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1. Introduction* Let Xk, k = 0,1, 2, be a Markov process defined
on a measurable space (Ω, Σ) with stationary transition probabilities
Pk(t, E). A stationary probability measure (SPM) R for the Xk process
satisfies

(1.1) [p(tf E)B(dt) = R(E), teΩ,EeΣ, P(t, E) = Pι(ί, E) .

We pose the following problem: determine some useful conditions that
will ensure the uniqueness of an SPM. Section 2 investigates this problem
from several angles in a general setting. Section 3 applies the results
to learning processes (defined in § 3) and finally we conclude with an
example where P(t, E) has a continuous density.

2. Theorems yielding uniqueness. Define \\n Σί=i P\t, E) = Qn(t, E).
In general, in the following, if Pfc( ) is a function of some variables
depending upon the positive integers k, then Qn( ) = l/^Σϊ=i P*(') A
simple sufficient condition shall be employed to conclude that an SPM,
if it exists, is unique. Let Σo ξΞ= Σ be a determining class of sets for
Σ, i.e., Σ is the minimal σ-field generated by the class Σo. Suppose
lim^oo Q*(ί, E) = P0(t, E) exists for each teΩ,EeΣ0. Let £(•) be a
SPM. Then

(2.1) R(E) = (Q"(ί, E)R(dt) for all w = 1, 2, . . .

This implies

(2.2) R(E) - lim [Qn(t, E)R(dt) - Jpo(ί, E)R(dt) .

If P0(ί, j&) = P0(E) is independent of t for each -EG 2Ό, i2(£7) = P0(E) on
2Ό. If S( ) is another SPM, the same reasoning shows R(E) = S(i?)
on 2Ό and so R and S are identical on Σ. Consequently all theorems in
this section will have as object to show

(2.3) P0(ί, E) = JP0(JB7) independent of t ,

for all EeΣ0, where Σ0Q Σ and is a determining class of sets.
Although the primary concern in this paper is with uniqueness
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problems without regard to the question of existence, there are two
important cases in which it would be worthwhile to mention that ex-
istence is assured. Suppose lim^oo Qn(t, E) = P0(t, E) exists for each
teΩfEeΣ. Then it is true that P0(t, •) is an SPM for each t. The
other situation concerns the case when Ω is a compact Hausdorff space
and Σ consists of the Borel sets of Ω. Suppose the linear transformation

r

Tf( ) = \P( 9dy)f(y) carries the space of real-valued continuous functions

on Ω into itself. Then T*, the adjoint transformation, maps the space

of regular countably additive finite signed measures into itself by the
r

relation: T*μ = \P(t, )μ(dt). Since 1 is a proper value of T and ( T\ =
J

1, 1 is a proper value of T*. Thus there is a finite signed measure μ

with μ( ) = \P(t, -)μ(dt). μ must, in fact, be a measure. For if μ

has negative values on Σ, a Hahn decomposition yields a Borel set H

with μ(Ω) < μ(H). But then μ(H) = ίp(ί, H)μ(dt) ^ μ(Ω) yields a con-

tradiction. Thus μ(')lμ(Ω) is an SPM. This example will be applicable

in § 3 when the learning process is discussed.
In the first case above when lim^oo Qn(t, E) — P0(t, E) exists for

te Ω, EeΣ, there will be a decomposition of Ω into ergodic sets with
the usual properties as discussed in [8]. Then (2.3) says that there is
only one ergodic class or that the process is metrically transitive. The
first theorem shows how this characterization may be employed.

THEOREM 1. Let l i m ^ Qn(t, E) = P0(t, E) for teΩ, Ee Σ, and let

Σ be a strictly separable σ-field (i.e. generated by a countable family
of sets). If there exists a point toe Ω such that, for each teΩ, there
is an integer n(t) and a number ε(t) > 0 such that Pn{t)(t, {t0}) ^ ε(t)
then P0(t, E) = PQ(E)f for EeΣ.

Proof. According to Theorem 2 in [8], since P0(ί, E) is appropriately
defined and Σ is strictly separable, there is a decomposition Ω — F +
ΣvA* into disjoint sets where the Aa are ergodic and F is a null set.
If there were two distinct nonempty ergodic sets Ax and A2, the hypo-
thesis implies that t0 e Ax and tQ e A2 because each AΛ is closed. However,
Ax Π A2 = φ and thus the decomposition reduces to Ω = F + A. Then
P0(ί, E) = P0(E) independent of t for t e A. For teF we have

P0(ί, E) = jPofo, E)P0(t, dy) = \j>0(y, E)P0(t, dy) = P0(E) .

Theorem 1 is a generalization of a theorem stated in [7] where n(t)
and e(t) are chosen independently of t. However, under such uniformity
restrictions, one obtains l i m ^ Pn(t, E) = P0(E) uniformly in t.

In case each point does not have positive probability of leading to
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a distinguished point t0, it may be that each point does behave well
enough with regard to some set containing t0 to ensure independence
of t. The following theorems will assume that Ω is a metric space and
all mention of continuity on Ω refers to the topology of this metric.
It should be noted that each theorem postulates the existence of a point
tQ having a certain relationship with regard to all te Ω, as is the case
in Theorem 1. Thus, although the methods differ from one theorem to
another, the intuitive content of the hypotheses remains the same: to
tie up the behavior of each t intimately enough with some distinguished
point ί0. Henceforth Σ refers to the σ-field generated by the open sets
under the metric topology. For the remainder of this section it will be
assumed without further mention that lim^*, Qn{t, E) = P0(ί, E) exists
for all teΩ, EeΣ0, where Σo determines Σ. Our object will be to show
that (2.3) holds under various conditions, and so there is then at most
one SPM for the process.

In the following, it will be helpful to consider the usual space Ω
of sequences ξ: (ω0, ωly . •), ω{ e Ω, with the usual infinite product proba-
bility P( ) and conditional probability P( | •) defined on Ω (see [4], p.
190). Statements such as (2.4) to follow should be referred to this
background.

DEFINITION Let S2(t) be the open ε-sphere about t as center. A
point ί0 is called attractive if, for every ε > 0, the probability that the
process enters Ss(t0) infinitely often, starting from any initial position,
is 1. In symbols

(2.4) P ( X n e S&o) i . o . \X0 = t) = l,e > 0 , t e Ω :

Another way of saying this is that the conditional probability of the
process entering any open set containing tQ infinitely often is 1.

THEOREM 2. A condition sufficient to ensure that P0(ί, E) — P0(E)
independent of t for a fixed E e Σo is that there should exist an at-
tractive point t0 with Po( , E) continuous at t0. If there exists a unique
SPM for the process and Ω is separable (i.e., the metric topology has
a countable base) then the condition is necessary provided Σo is an open
base for the topology of Ω.

Thus, if there is, for each EeΣQ, an attractive point to(E) satisfying
the above condition, P0(t, E) — P0(E) for all EeΣOy and there is at most
one SPM.

Proof. First the necessity is proved. Let Ro be the unique SPM.
P0(t, E) = R0(E) by a result of Doob (TAMS vol. 63, (1948) p. 400,
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theorem 1 (d)) and from our assumption P0(t, E) — P0(E). We show
that there is an attractive point, (since P0(E) is constant, continuity
is trivial). There must be a point tQ with R0(Ss(t0)) > 0 for all ε > 0.
For, if not, then for each t e Ω, there is εt > 0 with R0(Sεt(t)) = 0.
\JteaSEt{t) = Ω and is an open cover. By Lindelof's theorem there is a
countable subcover \JtieoSZtif^ and so

0 = Σ RoiSφ)) ^ Ro( U &,(«<)) = RQ(Ω) = 1

a contradiction, so that t0 must exist as asserted. Then

(2.5) lim sup Q (ί, S8(ί0)) ^ lim Q*(ΐ, # ε ) - Λ(#β) ^ Λ(Sβ,(ί0)) ^ δ(e) > 0

for ί e f i , e > 0, where S8,(ί0) c £7ε c Sε(£0) and £7ε e 2Ό. This implies that
for each t there are infinitely many n (where n depends upon t and ε)
with Pn{t, S8(ί0)) > δ(ε)/2 > 0 for each ε > 0. Since P(Xn e Ss(t0) for
some n\X0 = t)^ P(Xne Ss(t0) |X o = t) = Pn(t, Ss(t0)) for each n, one

obtains inft P(Xn e Ss(t0) for some n \ Xo = t) > δ(ε)/2 > 0 and by a theorem
of Doeblin (See [2]), P(Xn e S8(ί0) ΐ.o.) = 1. Since this result holds with
an arbitrary distribution on Xo, choose P(X0 = t) — 1 and so, under this
assumption, P(Xn e Sε(ί0) ί.o. | -X"o = ί) = 1. However, this conditional
probability only depends upon the transition probabilities, so the state-
ment is true for arbitrary distributions of XQ, each teΩ and all ε > 0.
Thus, t0 is attractive.

To prove the sufficiency, define Pk(t, E, A) = probability of attaining
E on the kth step after having passed through A sometime on or before
the kth step, starting from t. Set Pΐ(t, E, A) = Pk(t, E) - Pk(t, E, A) =•
probability of attaining E on the feth step without ever having visited
A on or before the &th step, starting from t. In addition, (if EG is
the complement of a set E)

(2.6) P(X2 eB,X1$A\X0 = t) = \ P(y, B)P{ty dy) .

Let Pj(ί, B) be the integral (2.6). Define Pϊ(t, B) by recursion by

(2.7) P i ( ί , B ) = f P ( y f B ) P k

A - 1 ( t y d y ) J k > 2

Set Pj(ί, 5 ) = P(ί, B). It is clear that P(X λ e B, Xn $ A, all w < k \ Xo =
ί) = p*(ί, β ) for k > 1 and that, fixing EeΣ0

(2.8) Pfc(ί, £;, A) = ί P*- 1 ^, JS7)P(ί, dy) + ί Pfc-2(7/, ΐ7)Pj(ί, dy)
JA JA

+ '" + \ Λ

p ( V > E ) P k

A ~ \ t , dy) + P ϊ ( t , A Π E
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= Σ t P'-'iv, E)Pχ{t, dy) + P\{t, A H E ) .

Let k0 be fixed, and let k > k0, then

<2.9) Pfc(ί, E) = Σ t P^ΛV, E)Pϊ(t, dy) + P*(t, A n E)

+ Pί(ί, #, A) rg Σ ( P*~%, ί7)Pi(ί, dy)
ΐ = l J ^

+ δ + P*(ί, A n ^ ) + Pί(t, E, A) ,

•where

•(2.10) SsΞ Σ Pί( ί ,A).

Using the truncation at k0, we may sum terms, and have, for n > kQ

(2.11) Σ P*(ί, ^) ^ Σ ( ΓΣ P'(l/, E)]pϊ(t, dy)
A l Λ l J ^ L i l J

+ (n - fco)δ + 1 +

Dividing by n and taking the limit yields

fco f

(2.12) P0(ί, £/) ^ Σ Λ(», ^ ) Ώ ( ί , dy) + δ + limsupQΓ(t, ^, A) .
k = l JA n

Observe that ΣΓ=i Pί(ί> A) is the probability of entering A at least once,
starting from t. Since ΣΓ=i -Pί(ί, A) ^ P(Xn e A i.o. \ Xo = ί), if we place
A — Sε(ί0) for any ε > 0 for tQ attractive satisfying the continuity hy-
pothesis with regard to E, we have

<2.13) implies limsupnQΓ(ί, E, S2{tQ)) = 0 and if ft0~>oo, (2.10) implies
-δ -> 0. This yields

P0(ί, £7) ^ Σ L Λ(l/, E)P£t{tQ)(t, dy) .

A similar argument gives the opposite inequality in (2.14) (for arbitrary
A), and proves

<2.15) P0(ί, E) = ±\ P0(y, E)P£eUΰ)(t, dy) .

P0(*,E) is continuous at ί0, so for ε small,

E) - h) £ P*f(lo)(t,
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SΞ (P0(t0, E) + h)Σ PUβ
k = l

Let ε -» 0; continuity and (2.13) yield (2.3) and the proof is complete.
In case Ω is compact an interesting sufficient condition for uniqueness

may be phrased. Call t0 an accumulation point of the process if

(2.16) P(Xn e Sξ(Q, for some n | Xo = t) = δ(ε, t) > 0

for every ε >'0. Notice that an attractive point is always an accumu-
lation point.

THEOREM 3. At most one SPM exists under the following conditions^.
(2.17) Ω is compact.
(2.18) Po( , E) is continuous on Ω for each EeΣ0.
(2.19) The process has an accumulation point ί0.

Proof. Let EeΣ0 be fixed. P0( ,E) is continuous on Ω compact,,
so there are two points tM, tm such that P0(tM9 E) is a maximum and
P0(tm, E) is a minimum. Suppose A is a set with Pk(tM, A) > 0 for some
k. Then for some y' e A, P0(y', E) = PQ(tM, E). For, if not, PQ(y, E) <
P0(tM, E) for all ye A and

(2.20) P0(tM, E) - ί P0(y, E)P\tMi dy) + \ P0(y, E)P\tMy dy)

< P0(tM, E)P*(tM, A) + PQ(tM, E)P*(tM, Ac) = P0(tM, E) .

(2.19) implies there is a point tQ with P(Xn e Ss(t0), for some n \ Xo =
I'M) — δ(e, tM) > 0 for each ε > 0. By the preceding, this means that
the spheres SH(t0), st -> 0, give rise to a sequence of points {y%) with
P0(yif E) = P0(tM, E). But lim^coi/i = ί0 and by continuity P0(ί0, JE) —
Poί^, E). A similar discussion involving tm shows that P0(ί0, ̂ ) = Po(tm, E)
and therefore P0( ,£ r ) is independent of ί.

THEOREM 4. A£ mosί owe SPM exists under the following conditions:
(2.21) Ω is complete.
(2.22) 7s A is the set of attractive points of the process, then A has
a nonvoid interior.
(2.23) The transition probabilities Pk( ,E) are continuous on Ω for
EeΣQ.

Proof. The proof is a category argument. A residual set is a set
whose complement is a set of category one, i.e., a set which is the
union of a countable class of nowhere dense sets. It is known (see [10]
p. 70, problem p) that on a complete metric space any function which
is the pointwise limit of continuous functions is itself continuous on a
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residual set. Hence, by (2.21) and (2.23), l i m ^ Qn( , E) = Po( , E) is
at least continuous on a residual set R. Since Rc is of the first category,
it has a vacuous interior. Therefore, there exists a point tQe A d R bγ
(2.22). Theorem 2 concludes the proof.

REMARK. Theorem 4 is a special case of the simple principle: If
more objects have characteristic B than characteristic A, there is some
object with characteristics B and Ac. This principle may be applied in
more general ways in conjunction with Theorem 2.

3. Application to learning processes* Let there be given 2iV con-
tinuous functions from [0,1] into itself: fl9 * 9fN;p19 , pN. The
process is defined by a random walk on the unit interval where a point
initially at t moves to/^ί) with probability Pi(t). One requires Σ£=iP<(*) —
1 for te [0, 1]. The transition probability is defined by

( 3 . 1 ) P ( t , E ) = Σ vAfi), E> a B o I > e l s e t . O g t ^ l .
ι3/ί(ί)€ί?

N shall be assumed finite throughout the discussion. Such Markov pro-
cesses with a continuum of possible states, but only a countable number
of possible states given a starting position, arise often and have some-
times been designated as learning processes because of their occurrence
in psychological learning model studies. For some discussions of these
processes see, for example, [1] and [9]. Notice that the operator Γ/( ) =
ΣiUPt( ) /(/»(•)) takes the space of continuous functions / on [0,1]
into itself. The remarks preceding Theorem 1 thus guarantee the ex-
istence of an SPM for the learning process.

THEOREM 5. A unique SPM exists for a learning process satisfy-
ing the following conditions:

(3.2) Σ Pi(*i) l/ί(*i) - /<(**) I ^ OL \tx - t21 for s o m e a < 1, for all tl9 ίa

(3.3) I pXQ - Pi(t2) I g β I tλ - t21 for some β > 0 for all i, tl9 ί2.

(3.4) There is an attractive point for the process.
Under these conditions lim^oo Qn(t, E) converges uniformly in t to

a limit PV(E) for each EeΣ.

Proof. The theorem is proved by means of two general lemmas.
We use the expression "learning-type process" to refer to a learning
process as described above except that the state space may be an arbi-
trary bounded metric space Ω rather than [0,1].
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LEMMA 1. Let Ω be an arbitrary bounded metric space on which
a learning type process is defined where the ft are bounded uniformly
continuous functions on Ω into itself. Let (3.2) and (3.3) be satisfied
where absolute value is to be interpreted as the metric distance when
such an interpretation is appropriate.

Then limbecQn(t, E) exists for EeΣ, teΩ unifomly (in t) to a
limit P0{t, E).

Proof of Lemma 1. By a corollary to the Stone-Weierstrass theorem,
([5], p. 276) Ω can be densely embedded in a compact Hausdorff space
Ωλ such that the p{ have unique continuous extensions to continuous
functions pf on Ωλ. Ωx is metrizable because it contains a metric space
as a dense subset, and since Ωλ is complete the uniformly continuous
functions fi:Ω->Ω1 can be extended by continuity to unique uniformly
continuous functions ff:Ω1~^Ω1. (3.2) and (3.3) continue to hold on
Ωλ. Σu the class of Borel sets of Ωl9 includes Σ as a subclass. Proving
the lemma for the process on Ωx defined by pf and ft clearly imply its
truth for the original process. It is therefore no loss of generality to
assume at the outset that Ω is a compact metric space, which we shall
do.

Consider the transformation, T, given by:

(3.5) Tg = Σ Pi(t)g(fi(t))
i = l

where T is defined on the space S of continuous real or complex valued
functions on Ω satisfying

sup ' 9 ^ - **•> ! = m(g)
tλ — t

where m(g) is a finite constant. Set max ί e i21 g(t) | = M{g). Then S be-
comes a Banach space under the norm:

(3.6) \\g\\=M(g)

We also have:

= l
(3.7) I (ΓffXί.) - (Tg)(t2) I =

- Σ PiitMMt.)) I ̂  IΣ

+1 Σ fo«(«i) - p
ί l

Σ
ί=l

^ m (g) Σ P*(*i) l/i(*i) - Λ(*i) I + NβM(g) | tj - ί,
ι = l
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si am(g) 11, - U_ | + NβM(g) | ί, - ί,
1 — a

ί. -

and

(3.8)

(3.7) and (3.8) yield:

M{Tg) g M{g)

(3.9) || Tg || = M(Tg) + m(Tg) ύ M(g) + 1 Nβ
1-a

(3.9) assures the continuity of T. In fact || Tn\\ is uniformly bounded
since, assuming the inequality (3.7) for n — 1 iterations and proceeding
by induction:

(3.10) I (

« i

) - ( Γ flr)(ί,)

^ I Σ Pi(k)[g^{md) - ί7»-i(/i(ί2))] I

t=i V 1 — a)

+ NβM(g) (

+ (α + α

+ a -*®- + Nβ)M(g)
1 — α /

^ - t2) ^ ( l +

Thus || ΓΛ || ^ 2 + Λ//3/(l - α) for all n = 1, 2, . Doeblin and Fortet
in [3], p. 142 if. sketch a proof that (3.3) and an assumption slightly
less general than (3.2) imply that T is a quasi-compact (sometimes called
quasi-completely continuous) operator in S. (See [11], for example, for
definition). [7] deals with the general case of the operator T. The
same arguments in [3] apply here with no change since || Tn\\ is uni-
formly bounded in n as shown above. The work in [3] essentially analy-
ses the spectrum of Γ. The general idea is the following: It is observed
that there are a finite number of proper values on \z\ = 1, each defin-
ing a projection E(Xi) onto a finite dimensional subspace (therefore E(Xi)
is a compact operator). Moreover, the proper values do not accumulate
to any point on | z \ = 1. Lemma 4 in [3] shows that T has no continuous
spectrum, for if it had, there would exist vectors fn with | |/ w || = 1 and
limbec || (XI— T)fn || — 0. But Lemma 4 asserts that there exists a
constant C independent of g so that (XI - T)f = g implies | | / | | / C ^ || g ||.
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The residual spectum cannot accumulate to the circle | z | = 1, since the
residual spectrum of T is in the set of proper values of T*f the adjoint
operator, and the argument used to show that the proper values of T
do not accumulate to | z \ — 1 goes through here with little variation
working with T*. The final conclusion is that there are a finite number
of spectral points on | z \ ~ 1, each defining a compact projection E{\{}
in S, and there is a number 0 < s < 1 such that, if z is in the spectrum
of T and \z\Φl, then | z | ^ s. This implies that T = B + Σ;=i-#<>;}
where | Bn | -» 0 geometrically in n. This shows that T is quasi-compact.
(A good discussion of some of these concepts may be found in [5], es-
pecially Chapter 7 and Chapter 8, §8, ff. Also see [11].)

Since T is quasi-compact, so is T*. Each countably additive regular
real or complex-valued signed measure μ is in S *. By Fubini's theorem
T*μ = \P(t, )μ{dt). It is a standard fact that if Γ* is quasi-compact,

then l/wΣfc=i(^*)fc converges in the uniform operator topology to a
projection on the manifold of fixed points under T*. By looking at the
kernels of the integrals this means that l/n^^P^t, •) = Qn(t, •) con-
verges uniformly to a limit P0(t, •) and so lim,^ Qn(t, E) — PQ(t, E) for
t e Ω, EeΣ, proving Lemma 1.

LEMMA 2. Let Ω be an arbitrary bounded metric space on which
a learning type process is defined (the functions p{ and f{ are con-
tinuous, but do not necessarily satisfy (3.2) and (3.3)). Suppose that
the conclusions of Lemma 1 above hold and that the process has an
attractive point tQ. Then there is a unique SPM.

Proof of Lemma 2. Existence of an SPM is assured by comments-
preceding Theorem 1. By virtue of Theorem 2, it is sufficient to show
that P0( ,E) is continuous at t0 for all open sets E in some base for
the metric topology in Ω. Let An be the finite set of points with
P(Xn e An I Xo = t0) = 1 and An is minimal. Set A = UΓ=i An. Let Σ0(t)
be the class of all open spheres Ss(t) about t such that [An boundary
of Ss(t)] — φ. A is a countable set so Σo (t) is a local base at t and
[Jteo^o(t) = Σo is a base for the metric topology. If Ss(t')eΣ0, then
P\U, Sζ(t')) is continuous at t0 for each k since a discontinuity could
only occur if Xk should take values on the boundary of Ss(t') which
cannot happen. We then have:

- Mm Qn(t0, Ss(t')) = lim lim

= lim lim Q (ί,
n—»°o ί—»ί

The interchange of order in taking limits is justified since the conclusion
of Lemma 1 asserts that lim%_oo Qn{t, E) = P0(t, E) uniformly in t. Since
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Po( , Ss(t')) is continuous at t0 for all spheres in Σo, Theorem 2 concludes
the proof of the lemma.

Theorem 5 follows as a special case of Lemmas 1 and 2.

COROLLARY 1. (Blackwell [1]) // a learning type process is defined
on a bounded metric space Ω such that:

(3.11) IUQ - UQ I ̂  α I ίx - ί21 , for a < 1 .

(3.12) I plQ - Vi{t2) I g β \ tγ - U \ , for β > 0 .

(3.13) pi(t)^ε>01

9 teΩ.

for all i, tu t2 in Ω, then there is at most one SPM.

Proof. (3.11) is a special case of (3.2) so Lemma 1 holds. (This,
incidentally, proves existence) It again is no loss of generality to assume
that Ω is compact and so complete. Let fln) denote composition of the
function ft with itself n times. The boundedness of Ω and (3.11) imply
that the diameter of fϊn){Ω), say, converges to zero, so by the com-
pleteness of Ω, there is a point t0 = limw_oo/i(w)(β). (3.11) and (3.13)
make it clear that tQ is indeed attractive by using the useful theorem
of Doeblin quoted in the proof of the necessity in Theorem 2.

COROLLARY 2. Let a process be defined on an arbitrary metric

space Ω and let the operator Tμ — \P(t, -)μ(dt) be defined on some

Banach space of measures into itself where Pit, E) is the transition

probabiliy of the process. Suppose that T defines a quasi-compact

transformation on this Banach space. In addition, let there exist an

attractive point ί0 and a countable set AczΩ ivith P(Xn e A | XQ = tQ) = 1

for each n. Then there is a unique SPM.

Proof. Clear from Lemmas 1 and 2.

EXAMPLE 1. fit) = at fit) = 1 - a + at

Pl(t) = t p2(t) = 1 - ί

where the random walk is on [0, 1], 0 < σ < 1, 0 < a < 1. It is not
difficult to check that 0 is an attractive point even though (3.13) is not
satisfied. For any interval [0, s] about 0, mΐt P{Xk£ [0, s] for some
k I Xo = t) > 0 and so Doeblin's theorem is applicable. Therefore there
is a unique SPM by theorem 5.

1 It suffices, clearly, to assume 3.13 only for some i in the proof given here dependent,
upon Theorem 5. We state the theorem, however, as it appears in [1].
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Example 2. f^t) = σt; f2(t) = 1 - a + at

Pl(t) = 1 - ί; ft(t) - ί .

This is the case of absorbing barriers at 0 and 1. There is no unique
SPM in this case. From our point of view this occurs because there
is no attractive point.

Examples 1 and 2 where discussed at length in [9].

EXAMPLE 3. Let {aiό) be a 4 x 4 Markov matrix and

write:

r = (αu - aΆ)t + α21

s = ( α n + α12 — a21 — a22)t + α21 + a22

U = (^13 — ^β )* + »23

v = (α l s + α14 — α23 — α24)ί + α23 + α24 .

Set

Λ(t) - ϋ P l ( t ) = s
s

(3.14) f2(t) = — p2(t) = v
v

whenever these functions are defined from [0,1] into itself. Whenever
they are defined ^(ί) ^ ε > 0 for ε chosen appropriately and all t, fx

and / a are linear fractional transformations, either monotone increasing
or decreasing with exactly one fixed point. These transformations have
the property that limw_oo f?{t) = toi exists where toi is the fixed point of
fif as can be easily shown. Therefore, there is an attractive point for
the process by the Doeblin Theorem. (3.3) is clearly satisfied. For
(3.2) to be satisfied, we consider

(3.15) j

( α u + a12 — α21 — a22)t + α.

+
(α13 + au — α23 — a2i)t + α23 + α24

whenever (3.15) is less than 1, Theorem 5 can be applied. The process
of (3.14) is a particular example arising from the study of entropy of
functions of finite state Markov chains as discussed in [1] when it is
important to be able to assert uniqueness. Theorem 5 can be applied
to the general category of processes of this nature considered in [1].
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The example which follows satisfies Doeblin's condition (D), [4], p.
192, and so much more can be said about it than we do. We simply
mention it to show the applicability of the preceding ideas to a well-
known case.

4Φ Example of transition probability with density• Let Pi(£, s) be
defined on R x R into R, R = (— oo, + °°) and let λ be Lebesgue meas-

ure. Suppose px{t, s) ^ 0 and continuous on R x R and \ p^t, s)X(ds) = 1

for each t where the integral converges uniformly in t. Set (— oo, x] = Ex

and P(t, Ex) = I pλ(t, s)X(ds). The uniform convergence of the integral

assures that P( , Ex) is continuous on R for each fixed xe R. Moreover, it

pn(t, s)X(ds) where pn(t, s) is defined inductively

S - o o r+oo

Pn-i(t, s)p1(sf u)X(ds). The integrals I pn(t, s)X(ds) = 1
- o o ^ J-oo

converge uniformly in t since:

S +N C ->,-N C+oo

pn(t, s)X(ds) = Pn-i(t, udpάu, s)X(du)X(ds)

= Γ Pn-tf, u)\\N p^u, s)X(ds)\x(du)

^ (1 - e) J4"ί>.-i(t. u)X{du) = 1 - ε .
P"(•,£",.) is therefore continuous for each n. Suppose that p^t, s) Sg
δ > 0 for all t and all s in an open interval S. Then:

P(ί, Sε(s')) = ( Vλt, 8)\{d8) > 8λ(S.(β')) > 0
J S g ( s ' )

for any fixed s' e S and all ε sufficiently small. Doeblin's theorem is
then applicable to show that sr is attractive and so S consists of attractive
points. Theorem 4 then asserts that there is at most one SPM.

To close with a specific example, let Ω — [0, oo) and set P(t, [0, x]) —

I _ e-<ί+i)s = P(£ + l)e-
{t+1)sχ(ds). The integral over Ω converges uni-

formly in t to°l and inft P(t, [0, x]) = 1 - e~x > 0 for x > 0. The above

discussion applies to show there is at most one SPM.
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