OPERATIONAL CALCULUS OF LINEAR RELATIONS

RICHARD ARENS

1. Introduction. Let X and Y be linear spaces, and T a linear
subspace of X@ Y. We call T a linear relation to indicate our interest
in those constructions with 7T which generalize those carried out when
T is single-valued [4].

Properly many-valued linear relations arise naturally from operators
T when T! or T* is contemplated in cases where they are not single-
valued. One advantage of not dismissing T* when it is not single-
valued is that T** = T if and only if T is closed (for the details, see
3.34, below.) A more superficial attraction is that linear relations, even
self-adjoint linear relations in Hilbert space can exhibit phenomena
(unbounded spectrum, domain # X) in finite-dimensional spaces which
linear operators exhibit only in infinite-dimensional spaces.

We present an outline of the paper. In §2 we define p(7) where
P is a polynomial with coefficients in the field @ involved in X. We
prove that (pg)(T) = p(T)q(T), (pq)T) = p(q(T)), and point out that
sometimes (p + g)(T') = »(T) + q(T), ete.

In § 3 we turn to relations in dual pairs. In this situation, adjoints
can be defined. We build an automorphism A — X of @ into the theory
of dual pairs, so as not to exclude the Hilbert space situation, which
dual pairs are intended to imitate. (Thus the transpose is a special
kind of adjoint.) Closedness is defined algebraically, but in a way com-
patible with the topological concept. Closure of T* and other algebraic
properties of * are established. Finally, it is shown that if T is closed
and its resolvent is not void then p(T) is also closed.

Section 4 considers the self-dual case. We give a simple condition
(4.3) always true in Hilbert space, that T*T be self-adjoint, T being
closed. In §5 we give the spectral analysis of self-adjoint linear re-
lations in Hilbert space. In a 1:1 manner these correspond to the
unitary operators, via the Cayley transform. However, it can be shown
directly that X is the direct sum of orthogonal subspaces Y, Z which
reduce T (= T*) giving in Z a self-adjoint operator and in Y the inverse
of the zero-operator.

2. Linear relations. A relation T between members of a set X and
members of a set Y is merely a subset of X x Y. For x e X, T(x) =
{y:(x,y) e T}. The domain of T consists of those x such that 7T'(x) is
not void. T is called single-valued if 7T'(x) never contains more than
one element. The range of T is the union of all T'(x).
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If T is as above and Sc Y x Z, then SoT = {(x,2): (x,y) e T,
(y,2) € S for some y}. We shall write this S7. Finally, T'=
{(y,x):(x,y) € T}. The range of T is the domain of T

If X and Y are linear spaces over a field @ then X Y is X x Y
with the usual linear structure. A linear relation T between members
of X and members of Y is a linear subspace of X Y. Linearity is
characterized by

2.01 aTl(x) + BT (x,) C T(ax, + Bx,), (a,Be@;2,2,€ X).

The null space of T is the class of « such that (x,0)e T. It is
easy to see that
2.02 f S and T are linear relations with the same null space, and
the same range, then S C T only if S = T.

Let L be a linear subspace of X, and )\ an element of @. Then
Az denotes the single valued operator defined on L by A, = {(x, Mx) : 2 € L}.
The unit of @ we denote by 1. Thus 1, has a meaning according to
the preceeding agreement. For T a linear relation with range L, we
define AT as A;T. The zero of @ we denote by 0. Thus OT is not Oy,
but O, where L is the domain of 7.

Addition of linear relations S, T is defined as follows:

S+ T={,y):y=s+t for some s,t such that (x,s) e S, (x,t) e T}.

The linear relations in X X do not form a linear space, let alone
a linear algebra. We list algebraic properties partly for use later, but
mainly to call attention, as it were, to those that are lacking.

2.1 THEOREM. The operations ‘o’ and (+) are associative, ‘+’ is
commutative. Let R, S, T be linear relations. Then
2.11 domain of R=X&=1; C R'R;

2.12 R is single-valued &= RR~* c 1;, L = range of R;

218 ANe 0=>MST) = (AS)T = S\A\T) = STr;, L = domaiw of T;

214 RcS=R+TcS+T,RTcST, TRCTS,R*c S

2.15 RS + RT c R(S + T), with equality when the domain of R coin-
cides with the whole space;

2.16 (S+ T)R c SR + TR, with equality when R is single-valued;

2.17 (ST)*= TS

The proof of these may be left to the reader.

We say S and T commute is ST = TS. Suppose SR = RS, TR = RT.
Then (S + T)R c R(S + T). The equality may not hold, as the example
S=-—-T=1,, domain of R #+ X, will show.

T* is defined as T"'T, as usual. If T™ appears in a formula where
n = 0 is allowed, then T° stands for 1;.

These things can all be extended to the case of moduls over a ring
¢. However, we now turn to a lemma whose proof requires that @ be a



OPERATIONAL CALCULUS OF LINEAR RELATIONS 11

field.

For the remainder of § 2, T will denote a linear relation in X P X,
and for » € @, we write just ‘N’ for ‘\;’.

It is clear that a, + &,T +++-+ a,T" has for its domain, just the
domain of T". This is true even if a, =0! If a polynomial p has
coefficients «,, a,, +++, &,, then by »(T) we mean a, + @, +++++ a,T"
provied «, # 0. Otherwise we omit «, and consider whether «, , + 0,
etec. If a,+0 and a, =0 for some ¢ < n, then it does not matter
whether «; is omitted or not (but we have already agreed to retain it)
because, for example T° + 07T = T°.

The next lemma settles a little difficulty that arises in the ‘multiple-
valued’ situation. It enables us to include the multiple valued case in
the succeeding theorem, whose substance is that the usual laws of algebra
apply to the multiplication of linear polynomials in 7. The importance
of this theorem is based on the natural fear that even in the single
valued case (see 2.15, 2.16), factoring might produce a proper extension
of the ‘“‘multiplied-out’’ polynomial.

2.2 LEvMMA. Let (x,y)ea,+aT+---+ a,T", where «,+0.
Then there exist Y, 4., **+, Y, Such that

2.21 Yo =2, gsaiyz =y
and
2°22 (yi—ly yz) € T (7/ - 1’ ey, n) .

Proof. Assume that for some j, we have ¥, ¥, -*-, ¥, such that
2.21 holds, and (instead of 2.22)

(5) Y- v)) e T 1=1=7)
and
(x,y) e T 1=i=<n).

Let & be the next integer greater than j such that a, + 0. We shall
establish (k). This will suffice to prove the lemma.
Because a; # 0 we can find ), ---, \; such that, for 1 <k < j,

k
Nk tmti-n = O

m=k—j+h
We can find z,,2,,+ - -, 2, where 2z, = ¥, and (%, 2,), (2, 25),* * *, (Zs—1, 25) € T\
This implies that (0,y, —2) e T, and (¥;-, — 2;—, ¥ — 2;) € T for 7 = j.
Now we define w,, w,,++,w, as follows. w,=x,w, =2, forl=<m=k,

J—k+m

2.23 Wi = Zm + 2 M(Yj—pmtr—i — Zjmprms1~1)

i=1
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while W4y, = Yuisy **°, Wy = Y. It is clear that (w;_,, w;) € T for7 < k,
and (x, w;) € T* for all i©. There remains only the question, does
Saw, =y, or, equivalently, does

2.24 S, (w,, — ¥,) = 07
m=1

The sum in 2.24 has the value

kE—1 k J—k+m
Zlam(zm — Yn) + Zl ;]1 MY =t mt1—1 = Zg—ptm1+s) »
m= m= =

It is not hard to verify that for 0 < & < k the coefficient of ¥, — 2,

in this sum is
k
2.25 —a,, + E am)’j—k+m+1—n ’
m=k—j+h

where the >i-term is understood to be absent when k —j + h > k.
These N were chosen in order to make this vanish for 0 < h < j. For
J<h<k,a,=0; since k<k—j-+h, the >, term is absent. Thus
the sum in 2.24 is 0, and this concludes the proof of the Lemma (2.2).

N.B. This lemma does not imply that T could be cut down to a
linear operator U whose domain contains ¢, Uz, ---, and U” 'z, where

3 anUm@) = v,
for x could be 0 and ¥ be not 0.

2.3 THEOREM. Let p and q be two polynomials with coeffictents in
@. Then

2.31 (gpXT) = o(T)(T) .

Proof. Suppose the degrees of » and ¢ are m and % respecively.
Let p(é) = ap + & +-- -+ a,£™. Mutatis mutandis, let the coefficients
of ¢ and ¢p be B, and v,.

Now suppose (z,¥) € (pg)(T). By 2.2 there exist z,, «++, £+, such
that (xy-,2,) € T for k=1, -+, m + n where 2, =2, and >v.x, = ¥.
Let y, = 2t d;y, for j =0, - -+, n. Then (x, y,) € p(T) and (¥, ¥,) € T.
Let z= 37 ,8,y4;,, so that (¥, ?) € ¢(T). Then (z,2) e ¢(T)p(T). But
obviously z = >v,x;, = y. This shows that (¢p)T) < o(T)p(T).

Now suppose (x, z) € ¢(T)p(T'). Then there must exist y such that
(x,y) e o(T) and (y,2) e q(T). By 2.2 we can find x, +:+,2, and
Yo» ***, Yn (Where 2, = , and y, = ¥) such that Sz, = y and >.8,y, = z.
We now turn to the free linear space Z (over @) generated by elements
En oy &y Dy o0+, M. In B we define a linear operator S, whose domain
is spanned by &, +--, 9,_,, as follows:

SE-) =& (i=1,.--,m), S(1,) = 1, where 7, = Sa;&;, and S(1,) = 1,4,
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(4=1,--+,n—1). We can map & linearly into X by a mapping f which.
sends §; into X;, and 7, into y,. This mapping has the property that
for & in the domain of S, (f(&), f(S&)) € T. Derivable from this is that
if » is a polynominal and 7(S)& is defined some & in Z then (f(&),
F(@r(S)E) e (T). We apply this to £=§& and r = qp. It is easy to
see that p(S)(&) = 7, whence f(gn(S))(&) = f(S8,7,) = S8, = 2, and
(x, 2) € (gp)(T).

This completes the proof of 2.3.

[Further remarks on polynomials of relations. Inspection of the
first argument in the proof of 2.3 yields the following result.

2.32 THEOREM. Let p and q be as in 2.3. Then

2.33 »+ o(T) co(T) + «T) .
The ‘=’ does not always hold. While
2.34 )T = >(a,T)

hold when >, # 0, it does nmot hold when Sa; =0, some a; #+ 0, and
T is not single-valued.

As the assertion connected with 2.34 implies, the reason that 2.33
cannot be strengthened to an inequality, is that T'— T is not 0 times
some relation, if T is not single-valued. We close this little discourse
on the peculiarities of many-valued relations by showing that the dif-
ficulty arises only with the terms of highest order.

2.35 THEOREM. Let p,q be as above, and suppose the sum of their
leading coefficients is not 0. Then (p + o)(T') = p(T') + o(T).

Proof. We combine the monomials of like degree on the right, and
use 2.34 in each case. Eventually one may have to apply the following

2.36 LEMMA. If n=k then T"=T" + MT*— T).

Proof. Let (x,y) belong to the right side. Then y = % + v where
(¢, u) € T" + NT* and (x,v)e —\T*. From 2.2 we obtain u, -+, %,
which are successively T-related, wu,=x,u, + N\, =u. Therefore
N, + v € T*0), whence u, + \,, + v € T*(u,—) C T"(x). Thus (x,y)e T"

2.37 THEOREM. Let qand p be polynomials. Then (qop)(T)=q(p(T)).
Proof. The polynominal gop is the result of substituting p into ¢,

by definition. The leading coefficients may be taken as not zero. We
can multiply out the terms B,p(T) on the right side, without affecting
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that sum, by 2.3. (The associative law holds for addition.) We can
arrange the sum as a polynominal, by virtue of 2.35 there being in
fact at all times a unique term «,,3,T™"" of highest degree. The result-
ing polynomial is of course (gop)(T), for formal reasons.]

We now make some definitions which coincide with the usual ones
for closed operators in F-spaces. We call a linear relation T resolvable
if T is single-valued with domain X (that is, by 2.11, if T'TcCl,C TT.
If T7'T=1=TT" we call T regular.)

2.4 PROPOSITION. The product of (finitely many pairwise) commut-
ing linear relations is resolvable only if, and if, each factor is resolvable.

Proof. It is inevitable and sufficient to consider the case of two
factors. If these are resolvable, so is their product. The criterion
T*Tc1lc TT™ can be used here.

If on the other hand, a linear relation S is not resolvable, then either
(¢,0) € S for some x # 0, or the range # X. Accordingly, 7S or ST
shares the defect. (This sufficies for 2.4).

The resolvent set of a linear relation T is the class of \ in @ for
which T — \ (by which we mean T — A\l;) is resolvable; and its com-
plement is the spectrum o(T) of T.

2.5 (Spectral polynomial theorem). Let @ be algebraically closed,
and let p be a polynomial over @. Then o((T)) = p(a(T)), where by
the latter is meant the class of p(\), N € a(T).

Proof. For pr e @ we can write
p(T) — U= CK(T — )"1)‘ ¢ '(T - >"n)’ ©®= po\’l) = =p(>"n)

where T — A, ++-, T — \, commute.
If peo(@(T)) then p(T)— g is not resolvable, whence (by 2.4) some
N €0(T),or pep(T)). If pep(T)) then p=p(\),\ea(T), and so
A = A, for some ¢. Then p(T) — ¢ has a non-resolvable factor, and so
is not resolvable. Therefore ¢t € o(p(T)). This proves 2.5.

We have defined the sum (and difference) of two linear subspaces
U and V (say) of X@ Y, but occasionally one is concerned with the
linear subspace of X Y which they span. We will have to use some
other symbol for this, and we choose

2.6 U+V.

Our purpose is to prove the following

2.61 THEOREM. The range of 1 — VU is the null-space of U + V,
and the null-space of 1 — VU is the domain of UN V.
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Proof. Let (x,2) €1 — VU. Then (x,z— x)e — VU whence
(x,y) e U and (y,x — 2)e — V7, for some y. Therefore (z —z, —y)e V
and so (2,0) e U=+ V. If moreover, z =0 (so that z is in the null-
space) then (—z, —y) and thus (%, ¥) belongs to V and thus x edom UN V.
The reverse inclusions can be established by reversing the steps of this
argument.

3. Adjoints. For the formalism of adjoints, it is good to suppose
that the field @ has an involutory automorphism

NN,

and we shall do so. Whether @ admits a non-trivial involution or not,
one can base the discussion on the identity. Thus the discussion includes
the tramnspose.

Let X, A be two linear spaces over @. We shall say X, 4 are a
(@2, —) dual pair (or, more briefly, a dual pair) is there is a non-dege-
nerate bi-additive, @-valued form <, > defined on X P A, linear in first
argument, and semi-linear in the second:

My = N, a) .

Let Y, B be another (@, —) dual pair. Let T be a linear relation
between elements of X and elements of Y, i.e., let T be a linear sub-
space of XPY. XPY,AD B form a (@, —) dual pair, in a natural
way:

(@, y), (@, b)) =<z, ap> + <y, b> .
The adjoint T* is defined as follows:
3.11 T* ={b,a):<{z,ay =<y, by for all (x,y)e T}.

T* is (evidently) a linear subspace of B¢ A.
For a linear subspace U of B A we define

3.12 U* = {(z, y): <z, a) =y, b> for all (b,a) e U}.

It is usually supposed that 3.12 need hardly be written down, once 3.11
is presented. We mention three obvious properties of this process (or,
rather, these processes. See §4)

3.2 Tc T ScT=T*cS*
3.21 OT)* = NT*
3.22 (T-)* = (T*)*.

For a subset M of X, let
3.23 M+ ={a:<{x,a> =0 for all x ¢ M}



16 RICHARD ARENS

while if M c A then
3.24 M+ ={x:{x,a> =0 for all @ € M} .

In this sense (cf. [4])
3.3 T*=(=T7)".

In 3.3 we have in mind the natural pairing of Y@ X and B 4,
of course.

Again, considering X, A as a typical pair, and M a linear subspace
of X, we define ML+ as the closure of M. This requires no topology
in X, A, or @, and resembles the Stone topology [1, p. 466] in this
respect—and in fact admits a natural, joint generalization.

M is closed if M = ML+, and dense if M++ = X,

PROPOSITION.
3.831 The null-space of T* = (range of T)*
3.32 T* is single-valued only if and if the domain of T is dense
3.33 T* is closed
8.3¢ T** is the smallest closed linear relation containing T.

Here 3.31 is easily established on the definitions, and 8.32 follows
from it by considering the null space of T**. 3.33 is obvious, because
any M* is closed, while 3.84 follows from 3.33.

Turning to the adjoint of a sum, let S and T be two linear subspaces
of X Y. It is quite elementary that

3.4 S*+ T*c(S+ T)*.

The following gives an unsymmetric condition which insures the
equality.

3.41 THEOREM. If the domain of S* = B, and the domain of S
includes that of T, then

(S+ T)=8*+ T*.

Proof. Let (b,a) e (S+ T)*. Then there is an element a, such
that (b, @,) € S*. Let us show that (b, a — a,) € T*. To this end, suppose
(x,t)e T. Then (x,s) € S for s =S(x), and (z,s +t) e S+ T. Now

&,a—ay — by =<, a) —{x,a,y — ¢, b

=&, a)—s5,b0 -, b>={,a)—<s+tbp=0.
Thus (b, a — a,) € T*, which, with (b, a,) € S* gives (b,a) € S* + T* as.
was to be shown.

Although our T is not a function, we may adapt a symbolism usually
used in a functional context, and write
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X—,;Y,or Y, X,

to convey that T is a linear subspace of X Y.
If we introduce S

Y

s Z
where Z, C is another (@, —) dual pair, then
S srZ , and C

(ST)* A .

Since A ,. B C we also have C ms A and there arises the
question of the relation of (ST)* and T*S*. In fact, it is quite elementary
that (ST)* o T*S*, but we wish to examine also the reverse inclusion,
which is initiated by the following lemma. Here f, (for example) is the
linear functional on X defined by f.(x) = <%, a), etc.

3.5 LEMMA. Let ceC, acA. Consider these linear functionals
defined in Y

3.51 f.oS , fooT.

Then (c, a) € (SoT)* if and only if these functionals are single-valued
and agree on the intersection of their domains; and (¢, a) € T*oS* if
and only 1f they have a common extension to some f,, b € B.

Proof. The second assertion is the easier to show. If (¢, @) T*oS*
then (c,b) € S*, (b,a) e T* for some be B. Let ye D(S) N D(T™)
(‘D’ means ‘domain’). I say these functionals (3.51) agree with f, for
such y. Indeed, if (y,2) € S and (¥, ) € T*then f,(2) = <{z,¢> =<y, b> =
&, ay = fo(@).

Conversely, if b having this property exists, then (¢, b) € S* and
(b,a) e T* or (c,a) € T*oS*,

Now let (¢c,a) € (SeT)*, and let y € D(S) N D(T"). Let (y,2) e S,
(x,y) € T. Then (z,2) € SoT and <z, a) = {z,¢), and these are generic
elements of (f,oT)(y), (f.oS*)(y) respectively. Thus 3.51 are single-
valued, and agree on D(S) N D(T™*). The converse is obvious.

This establishes 3.5.

From this, a useful conclusion may be drawn.

3.52 PROPOSITION. Suppose either that the domain of S* is C, or
that the range of T* is A. Then
(SeT)* = T*oS* .
Proof. Let (c,a) € (SoT)*. Consider the case in which the domain

of S*isc. Then (c,b) € S* for some b. Let (y,2) € S. Then (f,oS)(y) =
{z,¢> =<y, b, i.e., f, is an extension of f,0S. Hence it is also an ex-
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tension of f,oT~!' (the latter confined, if need be, to the domain of
S + T-') We apply 3.5, and obtain (c, a) € T*oS*.
If the range of T* is A, the proof is similar. But it may be reduced
to the case treated, by using 3.22, and the general fact (Uo V)= V1o U™
We may now drop the ‘o’ again, which was reintroduced to make
3.5 easier to present.

3.6 PROPOSITION. Let U be a linear subspace of X@ Y, and V,
of Y@ Z. If either the domain of U** is X, or the range of V** is
Z, then (VU)** c V**U**,

Proof. In any case U*V* c (VU)* and (VU)** c (U*V*)*. We
think of U* as S and V* as T and apply 3.52, mutatis mutandis.

We recall (3.34) that T is closed precisely when T D T**. The
merit of our ‘‘many-valued’’ approach is that this criterion is available
whether T* is single-valued or not.

3.7 THEOREM. Let S and T be linear relations as above. Suppose
they are closed, and that either the domain of T is X or the range of
S is Z. Then ST is closed.

Proof. By 3.6, we obtian (ST)** c S**T** = ST provided the domain
of T is X or the range of S is Z, which suffices.

The relevance of the existence of resolvent values, to the question
of closedness of polynomials in a (closed) operator, was noticed by
Taylor [3] (see also [2, p. 56]).

3.8 THEOREM. Let T be a closed linear subspace of X P X, for
which there is at least one N € @ such that T — N has range X. Then
p(T), for any polynomial p over @, is closed.

Proof. By the algebraic Theorem 2.3 we have
[» — pMUT) = (T — Ma(T)

where ¢ is a polynomial of degree less than that of p. By 3.7 and an
obvious inductive approach, we see that [p — p(\)(T) is closed. Now
[0 — pVI(T) = p(T) — p(\) by 2.85, so the latter is closed. Note that
p(T) = U+ V where U= p(T) — p(»), V= p(\).

Now (U4 V)* D> U*+ V* and so (U+ V)** c (U* + V*)*. Let
V* be the S of 8.41. Then its domain is the whole space, while S* = V
and its domain is also the whole space. Thus (U + V)** c U** + V** =
U+ V, so that p(T) is closed. Of course, we also know that

o(T) = p(\) + (T — Mp(T)
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which does not emerge from the proof given in [2].

4. Self-duality. When X, A is a (@, —) dual pair and 4 = X, we
speak of a self-dual pair. This situation presents two definitions of M+,
that given by 3.23, and another, which we might call 1 M, given by 3.24.
These coincide if and only if

4.1 {x,y> =0 if and only if <{y,z> =0

which, in turn, is equivalent to
4.11 There exists a p € @ such that pp =1 and

<y, 2y = plx, ¥y for all x,y e X .

(We leave the proof of this equivalence to the reader. One should note
that 4.1 for X is transmitted, via 4.11, to X@P X, so that when
TcX®X, T+ =T when 4.1 holds.)

The situation M+ # M would not be awkward if one had *(M*) =
(tM)*, but for all we know this condition might be equivalent to 4.1.
In any case, it does not hold in general (see 5.41).

We therefore assume 4.1 in this section.

Let T be a linear subspace of XP X. Then W= T F T+ (see 2.6)
is of interest, because for closed relations in Hilbert space, W = X P X.

In general, the following relations hold:

W=XpX

N2 N2
4.2 null-space of W =X W is dense
J N2 J

null-space of W is dense T+ n 7(0,0).
We proceed to generalize a proposition of von Neumann’s [5].

4.3 THEOREM. Let T be closed. Let W= TF T+ and suppose
that the null-space of W is all of X. Then the null-space of 1 + T*T
is (0), the range is X, and (T*T)* = T*T (i.e., T*T is self-adjoint.)

Proof. Let U (in 261) =T, and V =T+ Then —V*'=T*
Therefore the range of 1 + T*T is the null-space of W, that is, X.
Moreover, the null-space of (1 + T*T)* is (by 3.31) (range of 1 + T*T)*,
which is (0).

We know that T*S* < (ST)* in general, so if we set S= T%,
S*=T**=T, we get T*Tc(T*T)*, or 1+ T*Tc A+ T*T)*.
Here we have used 3.41.

Considering 2.02, and what we know about the null-spaces and ranges,
we conclude that 1 + T*T =Q + T*T)*, T*T = (T*T)*.
We have already defined T to be self-adjoint if T'= T*. We call
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T unitary if T* = T-'. We say nothing about single-valuedness. In
the Hilbert-space-situation, there are no unitary linear relations except
those single-valued relations which are usually called unitary, as the
following shows.

4.4 PROPOSITION. T'c T* if and only if {x, 2> = {y, y) for all
@,)eT. If T*=T"and TF T+ =XP X then the domain and
range of T both equal X.

Proof. The statement about <z, ) and <y, y> is obviously true.

Now assume TF T+ =X@P X and T*=T"'. Let ye X. Then
©,y)=(,t)+ (—x,y —t) where (x,t)e T and (—=z,y—t)e Tt =
(=T*)*=—T, or (x,y—t)e T. Then (2x,y) € T, or the given ¥ is
in the range of 7. Now the things assumed about 7' are inherited by
T-* so that the range of T is also X.

Returning briefly to the Hilbert-space-situation, if 7* = T-'then T
is closed and so T F T+ does equal X @ X, whence T %s unitary in the
usual sense.

To generalize the formal aspects of the Cayley transform [4] we
assume now that @ contains an element i such that i* = —1 and 1 = —i.

Cayley’s map sends X X onto X P X thus

C,y9) =(@x—1y,v+ 1) .

Its third iterate is scalar, and it preserves orthogonality, etc. If
Tc X@® X then

C(T) = {(s — it, s + it) : (s, ¢) € T}

is the Cayley transform of T.
We list several elementary properties.

4.51 Sc Te= C(S) c C(T)
4.52 C(—T)= C(T)*

4.53 C(T-) = —C(T)"
4.54 C(T+) = C(T)*

4.55 C(T*) = C(T)*.

4.6 THEOREM. T C T* if and only if C(T)* < C(T)*, T = T* if
and only vf C(T) is unitary.

If C*(T) were unitary, and we were in Hilbert space, then T would
have a spectral resolution, but C*(T') is unitary if and only if T* = —T.

The spectral mapping theorem holds for this Cayley transform:

4,7 o(C(T)) = {1 + i0)A — i0)™ 7 e (T)}
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with the following understanding: o e d(S) means 0 € g(S), 2/0 = ,
(1 4+ t0)(1 — 20)t = —1. Moreover, eigenvalues correspond to eigen-
values.

The set consisting of the spectrum of 7T, plus the symbol oo if
0 e o(T") we call, following Taylor, the augumented spectrum. The
augmented spectrum thus contains o whenever T is not single-valued.

5. Hilbert space. In Hilbert space X, (@ = complex numbers), self-
adjoint linear relations 7' may be analyzed in just the same way as the
single-valued ones are, by von Neumann, in [4]. The general theory is
perfect in a way that the usual theory is not: every unitary operator
is the Cayley transform of a unique self-adjoint linear relation, and
conversely (4.6).

However, rather than repeat the application of the Cayley transform
method, we prefer to analyze the general self-adjoint linear relation in
term of self-adjoint operators.

If T is a closed linear subspace of X P X, X being a Hilbert space
(as shall be assumed in all of this section) then

5.1 T=T.xT,

where T.., T, are orthogonal closed linear subspaces (so we write ‘&’
instead of ‘F’) and T.=TnN ({0} @ X). Thus 7. has only O in its
domain, while its range is T'(0) (see §2). T(0) is closed, since T. =
{0} @ T(©0). The domain of T, is the domain of 7, and T is single-
valued.

5.2 LEMMA. T(0) = (dom T*)t, dom T, is dense in T*(0)t, and
the range of T, lies in T(0)*.

Proof. 8.31 tells us that T*7'(0) = (dom T-%)*. We can replace T
here by T, and then replace T* by T since T is closed. Thus T(0) =
(dom T*)t. From T*(0) = (dom T)* we obtain (dom T)~! = T*(0)*, and
thus the second assertion. Finally, if (x,y) e T, and (0,%2) € T.. then
(x,y) L (0,2), because T, is the orthogonal complement of 7. relative
to T. Hence {y,2> =0.

5.3 THEOREM. Let T be a self-adjoint linear subspace of X @ X.
Let T=T.+ T, as above. Then
X=Y+7

and T. consists of all pairs (0,y),y € Y while T, is a closed linear
operator whose domain is dense in Z, and whose range is wn Z. T,
restricted to Z, coincides with a self-adjoint linear operator in Z.
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Proof. Let Y= T(0), Z= T(0)*. Then the domain of T, is dense
in T*(0)* = Y* = Z and the range lines in T'(0)* = Z, all by 5.2.

Suppose that (2, w) € S* where S is T, restricted to Z. Then
(o, wy =<v,z) for all (x,v)e T,. Each (x,u)e T is of the form
(z,y + v) where y € T(0) and (x,v) € T.. Now (y,2> =0, so {x, w) =
{y +v,2> for all (x,y + v) e T. It follows that (2, w) e T* = T. But
since 2, w € Z we have (2, w) € T,. This proves 5.3.

We return here to the question raised in second paragraph of § 4,
because a counterexample in a Hilbert space context is more desireable
than any other. Let X = L, [0, 2], in which the inner product will be
denoted by <,>, and orthogonality, by 1. Select a bounded operator
T, domain X, range dense, with single-valued inverse, and define a self-
dual pairing by means of the formula

5.4 Lf, 9] =<Tf, 9> =<f, T*g> .

The associated orthogonality will be denoted by ‘o’ to prevent confusion
with ‘|’ already present.

5.41 PROPOSITION. It is possible to select T and M (a linear sub-
space of X) such that

5.42 °(M°) = M but (°M)° + M .

Before deciding on a specific T we shall establish

5.483 LEMMA. °(M°) ts the closure of M in the norm ||z || = || Tx||
[4, 298], and (°M)° is the closure of M in || «+ ||

Proof. M° ={a:[M,a] =0} = X(TM), and °M = *(T*M). Con-
sequently °(M°) = {[T*Y(TM)], and so g e °(M°) precisely when
g L T*Y(TM) or Tg 1 +(TM), i.e.,

5.44 Tg e (TM)*L =TM.

But this characterizes the closure of M in || -- ||z, and this observation
suffices to establish 5.43.
Now we select T'= J where

I = | e .

This J meets our requirement for 7. We have

TNy = | e,

whence J* = F — J where E is the projection on the constant functions
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in X.
Let N be the linear subspace of those functions that vanish on [1, 2].
Let

h(t)={1 0=<t<1
0 0=st=2.

Then he N and M= NN {h}* # N. Thus EM = (0). It is easy to
establish, in the order given, the following: JM < N, J*N c N, JM = N,
J*M = N.

Then one observes that Jf € N implies f € M while J*f € N implies
f e N, (and each converse holds, because JM < N,J*N < N.) Using
5.44 as a criterion for Jg € °(M°) we obtain °(M°) = M, (°M)° = N.
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