + dy’ = 0 (mod n,) are
those solutions for which y' = 1,7, k, ---, then the primitive solutions of
2z + dy = 0 (mod n) are those solutions for which

¥y =12, -+, [F], (iG] + DF], ([5G] + DF], [([kG] + DF], -+ - .

If n =0 (mod d), then the primitive solutions of x + dy = 0 (mod n)
are those solutions with y =1,2, -+, [F] — 1.

Proof. Clearly the solutions of  + dy = 0 (modn) withy =1,2, -+,
[F'] — 1 are primitive, since as y increases the corresponding x decreases.
If n is divisible by d then these are all the primitive solutions. If
n # 0 (modd) then the solution with y = [F] is also primitive. If, in
addition, d, = 0 then 7, is the greatest common divisor of » and d, and
(ny, [F']) is a primitive solution of % + dy = 0 (mod »). Moreover, if
(%o ¥o) is another solution and y, > [F'], then (, ¥,) is not primitive
since x, must be a multiple of #,. Thus in proving the theorem, both
n, and d, may be supposed not zero.

Assume now that [F]<wv#[iF],i=1,2,---,d — 1. Let (x, )
be the solution of % 4+ dy =0 (modn) with y, =v. Then there is a
solution (2, ¥') where (0,0) < (2',%") < (%, %) and ¥y’ = [jF] for some
J,1=<j<d—1. To show this let 5 be such that [j/F] < v < [( + 1)F].
Since [F] < [(j + 1)F] — [jF]1 £ [F] +1, we have v = [jF] +r,r < [F].
Then @, = (j + 1)n — ([JF] + r)d. Now the 2’ corresponding to y' = [jF]
is gn — [JF1d. Thus if we set ' = jn — [jF]d and ¥ = [jF], then

z,—2'={J+Lm—(jFl1+rd} — {jn — [jF}=n—rd =n—[F]d >0

and (¢',y') < (%, %,). As a consequence, to determine the primitive
solutions of the congruence x + dy =0 (mod n) it suffices to consider
those solutions with y = [¢F'],v=1,2, -+-,d — 1.

LEMMA 1. If0=Za;<d<n(t=1,2,+++,d — 1) then
(1) m=a;, (modd) if and only if a, + d[iF] =0 (modn). For
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0<a,<d<n and in = a;, (modd) t=12+--,d —1),
(2) =, = a, Y, = [gF] s a primitive solution of x + dy = 0 (mod n)
iof and only if a, @, «++,a,_, are all > a, > 0.

Proof. (1) Necessity If im = a, (modd) then in =a, + u,d for
some u,;, and u; = (tn — a,)/d = [¢F']. Substituting [1F'] for u,, a, + d[tF] =
i = 0 (mod n).

Suflictency. If a;+d[tF1=0 (modn) then since n=d[tF]>(—1)n,
we have a;, + d[1F'] = in. Thus in = a; (mod d).

(2) Necessity. Let x,=a,, y, = [gF] be a primitive solution of
2 + dy = 0 (mod n) and 2/, ¥’ another solution. If 0 <y’ < ¥, then we
must have 2'>%,. Thus for ' =[jF (1 =1,2,+++,9—1),0,=2" > x,=a,.

Sufficiency. If (x,, ¥,) is not primitive then there is a solution
(2, ¥,) such that (0, 0) < (%, ¥:) < (%o, o). If now y, = [F], then by the
earlier remarks of this section there is a solution (x',%') such that
0,0) < (2, ¥") < (%, ¥,) and y' = [jF] for some j,1 <j<d—1. Since
y' <y, we have j < g. But also since z' < x, we have a, < a,. If
Yy, < [F], then a, <z, 80 a, <2, =a, and 1 <g. In either case we
contradict a,, a,, +++, a4, > a,.

Now consider the following table of values defined for each k =
0,1,2,--+,m, — 1.

b, i
([kG] + 1)n, — kd  [kG] + 1
(4.1) ([kG] + 2)n, — k. [kG] + 2

[k + 1)Gln, — kd  [(k + 1)G]

It follows readily that for the a; of Lemma 1, a;, = in = in, = b, (mod d),
that 0 < b, £ d and that b, increases with 7. Here ¢ is understood as
limited to those values in the table. Now (k + 1)d = [(k + 1)G]n, implies
[(k + 1)GIn, — kd < d where equality holds only if (k¥ + 1)d = 0 (mon u,).
Thus b; = a, unless % = [(k + 1)G] and (k + 1)d =0 (mod n,). In this
case a, = 0 and b, = d.

Now let (a,, [JF']) be a primitive solution of the congruence
% + dy = 0 (mod n). The integer 7 must occur as some ¢ in table (4.1).
Since b, increses with ¢, we must have 5 = [kG] + 1, for some k, 0 <
E<mn —1.

Finally, kd = 0 (mod n) implies % is divisible by w = n,/(d, n). Thus
since (0,[uGF']) is a solution, those solutions (a;, [tF']), where 1=[kG]+1
and kd = 0 (mod n,), are not primitive.

Next consider the solution of «' + dy’ =0 (modn,). For k=
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1,2, -++,n, — 1 define a, = — kd = — kd, (mod n,) where 0 < a,, < n,.
Then the nontrivial solutions are (a, 1), (@, 2), «+«, (¥p,—1, 7 — 1).

LEMMA 2. Let 1<k, l <mn where kd and ld are not divisible by
n. If e=[kG] + 1 and f=[IG] + 1, then

ae—af:ak—al.

Proof. a,=0b, =en, — kd and a, = b, = fn, — ld while
o, = n, — {kd — [kGIn,}
and
a, =n, — {Id — [IGIn} .

Thus a, — a, = ([kG] — [IG]n, + (I — k)d = a, — a,.

Now we may prove the theorem. List the primitive solutions of
2+dy=0 (modn) as (n—d,1), (n—2d,2), -, (0, [F]) = (a, [F]),
(ay, [5.F]), (ay,, [5.F]), «+ -, (a;,, [4,F]), where by primitivity a, > a, > a,, >
e >a >0and 1<5, <4, <++- <j,. We have seen that each j,
must have the form [kG] + 1 where kd =0 (modn,). For 1<p=<w
define k, by setting j, = [k,G] + 1 and consider the following solutions
of ' +dy =0 (modn,):

(arclr k), (axzr ko), <+, (a'x”’ k,) .

By Lemma 2, ag > @, > <+ > @, . We cannot have a, =0 for then
kd =0 (mod n,).

If for some u,1<u =<, (e, k,) is nmot a primitive solution of
' + d,y' =0 (modn,), then there is a solution («,,r) such that
0, 0) < (@, ) < (ax,, ku). Set H =1/(d, n) = 1/(d}, n,). If a, =0 then
rd, =0 (mod n,) and k, > n,H.

But then j, = [n, HG] +1=dH + 1 and (0, [dHF]) < (a,, [5.F]),
contradicting the primitivity of (a,,, [7.F]).

If ,>0 then by Lemma 2, if f=[rG]+1, (0, 0)<(a,, [fF])<(a;,, [7.F]
again contradicting the primitivity of (a,,, [/.F']). Thus for 1< p =<,
(a,‘p, k,) is a primitive solution of 2’ + dy' =0 (modn,). To complete
the proof of the theorem we must show that there are no others.

Suppose («,, q) is a primitive solution of «’' + d;y’' =0 (modn,).
Since a;, ay, +++, @, are >a, > 0, Lemma 2 implies that a1, ey
co oy Opgongr AT > Qpggrrre  AlSO @peer = ([9G] + 1)m, — qd and so is > 0.
Now for each t, 1 <t < ¢, ape; > 0 for otherwise td would be divisible
by n, and a, would be 0. Morever,

a, =mn > [Gln, + (n, —d) = Qa1 -

Hence by the discussion of the tables of (4.1) with £k =0,1,-.+,¢—1
we may conclude that
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[ ]
Qyy Qg ***y Opey AYE > Apgarrr > 0.

In Lemma 1 set g = [¢G] + 1. This means that (a,, [gF']) is primitive.
Thus ¢ was one of the k,’s and the theorem is proved.

As a collollary we give a more convenient computational form of
the primitive solutions.

COROLLARY. Let (x,y) be a solution of x + dy =0 (modmn) such
that y=[([tG]+1)F']. Then y=[F]([:G]+1)+1 and x=mn,—(d—[1G]n,).

Proof. Let n=4qd + n,0<mn, <d. Then q, = [F].
(iG] + Dm = qd([?G] + 1) + n([1G] + 1),
and
¥ = q([iG] + 1) + [G7H([iG] + 1)] .

Since id < n,([1G] + 1) < id + n, < (¢ + 1)d, we have y = ¢([1G] + 1) + 1.
Now write @ = ([1G] + 1) n — yd. By substituting [F]([¢G] + 1) + %
for y we obtain © = n[i¢G] + n» — d[F'][¢G] — d[F'] — ¢d. Then substituting
[F]d + n, for n and clearing gives = n, — (¢d — [¢G]n,).
In the notation of Theorem 1, let n >d > n, > d, > 0. Again let
F =n/d and G = d/n,. Let

(xv yl) = (’I’L - [F]dr [F]) = (nv [F])
and
(@ ) = (0, — d + [Gn,, [FI(G] + 1) + 1) = (n, — &, [FI([G] + 1) + 1) .

By Theorem 1 and Corollary, (x,, ¥,) and (x,, ¥,) are primitive solutions
of £ + dy =0 (mod n). Concerning them we shall now prove the follow-
ing useful theorem:

THEOREM 2. If (2',y') s a solution of x + dy =0 (modmn) and
0,0) < (&', ¥') < (®, + 3 Y1 + Y,), where (2, y,) and (x,, y,) are the above
mentioned primitive solutions, then either (x',y’) = (2, y,) or (&', y') =
(23 Ys)-

Proof. To prove the theorem we need the following lemma.

LEMMA. Suppose there exist primitive solutions (%, ¥,) and (2, ¥,)
of x +dy =0 (modn) such that =, + 2, = n,y, + ¥y, <n and there is
no other primitive solution (x',y’) for which (x', y') < (%, + X, Y, + ¥,).
Then there ts mo other solution (x*,y*) such that (0, 0) < (x*, y*) <
(%, + @2 Y1 + Ya).
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Proof of lemma. Let (0,0) < (x*, y*) < (x, + 2, ¥, + ¥,) where (x*, y*)
is a solution of # + dy = 0 (mod n). Clearly y* + 0 since x™ must be
less than n. If there are solutions (z*, y*) with «* =0 and (0,0) <
(x*, ¥*) < (%, + %, ¥ + ¥,) then select the one with ¥* minimal. Then
(2, + 2, ¥, + ¥, — ¥*) is a solution and by primitivity ¥* > v, ¥,. This
implies ¥, + ¥, — ¥* < ¥*, ¥, ¥, But now the choice of ¥* implies that
there must be a primitive solution (2', ¥') < (¢, + %, ¥, + ¥, — ¥*). Such
a primitive solution cannot be (x,, ¥,) or («,, ¥,), and this contradicts the
hypothesis. Hence we have shown that an arbitrary solution (x*, y*)
which satisfies (0, 0) < (x*, ¥*) < (%, + ., ¥, + ¥,) can have neither z* =0
nor y* = 0.

Thus the solution (z*, ¥*) must contain a primitive solution. This
means for 1 =1 or 2, x, £ 2* and y, < y*. For this 7, (2* — x;, ¥* — v,)
is a solution. Either both 2* — 2, and y* — y, are zero or neither is
zero. If x* #+x, and y* #y, then for =1 or 2, z* —x, =2, and
y* — Yy, = vy, Again, either both «* — x, — «, and y* — y, — y, are zero
or neither is zero. Continuing, we obtain

z* = ¢, + ¢, and y* = ¢y, + ¢y, ,

where ¢, and ¢, are non-negative integers. If (x, ¥,) = (%, ¥.) then
x* = cx,, y* = cy, where ¢ = ¢, + ¢,. In this case ¢ would be 1 or 2 and
the lemma follows. If (x,, ¥,) # (%, ¥,) we may let ¢, > x,, ¥, < %,. Then
x>, and 2* <2, + 2, imply ¢, <1 while v, <y, and ¥* Z v, + ¥
imply ¢, < 1. This proves the lemma.

We must show that the solutions (z,, %) and (x,, ¥,) of the theorem
satisfy the hypothesis of the lemma. One readily verifies that x, + 2,
and ¥, + vy, are less than n. Let (x*, y*) be a primitive solution such
that (0, 0) < (2*, ¥*) < (®, + ®,, ¥, + ¥,). To prove the theorem it suffices
to show that #* < x, and y* < y,. Now consider the solution (., ¥,)
where

y=[FI(26] + 1) +2.

By Theorem 1 and its corollary there is no primitive solution (z’, ¥’)
such that ¥y, < ¥’ < y;,. We have

Ys—h— % =[F]([2G] - [G] - )+ 1= [FI([G] -1 +1=1.
From this it follows that y* < v,.

Now if [F'] =1, then 2* < x,. If [F] > 1, consider the solution
(o, Yo) = (n — [F']d) + d, [F] — 1. There is no primitive solution (x", y"’)

such that xz, > 2" > «,.
Furthermore

p— %, —=n—[Fld +d— (n— [F]d) — (n, — d + [G]n,)
=2d — n, — n,[G] > 0.
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Hence «* < x,. Thus 2* < %, and y* < ¥, so that (x*, y*) equals (x,, ¥,)
or (%, ¥,). The theorem follows from the lemma.

4, Application. Let A be a cyclic 0, 1 matrix of order »n defined
by differences 0,1 and d mod n.

As covered in § 2, to show P(A) > | D(A)]| it is necessary and suf-
ficient to show the existence of a solution (2', ') of  + dy = 0 (mod n)
such that (', ¥') represents a cycle and «' + %' is even. The problem
of determining when a solution (2’,%’), 0 < a2’ + %', represents a cycle
may be described as follows. Suppose there exists some arrangement
of ' a’s and ¥’ AB’s in a circle with the following property: For each
solution (x*, ¥*) < (¢/, ¥’), no selection of x* + y* consecutive a’s and
A’s totals exactly ™ a’s (or y* B’s). Then (2, ¥’) represents a cycle.
If no such arrangement is possible then (2’, ¥’) does not represent a cycle.

For the purposes of this section it is not necessary to solve com-
pletely this problem in arrangements. In an important class of d and
n Theorem 2 yields two primitive solutions (x,, ¥,) and (z,, ¥.) having the
property that there is no other solution (2’, ¥’) such that (0, 0) < (2', ¥') <
(¢, + %, ¥, + ¥,). Thus if there is an arrangement of =z, + z,a’s and
Y, + ¥, £’s in a circle such that no selection of x, + ¥, consecutive a’s and
A’s totals exactly x, a’s (or y,8’s) then (x, + x,, ¥, + ¥,) represents a
cycle. Under these circumstances we have P(A) > | D(A4)|. For (x,, ¥,)
and («,, ¥,) represent cycles, and if x, + %, and %, + ¥, are both odd then
2, + %, + ¥, + ¥, 18 even. The proof of Theorem 3 is based upon this
device.

THEOREM 3. Let A be a cyclic 0,1 matrix of order n defined by
the differences 0,1,d modn. Then P(A) = |D(A)| if and only if n =17
and d =3 or 5.

Proof. If n=7and d =38 or 5 then P(A) = |D(A)| by Example
1. We assume P(A) = |D(A)| and will show n =7 and d =3 or 5. If
n or d is even then P(A) > |D(A)|. For if » is even the permutation
1,2, ---,n) is odd. The solution (', ¥’) = (n — d, 1) is primitive so if
n is odd and d is even then #' + ¥ = n — d + 1is even. Thus we may
assume that both » and d are odd. As before we set F = n/d and
G =d|n,.

We may also assume that [F'] = 1.

For if [F]=2 then d<n/2 and n—d +1>n/2+ 1. Thus
[n(n —d + 1)l = 1. Now

A=T1+P+ Pt

where P is a permutation matrix and P* = I. Since AT =1+ P + P¢
and B= PA" =1+ P + P*-% it follows that P(A) = |D(A)| if and
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only if P(B) = |D(B)|. Thus if [F] = 2, we may study the matrix B
with [#(n — d + 1)™"] = 1. Hence we may assume [F'] = 1. Note that
if n=T7,d=8thenn—d+1=5.

We may assume further that in the notation of Theorem 1,
n>d>n,>d,=1. For if d, = 0 then =, is the greatest common divisor
of nand d. Since n, = n — d and since 7, d are odd, n, would have to
be both even and odd.

Finally, we may assume [G] > 1. For if [G] =1, consider the
primitive solution (z',¥’) = (n, — dy, [F]([G] + 1) + 1). Since d is odd
andd=mn+d,2’+y =n+d,+1=0 (mod 2).

In the remainder of the proof let (z,, %) and («,, y,) denote the
primitive solutions (n,,1) and (n, — d,, [G] + 2) respectively, as in
Theorem 2.

The proof will be completed by showing that if » and d are not 7
and 5 respectively, then (x, + x,, %, + ¥,) represents a cycle. Several
cases will be considered.

Case 1a Y, + ¥, =0 (mod z, + ).
Consider the following circular arrangement of z, + 2, @’s and v, + 9, 8’s,
where r denotes the quotient (¥, + %.)/(z, + 2,).

If a selection of ¢t = x, + ¥, consecutive a’s and B’s totals =z, a’s
then it totals at least (¥, — 1)r 8’s. Let s represent (2n, — d,)~'. Since
[G] = 2,

(@, — 1r = (n, — 1)s([G] + 3) = 5s(n, —1) > 1=1y,.
Thus for case P(A) > |D(4)|.

Case 1b 9, + ¥, %0 (mod x, + x,) and 2, + 2, < ¥, + 9,. Consider

the following circular arrangement of z, + x,a’s and ¥, + ¥, 8’s. To
simplify the notation we set u = [(y, + ¥.)/(x, + 2,)].
Since ¥, + ¥, — 1 = (x, + x,)u, we havey, + ¥, — 1 — (2, + 2, — L)u > u.
Thus if 1 <t < o, 4+ 2, — 1, a selection of consecutive a’s and B’s which
totals ta’s will total at most v, + ¥, — 1 — (2, + 2, — Du +tu +1 =
Yo+ Y — (@, + 2, —t — 1uB’s.
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z"""’2"1"(‘"1"""2-1)“/‘9'3/@ a NFIB'S
&}". 3

Let ¢t =2, and set s=(2n, —d,)'. It suffices to show that
Yo > Yy + Yo — (%, + 2, — @, — 1)u and thus to show (n, — 1)[([G] + 3)s] > 1.
This will be true if n, > 2.

If », =2 then d, =1 and (n, — D[([G] + 3)s] = [1/3([G] + 3)]. This
is >1 unless [G] =2. But then d,=1,n,=2=[G], and [F]=1
together imply d =5 and n = 7.

Case 2 x, + 2, = Y, + ¥,.
Consider the following circular arrangement of a’s and 8’s.

a A v+t 8’s

v+138’s
We are supposing throughout the proof that (z,, v,) = (n,, 1) and
(xz, y2) = ('n1 - dv [G] + 2)-

Let
u=yl+yz,v=[—xl+”ﬂ
Y+ Y,
and set ¢, = ¢, =¢;, = +.-- =0. For each1=1,2,---, [u/2] we wish to

select t,, so that 0=t,<n,—2v—1 and t,+t,+te+ -+ =2+ 2,— (Y +Y)v.
For then any selection of consecutive a’s and B’s which totals ¥, =1«
will total less than n, = x, B’s.
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To show that the ¢’s may be so selected it suffices to prove that
uv+[g—](nl—2v—l)gxl+x2.
Let ¢ = ([G] + 38). We must show that
al@m — )] + | 2 |(m — 21(2m — &)~ — 1) = 2 — d,
The left side equals

(5.1 |2 fm+ lem — e )(a — 2 2a ) - 4],

and is = [(1/2)¢](n, — 1). This is = 2n, — d, unless d, =1 and [G] = 2.
If d, =1 and [G] = 2, then (5.1) becomes

2n, +[2n15_1}—2.

However,

2n1+|:2n15_1:|—2<2n1~1

and 7n, > 1 together imply that %, =2 and hence that d =5,n ="T1.
Thus (5.1) = 2n, — d, unless d =5 and n = 7.

5. The Main Theorem. In this section we shall obtain a genera-
lization of Theorem 3 by means of elementary group theory. Let a,b
be elements of a multiplicative group G.

A word is by definition either void and written 1 or a succession
€€y ¢, Where ¢;(1=1,2,-++,q9) is @ or b. Two words are equal pro-
vided they are identical termwise. If W,=c¢gc,---¢, and W,=
Cpi1Crig * * * Cpps are words then the product word W, W, is defined as
CiCy* o CCpiq o Crrse 1f W, is the void word and W is any word then
by definition W,W = WW,= W. A non-void word W =cec, -+- ¢, will
be called a relation between a and b if ¢,c, -+ - ¢,, considered as an element
of G, is the identity 1. The relation will be said to have length ¢.
Finally, W is a mintmal relation provided W is a relation and any
expression of W as a product W = W, W,W, with W, a relation implies
that W = W,.

THEOREM 4. Let G be a finite group generated by two distinct
elements a and b. Suppose H is a normal subgroup of G and in the
homomorphism G — G|H, a —a and b—b. If there is a minimal rela-
tion between @ and b in G/H having even length then there is a minimal
relation between a and b in G having even length.
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Proof. Let W be a minimal relation between @ and b in G/H having
even length. Replace each @ and & in W by a and b respectively, thus
obtaining a word W on a and b. Then W regarded as a group element
is in H. We may suppose that for some u > 1, the word W**' can be
written in the form W*'' = W, W,W,, where W, is a minimal relation,
but W* cannot. The theorem will be proved by showing that either
W, = W, = W, the void word, or W = W,W, and consequently that
W, is a minimal relation of even length.

By the choice of u, there are words W/, W} such that

W,= WiW*'W, and W= W,W;= WW,.

If Wi+ W, then either

(1) Wi= WjW, where W} is a non-void word, or

(2) wW,=ww, W,=W,W, W= WW,W, where W,, W,, W, are
not void. Since the word W, is a relation, both the group elements W
and W,W, are in H.

Thus if (1), W = W, W} W, implies the group element W is in H.
This contradicts the minimality of the relation W unless W, = W, = W,,
the void word.

If (2), the group element W, must be in H, contradicting the
minimality of W.

With the aid of Theorem 4 the following generalization of Theorem
3 will now be proved:

THEOREM 5. Let I (the identity), P and Q be disjoint permutations
on the letters 1,2, «++, n such that PQ = QP and let A be the 0, 1 matrix
of order n defined by them. Suppose the permutation group G generated
by P and Q ts transitive. Then P(A) = |D(A)| if and only if upon
stmultaneous permutations of rows and columns A is transformed into
the cyclic T x 7 matriz C defined by differences 0,1,3 mod 7.

Proof. The sufficiency is a consequence of Theorem 3. The necessity
will be proved by induction on n. If n =3 then P(A4) > |D(A)| and
the theorem is true. Let B be of order N, 3 £ N < n, and defined by
the disjoint permutations I, P’ Q" where the group G’ generated by P’
and Q' is transitive and abelian. Moreover, let P(B) = |D(B)|. Then
the induction hypothesis asserts that B is transformable into C by
simultaneous permutations of rows and columns.

Since G is abelian, G is regular and of order n. Hence 4, 3%, i7", +--,
gPTL GPTIC L. gPTIL L gPTIRNPT0r g g eyele if and only if P1QUP®Qu: . .
is a minimal relation between P and Q. Thus P(4) = |D(A)| if and
only if every minimal relation between P and @ has odd length.

If G is not cyclic then G is homomorphic to an elementary p group
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G of type (p, p). Under this homomorphism, denote the images of P
and Q@ by P and @, respectively. Since P and @ must be independent
generators of G, the relation (PQ)” is minimal. Thus by Theorem 4
there is a minimal relation between P and @ having even length. Hence
P(A) > | D(A)]|.

Now suppose G is cyclic, P(4) = | D(A)| and consider two cases: (1)
G is generated by P and (2) Neither P nor @ generate G.

Case 1. Since G is transitive P must be a cycle of length n. Thus
there is a permutation R such that R—'PR = (1,2, ---,n). Consider the
n x n cyelic matrix A* defined by I, R'PR, R-'QR. A¥* is obtained from
A by simultaneous permutations of rows and columns so by Theorem 3,
A* and hence A is transformable into C. Note here that the cyclic
7 x T matrix defined by differences 0, 1, 5 mod 7 is transformable into C.

Case 2. For this case n must be divisible by at least two distinct
primes p,, p,. We show first that n = pp,. Let H,, H, be subgroups
of G having orders p, and p, respectively. If H, does not contain any
of P, Q, PQ' consider the homomorphism G — G’ where G’ is the regular
representation of G/H, Let P— P, Q— Q" and form the n/p, X n/p,
matrix A’ defined by I, P’ and Q'. The group G’ is generated by P’, @’
and is cyclic and transitive. Moreover, P’, Q" and I are disjoint permu-
tations. By Theorem 4 every minimal relation in G’ between P’ and Q'
must have odd length. Thus P(A') =|D(4’')| and, by the induction
hypothesis, A’ is transformable into C. Hence p, =7 and n = p,p,.

If both H, and H, contain one of the three elements P, @, PQ™
then since P and @ generate G, G = H, x H,. Hence again n = p,p,.

We may thus suppose that P has order p, and @ has order p,. Now
consider the n x n matrix A* difined by I, @, PQ.

Since P(A) = |D(A)| we have P(A*) = |D(A*)|. However Q' and
PQ~' generate G and PQ~' has order n. By Case 1 then n must be 7
so that Case 2 does not arise.

COROLLARY 1. Let I, P, Q be disjoint permutations on the letters
1,2, -«+,n such that PQ = QP and let A be the 0,1 matrix of order n
defined by them., Then P(A) = |D(A)| if and only itf n = Te and upon
stmultaneous permutations of rows and columns A is transformed into
the direct sum of C taken e times.

Proof. By the theorem it is sufficient to prove the necessity for
the case that the group G generated by P and @ is intransitive.

Let the letters 1,2, --+,n be divided into ¢ > 1 transitivity sets
containing N, N,, -+, N, letters, respectively. Then upon simultaneous
permutations of rows and columns A is transformed into the direct sum
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of t matrices A, A4,, -+, A, such that for 1 < j <t, A, is of order N,
and defined by disjoint permutations I, P, Q,, Moreover P,Q; = Q,P,.
Applying the theorem to each A,;(j =1,2, --+,t) proves the corollary.

COROLLARY 2. Let A be an abelian matrixz of order m with 4 ones
m each row and column. Then P(A) > | D(A)].

Proof. Without loss we suppose A is defined by permutations I,
P, Q, R where P, @ and R comute pairwise.

If P(A) =|D(A)| then Corollary 1 implies that » = 7e and there is
a permutation X such that the n x n matrix defined by I, X'PX, X 'QX
is the direct sum of C taken e times. Now on the letters 1,2, ...,7,
X7'PX and X 'QX must be the cycles (1,2,.--,7) and (1,2, -+, 7)°
since these are the only cycles of C having length 7. Thus on the
letters 1,2, «++, 7, X7'RX must equal (1,2, ---, 7)* for some d #0,1,3
(mod 7). The matrix formed from the first 7 rows and columns of the
transformed A is then cyclic and defined by the differences 0,1, 3,d
mod 7. Furthermore by Theorem 3, d = 5. However the 7 x 7 cyclic
matrix B defined by differences 1, 3,5 mod 7 has P(B) > |D(B)|. Thus
we cannot have P(A) = | D(4)]|.

It seems to be a plausible conjecture that in Corollaries 1 and 2
the condition that A be abelian may be omitted. Little progress has
been made in proving this but it is hoped that in time the full result
will yield.

The final theorem will concern the determination of all cyclic matrices
A for which P(A) = | D(4)]|.

A perfect difference set mod n is by definition a set of integers
d,d, +++,d,n—1=k(k—1), such that every integer 1,2, ---,n —1
is congruent mod n to exactly one of the numbers d;, — d,(1 < 7,5 < k).
Difference sets have been studied extensively in connection with ecyeclic
projective planes and designs (2.3) but for present purposes we are
interested only in a unique role played by the perfect difference set
mod 7.

It is readily verified that if A is a 7 x 7 cyeclic matrix with P(4) =
| D(A)| then A is defined by a perfect difference set mod 7. Also if A,
and A, are defined by perfect difference sets mod 7 then A, may be
changed into A, by permutations of rows and columns.

THEOREM 6. Let A by a cyclic 0,1 matrixz of order n defined by
the diffierences 0,d, d, modn. Then P(A)=|D(A)| if and only if

n = Te,d, = ed}, d, = ed}, where 0, d}, d} is a perfect difference set mod 7.

Proof. The sufficiency is a consequence of the following lemma.
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LEMMA. Let B be cyclic of order n and defined by the differences
dy, dyy oo+, d, modn. For e =1 a positive integer, let B, be the cyclic
matrixz of order en defined by the differences ed, ed, «--, ed; mod en.
Then by stmultaneous permutations of rows and columns B, may be
transformed into the direct sum of B taken e times.

Proof. Let B, denote the # x n» matrix formed from the intersections
of the rows t,e+¢t, +--,(n—1)e+t and columns {,e+¢, <+, (n—1)e+1¢
of B,. Here t is a fixed integer on the interval 1 <¢ <e, We prove
B, = B.

Suppose 1 <7,5<n. There is a 1 in row (¢« — l)e + ¢, column
(7 — e+t of B, if and only if for some k, 1 <k <s,

(j—De+t=(\—1)e+t+ ed, (moden) .

This congruence holds if and only if j =1 + d, (mod n). Thus for each
t, 1<t<e, B,=B. Thus the matrix B, contains e principal minors
B, and these minors are disjoint from one another. This means that by
simultaneous permutations of rows and columns we may write B, in the
desired form.

The proof of the necessity is by induction. The theorem is true
for n = 3. Let B be cyclic of order N(8 < N < n) and defined by dif-
ferences 0, a, b mod N and suppose that P(B) = | D(B)|. Then the induc-
tion hypothesis asserts that N =7l,a = a’'l and b = b'l where 0,al,?’
form a perfect difference set mod 7.

Now let P(A) =|D(A)| and consider the permutation group G
generated by (1,2, ---,n)* and (1,2, ---,n)d2:. If G is transitive then
Theorem 6 follows by Theorem 5. If G is intransitive then (d,, d,, n) =
t > 1 and we may define a cyclic matrix B of order n/t by the differences
0, d,jt, d,/t mod n/t. By the lemma, P(B)=|D(B)|. The induction
completes the proof.
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