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Introduction* Throughout this paper we consider analytic mappings
f(z) of an arbitrary open Riemann surface R into an arbitrary Riemann
surface S. Heins [3] introduced the class of Lindelδfian maps when R
is hyperbolic, and defined them in terms of Green's functions; further
contributions have been made by Rao [4], [5]. In the case of planar
regions these maps are the classical functions of bounded characteristic.

Sario [6], [7], has utilized principal functions [1] on the range
surface to obtain generalizations of the main theorems for mappings
of R into S. In this paper a different first main theorem is obtained
in which the proximity function is a generalization of Nevanlinna's
proximity function by means of the substitution of a principal function
for the logarithmic function. It is shown that the resulting class of
functions of bounded characteristic are the Lindelofϊan maps, and that
an extremal decomposition characterization of these functions can be
obtained as in the classical case.

1* An auxiliary family of functions* Analytic mappings from
an arbitrary open surface R into an arbitrary surface S can be considered
in terms of families ^~ of LH functions, i.e., harmonic functions,
with isolated logarithmic singularities having integral coefficients. For
the purposes of this paper we slightly generalize the term, parametric
disk: Δ — (Q, μ) is a parametric disk if Q is a classical parametric disk,
and there is defined on it a metric μ that is a real scalar multiple of
the induced metric.

We let ζ be the local variable on S, and ήx σ e S and a parametric
disk at σ. If S is closed we define £(ζ, σ, a) for a e S\σ (set difference)
as the LH function on S which has singularities log | ζ — a | and
— log I ζ — σ I and is normalised by

lim (t(ζ, σ,a) + log\ζ-σ\) = 0

in terms of the fixed parametric disk. At a a parametric disk is
fixed such that

lim (ί(ζ, σ, a) - log | ζ - a |) - 0
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in terms of it. We define successively

ί(ζ, a, σ) = -ί(ζ, σ, a) , α e S\σ ,

ί(ζ, a, δ) = t(ζ, α, <7) + ί(ζ, σ, δ) , α, δ e S\σ .

These functions form the family
If S is open, more than one family can usually be formed. We

consider an exhaustion of S by regular regions Ω that contain σ and
a, and define on Ω the function ίfl(ζ, σ, a) which satisfies the above
conditions for t(ζ, σ, a) as well as one of the following:

(a) the normal derivative of tΩ(ζ, oy a) vanishes on the boundary
dΩ of Ω,

(b) a consistent partition of the boundaries of the regions Ω is
given, and tΩ(ζ, σ, a) has constant value and vanishing flux over each
part of dΩ ([1] pp. 87-90).
By the theory of normal operators ([1] pp. 152 ff.) i(ζ, σ, a) is defined
as the directed limit of to(ζ, σ, a) as S is exhausted by the regions
Ω. ί(ζ, a, σ) and t(ζ, α, S) are then defined as in the case of closed
surfaces S. Each condition in (a) and (b) determines a family j^T It
will be represented by J71 if (a) is satisfied and by ^T(P) if (b) is
satisfied for a partition P; if P is the identity partition I, we write

Since each function ί is a principal function ([1] p. 169), a family
will be called a principal family. We note that a change in the

fixed parametric disk at σ changes every function ί(ζ, σ, a) by the same
constant but leaves t(ζ, α, δ) unaltered. Further, in view of our
definition of parametric disk, for any given J7~ and constant k there
exists a family ^"' such that for all m,

{ζ|ί(ζ, σ, α) = m} = {ζ|ί'(ζ, σ, α) = m + A?}, ί e ^ f e

We consider functions belonging to any principal family. If
a, δ e S\σ, these functions have the following four obvious properties.

ί(ζ, a, a) - 0 ,

t(ζ, a, δ) + t(ζ, δ,a) = 0,
( 1 ) lim (t(ζ, δ, α) + log I ζ - δ \ = t(δ, σ, a) „

t(σ, a, δ) = 0 .

LEMMA 1.1. t(α, 7, δ) + 4(7, δ, α) + ί(δ, α, 7) = 0 /̂̂ ew a, 7, δ are

distinct points in S.

Proof. If S is open we let Ω S S be a regular region containing
α, 7, and δ, and consider functions tΩ defined on Ω. We remove small
closed disks in Ω that contain a, 7, δ and apply Green's formula to
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to(ζf a> y) and to(ζ, d, 7) over the remaining region. On letting the
disks shrink to points we obtain

-tΩ(a, δ, 7) + tΩ(δ, a, 7) + R(Ύ) - 0

where

R(y) = lim (ίfl(ζ, δ, 7) - UZ, a, 7) = to(y, δ, a))

and the lemma follows by letting Ω —* S.
If S is closed the same method is applied to S instead of to Ω.

COROLLARY 1.2. t(a, δ, σ) = t(δ, a, σ), a,8e S\σ.

Proof. This is obvious when a and δ are identical; if they are
distinct it follows from replacing 7 by σ in the lemma and applying (1).

COROLLARY 1.3. If a is distinct from σ and 7, then t(a, ζ, 7) is
of class LH on S\σ with singularities at a and σ.

Proof. If 7 = a this is implied by Corollary 1.2. Otherwise

t(a, ζ, 7) + ί(ζ, σ, a) = t(a, σ, 7) ,

which is constant.

LEMMA 1.4. ψ: S\σ x S\σ —> [— 00, 00] | ψ(y, a) = t(δ, 7, a) is con-

tinuous for every fixed δ.

Proof. If δ — σ then ψ is identically zero; if not,

, a) = ί(δ, 7, C7) + t(δ, σ, a)

and each term is continuous by Corollary 1.2.
Sario [8] proves that if E C S\σ is compact and Q is an open set

containing E and σ, then t(τ, α, o) e ̂  is uniformly bounded for
aeE9ye S\Q. The same proof holds for t(τ, a, σ) e ^l(P). From the
harmonicity of t(τ, ̂ , 01) in 7 and in α, and from its uniform boundedness,
it follows by a lemma of Heins ([2] p. 445) that

LEMMA 1.5. If Sf = S x S\((σ, <τ) u {(σ, ζ)} U {(ζ, σ)} U {(ζ, ζ)}), then
φ: S' —> (— co, co) I 0(7, α) — t(τ, α, a) is continuous.

LEMMA 1.6. If S' = S x S\(σ, σ) ί^e^ ^ : S' -> [- co, 00] | ^(7, α) =

ί(7, a, σ) is continuous.

Proof. It suffices to consider the continuity at points (70, ocQ), 70 =
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a0 Φ σ, and (σ, a), a0 Φ σ. For the first we let Δ be a parametric
disk at a0 such that σg Δ, and J?7 be a closed connected neighborhood
of a0 that does not intersect dΔ. For every (7, α) e F x i*7 there exists.
27 G 0J such that t(7, a, σ) > t(rj, a9 σ), which is bounded by Sario's lemma
for all ηedΔ,aeF. No generality is lost by taking t{η, a, σ) > 0 for
all ηedΔ,aeF.

Let ψ be a homeomorphism of Δ onto a closed disk in the plane*
and g the Green's function on this disk. By its extremal property

t(ζ, a, σ) - g(ψ(ζ), ψ(a)) ^ 0

for ζ, ae F. Since for any n, there exists a neighborhood En of the
origin of the disk such that g(z, a)^n for z,ae En, we have ί(τ, #, σ) > n
for γ , α e t~\En) (Ί i77, and ̂  is continuous at (τ0, α0).

For the second case we let fl/f be the boundary of a parametric
disk at a0, and F and G be compact connected neighborhoods of σ and
a0 that do not intersect dΔ. For ζe F, aeG, there exists ^ e 0J such
that

which, by Sario's lemma, is bounded above, say by M. Hence

t(ζ,a,σ)<M+t(ζ,ao,σ),

and the lemma follows, since for any n, t{ζ, a0, σ) < n in some neigh-
borhood of σ.

We conclude this section by noting that the limits of t(ζ, 7, σ)r

t(ζ, σ, 7) and t(ζ, 7, 7) as Ύ-^σ are 00, — 00 and 0 respectively, and
that t(ζ, σ, a) is not defined.

2* Jensen^s formula* The main tool used in this paper is Jensen's1

formula generalized for Riemann surfaces. We let Ω be a regularly
imbedded relatively compact region on the surface R and let v(z) be
an LH function on Ω. The positive singularities of v(z) in Ω will be
designated by aiy i = 1, , m, and the negative singularities by
bjf j = 1, , w; their multiplicities will be given by μt and ŷ  respectively^

We obtain the formula from the following proposition:

LEMMA 2.1. // r is not a singularity of v(z), then

( 2) v(r) = - L \ v(z)d*p(z, r) + Σ Λfffo, r) - Σ f̂f(δy, r)

where p(z, r) and g{z, r) are the capacity and Green*s functions defined
on Ω with singularities at the point r, and dΩ is oriented counter-
clockwise about r.
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Proof. We first take the case when v(z) has no singularities on
Ω. Let Δ £Ξ Ω be a small closed disk that contains r . On applying
Green's formula to p(z, r) and v(z) over Ω\Δ, and letting z/ shrink to
r we obtain

vir) = —
2π

We next take the case when v(z) has a singularity v log |2 — a\,
a e dΩ, but has none in Ω. Let p(z, r) have the value k on 042; there exists
an ε > 0 such that the boundary components of 42ε = {z \ p(z, r) < k — ε},
have a natural one-to-one mapping on those of dΩ.

Let the components of dΩ be {7J, i = 1, , w, with α G 7i, and
the corresponding components of dΩz be {7ίε}. For i Φ 1, we apply
Green's formula to v(z) and p(^, r) over each component of Ω\ΩS and
obtain

I v(z)d*p(z, r) = e\ d*v(z) .

For i = 1, we let Ω be the double of Ω\ΩS. If q is the total flux
of p(z, r) along yl9 the function

= exp — (p(z, r) — k + ip*(z, r)
L q A

maps the first component of Ω conformally onto an annulus, such that
7i is mapped onto the unit circle Bx and Ίλz onto Bls — {w \ \ w | =
exp [ — (2ττ/g)ε]}. We may assume that the point a is mapped on w = 1.
Consequently do1 = 2π/qd*p(z, r).

Since Γ* log | eiθ - 11 = 0, it follows that
Jo

( v{z)d*p{z, r) = JL \ {v-h-\reiθ) - v log | re ί θ - 11) dθ .

By applying Green's formula to the last integrand and to log | reίθ \
over the annulus between the circles, we find

I v(z)d*p(z, r) = ε\ d*v(z) .
hi-yiε his

Summing over all the components of dΩ we obtain

( 3) -±-\ v{z)d*p{z, r) = -A- f v(z)d*p((z, r) = v(r) .

For the general case we note that

Σ
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is a harmonic function on Ω. The application of (3) to this function
jξyields (2). We immediately obtain

COROLLARY 2.2. (Generalized Jensen's formula). // / is an
analytic mapping of R into a Riemann surface S on which is defined
a function t(ζ, a, δ) belonging to a principal family, and if f(r), a
and δ are distinct, then,

•(4) t(Λf),α,»)=f( t(f(z),a,δ)d*p(z,r)

+ Σ Λ
i

where {a{} and {b3) are the inverse images in Ω of a and δ respectively,
and μi9 v5 are their multiplicities.

If f(r) is a singularity of ί(ζ, a, δ) the following proposition holds:

LEMMA 2.3. If f(r) = a, and if the Laurent expansion of f(z) in
the neighborhood of r is f(z) = 2 ^ cizι with respect to the parametric
disks at r and a fixed by p(z, r) and t(ζ, σ, a) respectively, then

{ 5) Km (Np(z, r) + t(f(z), σ, a)) = log - L
cN

If f(z) = δ, then, with the above expansion,

(6) lim (-Np(z, r) + t(f(z)9 σ, a)) - log

Proof. We shall use the same symbol z for an arbitrary point on
the surface and for its image under the mapping associated with the
parametric disk under consideration. t(f(z)) and p(z) will represent
t(f(z), σ, a) and p(z, r), and lif etc., constant coefficients. We set

this is single-valued in a neighborhood of r.
If f(r) — σ, the expansion in that neighborhood is

CN JV+i

Similarly, there is a neighborhood of r in which

r(z) = exp [p(z) + ip*(z)]

can be expanded as



MAPPINGS OF BOUNDED CHARACTERISTIC 901

r(z) = z + Σ ^

Hence

which yields the first conclusion. The second is proved in the same
way. This concludes the proof.

If we let λ equal N or — N according as f(r) is σ or a, then the
function

t(f{z)) + Xp(z) - Σ ' i"ίff(β4, z) + Σ ' vdg(ai9 z)
i 3

is harmonic on Ω, when the summations are over the inverse images
in Ω\r. On applying Jensen's formula (4) and substituting from (5)
or (6) we obtain the alternative expression

log si> r) — Σ ' Vj9(ai, r)

We shall need the following property of subharmonic functions:

LEMMA 2.4. Let u be an u.s.c. function on a region W.
(i) If u is subharmonic on W, then for every regular Ω whose

closure is in W, and every z e Ω,

u(z) ^ ~ \ u(w)d*pΩ(w, z) .
2π J9^2π

(ii) If for every ze W, there is a regular Ω such that

u(z) ^ — \ u(w)d*pΩ(w, z)
2π JθA

every level line dh of pΩ(w, z), then u is subharmonic on W.

Proof. To prove (i) we take an arbitrary Ω and zeΩ, and let
{vn} be a descending sequence of continuous functions on dΩ tending
to u. For any wedΩ, we have by (2)

i r

lim u(z) ^ lim — 1 vn(w)d*p(w, z)

for all vn. By applying the monotone convergence theorem and the
maximum principle we obtain the desired result.

For (ii) we let z0 be an arbitrary point in the region, and choose
â parametric disk about z0. In terms of the associated unit disk the
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hypothesis yields

u(z0) ^ —
2π Jo

for 0 < r ^ 1. The subharmonicity of w follows from the theory of
functions on the plane.

We immediately obtain

C O R O L L A R Y 2 . 5 . If u(z) is subharmonic on Ω2 and zeΩλ^ Ω2y

then

( 8 ) 1 u{w)d"p1{w, z) ^ I u(w)d*p2(w, z) ,
jdo1 Ja/?2

where Pi(w, z), i — 1, 2, is £fce capacity function on Ω{.

3* Argument principle* Using the same notation as before we
let Ω be a relatively compact regularly imbedded open set in the surface
R, and n(Ω, a), n(Ω, δ) the number of inverse images (with multiplicities)
in Ω of points a and δ in S that are not on the image of ΘΩ. We
have

(9) - M d*t(f(z), a, δ) = n(Ω, δ) - n(Ω, a)
2π ho

where ΘΩ is oriented counter-clockwise, and t belongs to any principal
family.

This statement follows from removing small disks at each of the
inverse images of a and δ, applying Green's formula to t(f(z), a, δ)
over the remainder of Ω, and taking the limit as the disks shrink to
points.

We choose reΩ. If p(z, r) is the capacity function on Ω, and k
is its value on ΘΩ, we let Ωh = {z e Ω \ p(z, r) < h) and θh be the
boundary of Ωh.

THEOREM 3.1. If a and δ are not in the image of θh, and if
a, δ and f(r) are distinct, then

2π dh h

where n(h, δ) and n(h, a) are the number of inverse images (with
multiplicities) of δ and a in Ωh, and t belongs to any principal family.

Proof. We let t(f(z)) and p(z) represent t(f(z), a, δ) and p(z, r),
{α{} and {d3} be the finite number of inverse images of a and δ in Ωh+
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There is a finite hf such that Ωh, does not contain any of these inverse
images. We remove small disks about the α s and djs and apply Green's
formula to t(f(z)) and p(z) over the remainder of Ωh\Ωh,. After evaluating
and letting the disks shrink to points we obtain

oh—oh

= h\ d*t(f{z)) - h'\ d*t(f(z)),

since p(z) is the capacity function on both Ωh and Ωh,. In this relation-
ship μt and v$ are the multiplicities of the corresponding inverse images.
The differentiation of this equation yields

-fr\ t(f(z))d*p(z) = A-\h\ d*t(f(z))]
dh jzti dh L JQΛ. J

= lίm -1 Γεί d*t(f(z)) -(h-e)\ d*t(f(z))] .

Since the last term vanishes for sufficiently small ε, we substitute
from (9) and obtain the required relationship.

We note that (10) is an invariant property of principal families.

4* Logarithmic capacities* A logarithmic capacity of a compact
set E properly contained in an arbitrary surface S can be defined in
relation to any principal family J7~ if a e S\E. We let μ be a regular
positive unit mass distribution on E. Since £(ζ, η, σ) is l.s.c. on E, we
•define the logarithmic potential of μ relative to j?~ as

PM = \ *<C, V, σ) dμ(O

on S\σ. The following proposition carries over from the plane:

LEMMA 4.1. The logarithmic potential Pμ.(rj) is harmonic on
S\(E U σ) and superharmonic on S\σ. In the neighborhood of
0, ViλV) — log 17] — o I is bounded.

Proof. We let

* (C, Vf σ) = m i n K *(C, ̂  ^)l ,

and

By Lemmas 1.5 and 1.6, ίn(ζ, 17, σ) is continuous in (ζ, η),ζeE,ηe S\σ,
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and as E is compact there is for any arbitrary point y0 e S\σ and ε > 0,.
a neighborhood Δ of y0 such that

I tn(ζ, y, σ) - tn(ζ, yo,σ)\<ε,ζeE,yeΔ,

It follows that pμn(V) is continuous and ί>μ(^) l.s.c. on S\σ.
Let Γ be a disk about yQ such that ΘΓ is a level line of t(ζ, y0, σ).

We orient dΓ clockwise about y0. Since ί(ζ, 27, σ) is bounded below for
all ζeE,yedΓ, and — t(ζ,yo,σ) is the capacity function on Γ, we
have by Corollary 1.2 and (2),

t.(C, 7, *) dMC) - ( *:(C, %, *) dμ(ζ)

where for each ζ, ί£(ζ, 17, σ) is the harmonic function in Ύ] on ,Γ with-
boundary values tn(ζ, 17, α). Further, by superharmonicity, t'n(ζ, %, o) S
t(ζ, V01 σ) for each ζ and for all n. We substitute in the above equation
and apply the monotonic convergence theorem as n —> 00. We obtain

±- \ d*t(y, y0, σ) \ t(ζ, 37, σ) dμ(ζ) g> \ ί(ζ, %,
2TΓ J9/1 JE JE

and pμ(57) is superharmonic by (7).
If % £ E U σ, Γ can be chosen such that Γ £ S\(£r U o ). Since ί(ζ, 57, <7>

is harmonic on Γ, the same method establishes the harmonicity of
pμ(yj) on S\(E U ί7) by (2) and the maximum principle.

To establish the final part of the lemma we need only note that
by Lemmas 1.5 and 1.6 there is a neighborhood Δ of σ such that

ί(ζ, y, σ) - t{η, ζ, σ) = log \η - σ\ + Λft, ζ), ζ e E, ye Δ\σ ,

where h(y, ζ) is bounded.
We deduce the following proposition:

COROLLARY 4.2. If μ is as above and f: R—> S is analytic, then,,
for a regular Ω cR,

(11) ( dμ(ζ) \ t(f(z), ζ, σ) d*p(z, r) - [ d*p(z, r) \ t(f(z), ζ, σ) dμ(ζ) .
JE jdΩ JdΩ JE

where t belongs to any principal family ^ and p ir the capacity-
function on Ω. The iterated integral is either finite or +00.

Proof. There exists a closed disk D £ S about σ such that
(a) DΓ\E is void,
(b) t(a, ζ, σ)< 0, a e D, ζ e E by 1.6,
(c) the intersection of D and the image of ΘΩ consists of a finite

number (possibly zero) of Jordan arcs βi9 i = 1, , w, each of which.
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passes through σ.
We divide dΩ into the inverse images yi9 i = 1, , n, of βi9 and

the remainder 7.
On 7 the function t(f(z), ζ, σ) is uniformly bounded below for ζe Eί

and we may apply Fubini's theorem to

ί dμ(ζ)\t(f(z),ζ,σ)d*p(z>r).

The integral is either finite or +co.
For each i, we exhaust β\σ by a sequence of compact sets i*V

By (c) the restriction of d*p(z, r) to f~\Fj) Π 7» induces a positive
mass function on F3 £ D\(J. Its logarithmic potential

is harmonic on S\Z) by 4.1. By (b) the functions pμij form a decreasing
sequence; by Harnack's principle its limit

is either - c o , or harmonic on S\D.
We may assume that p(z, r) is zero on dΩ; then exp {p(z, r) + ip*(z, r)}

(choosing any branch of p*) maps 7* onto an arc of the unit circle.
For any ζoe E we have

where c is some finite constant. Since this integral is bounded with
respect to a and β, ί)μi(ζ0) is finite, and pμi(ζ) is bounded on E7.

Consequently, by (b), we may apply Fubini's theorem to

ί dμ(ζ) \ t(f(z), ζ, σ) d*p{z, r)
JE JJi

for each i, and the integral is finite. Summing over 7 and yif we
obtain the required relation.

5* First main theorem* To develop a first main theorem for
analytic mappings f: R—+ S where R and S are arbitrary Riemann
surfaces, we fix a point σ e S and define a principal family S~\ we
then select points τe S and reR such that σ, r and f(r) are distinct.
A parametric disk is selected at r.

"Γ

Let t = max {t, 0}. For a regular region Ω ~ R such that r e £?,
the proximity function m(β, / ) , the counting function N(Ω, f) and the
characteristic function T(Ω, f) of / on Ω are defined as
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MΩ,f) = -£- \ t(f(z), σ, τ) d*p(z, r) ,

N(Ω, /) = £ 9(Si, r) , {βj = f-\σ) n Ω ,

where p and g are the capacity and Green's functions on Ω, and s{ is
repeated in accordance with its multiplicity.

The proximity m{Ω, a) and the counting functions N(Ω, a) at the
point a are defined as m(Ω, f) and N(Ω, f) when a = σ; otherwise we
define

m(Ω, a) = — I t{f{z), a, σ) d*p(z, r) ,

N(Ω, a) = Σ 0(ai9 r) , {a,} = f~\a) n Ω .

where α̂  is repeated in accordance with its multiplicity.
The first main theorem reads:

THEOREM 5.1. For every aeS\f(r),

m{Ω, a) + N{Ω, a) = T(Ω,f) + 0(1) ,

where 0(1) is a bounded function with respect to Ω.

Proof. When a = σ it is trivial; when a Φ σ, Jensen's formula
(4) is

ί(/(r), a,σ) = ^-\ t(f{z), a, σ) d*p(z, r) + Σ flrfo, r)

— -1_ I t(f(z), σ, a) d*p(z, r) — Σ ^(si> ^) >

Λvhich is

(12) m(β, α) + 2V(£?, α) = — f

+ N(Ω,f)

For ζ e S we define

?(ζ) - t(ζ, σ, a) - ί+(ζ, σ, τ) .

There is a neighborhood zί of c in which both ί(ζ, σ, a) and £(ζ, σ̂  r)
are positive. Hence in z/,

- ί(ζ, σ, a) - t(ζ, a, τ) - ί(ζ, τ, α) ,
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which is bounded. Outside Δ, g(ζ) is obviously bounded. It follows
that

t{f{z), σ, a) = t(f(z), σ, τ) + 0(1) .

We conclude the proof by substituting this in (12).
We note that if J7~r and ^ r n are principal families defined with

respect to the same point cr, then the functions £'(ζ, σ, τ) and £"(ζ, σ, τ)
belonging to these families differ by a bounded harmonic function.
Consequently the corresponding characteristic functtions 7\ and T2 are
related by TX{Ω, f) = T2(Ω, f) + 0(1) where 0(1) is bounded with respect
to Ω.

Before defining functions of bounded characteristic we shall develop
an alternative representation of the characteristic function. For this
purpose we prove the following lemma.

LEMMA 5.2. N(Ω, ζ) is continuous on S\f(r).

Proof. Let a be an arbitrary point in S\f(r), and let aly * -,aq

with multiplicities vly , vv be the inverse images of a in Ω.
We can construct open connected neighborhoods Df, D ot a m

S\f{r), and E , E3 of a3- in Ω\r for every j , such that the following
properties hold:

(a) Each neighborhood lies in a parametric disk about its associated
point.

(b) Every inverse image of ζ e D'\a is simple and ζ has v3- inverse
images in E3\

(c) Every zeEs

3\a3 is simple.
(d) EJSE;.

(e) Every ζ e D\a has v3 roots in Ejf and D £j Df.
(Ej\a3 ,f) is a smooth covering surface of S. If 7(ί) is an arc in

D from an arbitrary δeD to a, its path of determination y\t) from
an inverse image of 3 in E3 cannot intersect E'3\E3 and must tend to a3.
Similarly if the inverse image is not in an E , 7'(t) must tend to ΘΩ.
Hence every component of the inverse image of D that intersects Ω
is either a neighborhood of some a3 or intersects dΩ.

Let Do = {ξ 11 ζ — a \ < ρ0} be a disk in D in terms of the local
coordinates. Let F30 be the component of the inverse image of Do that
contains a3, let Gj0, j = 1, •••, n be the components that intersect the
inverse images b3 , j = 1, , n, of a on 9/2, and let ϋΓ, 0> 0 = 1, , m,
be the other components that intersect £?. The number of components
is finite since dΩ and dD0 are analytic curves.

We define a real-valued function h3(z) on Hj0 by /^(z) = |/(z) — a\.
For each £Γ,0 there exists τ3- > 0 such that h3(z) > r y for z e Hj0 Π β,
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and there exists a positive r 0 < rs for all j . Let Dl = {ζ \ | ζ — a \ < r0}.
Let M be a uniform bound of the number of inverse images in Ω

of ζ e S. For ε > 0 and every i, there exist neighborhoods A{bά) S G i α

of δ, such thatδ,

«, r) - g(ajf r) | < J L , z e

and

where #(#, r) is the Green's function on Ω and vanishes outside Ω.
Then 1 iV(β, ζ) — N{Ω, a) \ < ε in the intersection of DJ and the images
of J(aj) and J(&y) for all j . This completes the proof.

LEMMA 5,3. If μ is a regular positive unit measure on a compact

set E S S\σ, and if pμ(η) = I t{r], ζ, σ) dμ(ζ) is the logarithmic potential

with respect to any family J7~, then

(13) ~P,{f{r)) = ~

- ( N(Ω,ζ)dμ(ζ).

Proof. By Lemmas 1.5 and 5.2 we may integrate Jensen's formula
(4) over E and obtain

- - 1 - ί d/M(ζ) ί ί(/(«), <7, ζ) d*^ f r)
Z7C JE Jθβ

) - ( N(Ω,Qdμ(ζ).
JE

We apply (11) and obtain the required result, which is the natural
generalization of Frostman's formula.

The characterization of T(Ω,f) that we need is a consequence of
the next theorem.

For a fixed σ,τeS and r e R such that σ, τ and f(r) are distinct,

we shall write t(ζ) for t(ζ, <?, τ), ίm(ζ) for max {m, t(ζ)} and p(z) for

ί>(«, r ) .

THEOREM 5.4. If Em - {ζ | ί(ζ) = m} ^/^ere m ΐs finite and t
belongs to the principal family ^\(I) with respect to the identity
partition, then



MAPPINGS OF BOUNDED CHARACTERISTIC 909>

(14) Uf{r)) = ±

,/ )--M N(Ω,ζ)d*t(ζ).
2π jEm

Proof. We first prove this theorem for the case in which some
extra hypotheses hold, and then remove the restrictions.

We assume that either S is closed or that S is a regular region
containing the image of Ω and that m Φ lim t(ζ) as ζ —> ξ e OS. We
choose a unit mass distribution on the compact set Em (oriented clockwise
about σ) such that dμ — l/2π d*t(ζ). Its logarithmic potential is

(15) Ptι(V) = JL\ t(ζ,η,σ)d*t(ζ)
2π jEm

Em divides S into two components, one containing a and the other
τ; we shall call them the σm- and τm-components. If S is a regular
region one of these components is a neighborhood of the ideal boundary;
we suppose that it is the σm-component.

If m < t(Ύ]) < co, then the flux of ί(ζ, η, σ) is zero over the boundary,,
Em U dS, of the o"m-component and is also zero over the boundary, dS,
of S; since Em f) OS is void, it follows that the flux over Em is zero*.
As t(ζ) is constant on Em, it follows from (15) that

V, °) d*t(ζ) - t(ζ) d*ί(ζ, η, σ)] .

The application of Green's formula to t(ζ, y, σ) and t(ζ) over the
τm-component proves that the right-hand side equals — ί(r, η, σ) = tj7j).

If - co < ί(r?) < m, we write t(ζ, η, σ) - ί(ζ, τ, σ) + ί(ζ, ^, τ) in
(15). The flux of t(ζ, τ, σ) is 2π and the flux of t(ζ, ̂ , τ) is zero over
the boundary, £/w, of the τm-component. The first integral equals — m.
We add a zero term and obtain

-PM = m - J - f [t(ζ,)?, τ) d*ί(ζ) - t(ζ) d*ί(ζ,)?, τ)]
2π JEm

from (15). We apply Green's formula to ί(ζ, ^, r) and ί(ζ) over the
(/^-component, and it follows that — p^η) = m — £(σ, η,τ) = m ~ tjrj)
by (1).

We obtain the same results if we suppose that the τm-component
is a neighborhood of the ideal boundary.

Since the application of Lemma 4.1 to (15) shows that Vjίj]) is
continuous at τ, we conclude that — pμ(r) — tm(τ).

If Ύ] e Em we note that t(ζ, η, σ) is superharmonic in the neighborhood
of Em. We consider the level lines Em-e and Em+ΐ, ε > 0. For sufficiently
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small ε, either t(ζ) is the capacity function on the τm_ε-, τm- and rm+ε-
components or — t(ζ) is the capacity function on the corresponding
^-components. In either case we apply (8) to (15) and obtain

which yields -Pylyj) = tjyj).
We substitute in (18) and obtain (14).
To remove the restrictions we shall denote the intersection of Ek

and the image of Ω by Ek. Then Ek is compact and

ί ,N(Ω,ζ)d*t(ζ) = \ N(Ω,ζ)d*t(ζ).
JEjc JEk

If S is a regular region and m = lim ί(ζ) as ζ-~>ξ e dS, we take
ε0 > 0 sufficiently small that

{ζ I grad ί(ζ) - 0 and m + ε g t(ζ) ^ m} ^ Em .

For ε0 > ε > 0 we map E^+2 into 2?m along the level lines of t*(ζ).
These are well defined as the different branches of ί*(ζ) differ by an
additive constant. The mapping is one-to-one except that onto each of
the finite number of zeros of grad ί(ζ) on Em is mapped a finite number
(one more than the order of the zero) of points on Ef

m+ζ.
On the image of Ω we set the measures dμΞ = 1/2TΓ cϊ*ί(ζ) on

J^i+β, 0 < ε < ε0. By Helly's theorem there exists a limiting measure
that is obviously on E'm. By the continuity of the normal derivative
of ί(ζ) it is, under the above mapping, d*ί(ζ), a.e. Hence, if Nq =
min (JV, g), we obtain

lim ί iV,(β, ζ) d*t(ζ) <£ ί iV(β, ζ) d*ί(C) .

The opposite inequality is obtained by Fatou's lemma. Consequently,

lim ( N(Ω, ζ) d*t(ζ) - ( N(Ω, ζ) d*t(ζ) .
ε->0 jRm+s JEm

We now establish (14) for m by applying it to m + ε, which is permissible,
and letting ε—>0.

If S is arbitrary we consider an exhaustion of S by regular regions
W such that W contains σ, τ and the image of Ω. We denote by
tw(Q = tw(ζ> σ> τ) the function in the ^1(1) family defined with respect
to W, and we set Ewm = {ζe W\tw(ζ) = m}.

Let Wo be a regular region containing the image of Ω. We first
consider m such that Em fl Ŵ  contains no zeros of grad £(ζ), and cover
it with a finite number of parametric disks. We select ε0 > 0, such
that the set
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F = {ζ I ε0 rg t(ζ) ^m + eo}nWo

is contained in these disks and does not contain any zeros of grad t(ζ).
On each disk we use t{ζ) and any branch of ί*(ζ) as local variables.

Since Em and Θ Wo are analytic manifolds, their intersection consists
of a finite number of components. Consequently there exists a compact
Ff £ F such that the intersection of Em and the image of Ω is contained
in the interior of F', and that OF' intersects Em at a finite number
of points, each of which has a neighborhood in which OF' lies on a
level line of ί*(ζ). We set E* =EmΠ F'

Since ^F(ζ) and its normal derivative tend uniformly on compact
sets to t(ζ) and its normal derivative, there is for any ε > 0, a Ws such
that

Ewm S {ζ I m - ε < ί(ζ) < m + ε} n F' ,

and that the maximum angle between E^m and Em is less than π/2,
for TF 2 W2. For sufficiently small ε we can map E£m univalently onto
E* along the level lines of ί*(ζ).

We have set up the set we need for the proof. We apply (14) to
the region W and let W —> S. It is only necessary to examine the
convergence of the last term. On Wo we choose a set of measures
dμw = l/2π d*tw(ζ) on E£m. For sufficiently large W,

N(Ω,ζ)d*tw(ζ) = ^ N(Ω,ζ)<

We apply Helly's theorem as before and obtain the necessary convergence
Consequently, the theorem holds for open S if there is no zero of grad
ί(ζ) on Em.

If grad t(ζ) has a zero on 2£TO, we apply (14) to Em+ζ and take the
limit as ε —> 0. To obtain the convergence of the last term, we choose
the set of measures dμε = l/2τr d*t(ζ) on Ĵ ^+s and apply Helly's theorem.
This completes the proof.

By taking m =• 0 in (14) we immediately obtain a generalization
of Cartan's formula:

COROLLARY 5.5. // the characteristic T(Ω, f) is defined in terms
of a principal family J^KI), then

(16) Γ(J2,/)=4(/(r)) + - L ( N(Ω,ζ)d*t(ζ).

As a side issue we shall strengthen Lemma 5.2.

LEMMA 5.6. If f(dΩ) is the image of dΩ, then N(Ω, ζ) is LP on
S\f(dΩ).



•912 D. J. H. FULLER

Proof. Let ae S\(f(dΩ) \Jf(r)). We take σ at a, a parametric
•disk Δ at a, and an arbitrary τ. Let t(ζ) = ί(ζ, σ, τ) G ^1(1). There
exists ra0 such that {ζ | ί(ζ) ^.m0} S A(f(dΩ) U/(r)).

For m i> m0, (14) yields

2TΓ Jtf

which is

)

2ττ

Since — ί(ζ) is the capacity function on the neighborhood of a bounded
by m ^ m09 the function N(Ω, ζ) is harmonic on S\(f(ΘΩ) U/(r).

Let the multiplicity of r be k. By the construction used in Lemma
5.2 there is for any n, a neighborhood of f(r) such that each ζ therein
has k inverse images in

{z I g(z, r)>n} ,

and a uniformly bounded number of other inverse images, for all of
which g(z, r) is uniformly bounded above. Hence N(Ω, ζ) has a loga-
rithmic singularity with coefficient k. This completes the proof.

6* Functions of bounded characteristic* The remark after
Theorem 5.1 shows that if the characteristic function T(Ω,f) is bounded
with respect to Ω when it is defined in terms of one principal family
^~, then it is also bounded when defined in terms of another family.
We shall show that this property is also independent of the points σ, r, r9

provided that σ, τ and f(r) are distinct.
For a fixed family ^7(1) and a fixed τ, we define

x(Ω, 9) = - M *(/(*)> σ> τ) d*P°(z> 9) f
2π ho

V(Ω, q) = Σ 90{*i, Q) 9 {Si} = fΛo) Π Ω ,
i

x'(Ω, Q) = -£J: \J(f(z)> τ> σ) d*Po(z, q) ,

y'(Ω, q) = Σ flTnί*!, 9) , {ίj = / " W Π Ω ,
i

and % = x + /̂, u' = xf + 2/', where Ω is a regular region in R, and β<,
ί̂ are repeated in accordance with their multiplicities.

LEMMA 6.1. If Ω exhausts R, then the limits of y{Ω, q) and
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u(Ω, q) are either LP (harmonic with positive logarithmic singularities)
functions or + co if the limit of u(Ω, q) is LP9 then the limit of
x(Ω, q) is harmonic.

Proof. The classical method is employed. We first prove that

Ωι ϋ Ω2 implies u(Ωl9 q) S u(Ω2, q). hetzeΩ^ We write t{ζ) for ί(ζ, σ, τ).

If t(f(z)) > 0, then t(f(z)) = t(f(z)) = u(Ω29 z) - u\Ω29 z) by Jensen's

formula (14). Hence t(f(z)) ^ u(Ω29 z) for all zeΩlm Consequently,

- L f t{f{z)) d*Pl(z, q)£-^\ \u(Ω29 z) - Σ g1(8i9 z)\ d*p(z, g) ,

which is, by transposition,

u(Ωlf q) ^ u(Ω2, q) .

For any fixed Ωo we exhaust E by 42 a <0O. By the application of
Harnack's principle to u(Ω, q) — u(Ω0, q) over Ωo, we find that the limit
of u(Ω, q) is LP or + co over Ωo and hence over R.

By the maximum principle, y(Ωl9 q) ̂  y{Ω2, q) when Ωt g i22, and
the same proof carries through.

If the limit of u(Ω, q) is LP, so is that of y(Ω, q): further, both
functions have the same singularities. By taking the limit of x(Ω, q) =
u(Ω9 q) — y(Ω, q)y we obtain the harmonicity of the limit of x(Ω, q).
This completes the proof.

THEOREM 6.2. If T{Ω,f) is bounded with respect to Ω9 then it
is bounded for any choice of r, τ, σ if f(r), σ and τ are distinct.

Proof. A subscript indicates functions defined in terms of the new
parameters.

(a) If r is changed to rx such that /(n) Φ σ, then 7\(42, / ) =
u(Ω9 rx) is bounded since the limit of u(Ω9 q) is LP.

(b) If τ is changed to τl9 we have

2π
Uf{z)) - t(f(z)) d*p(z9 r) .

The integrand is bounded since the function q(ζ) in the proof of
Theorem 5.1 is bounded.

(c) If σ is changed to σl9 we may by (b) take σλ as τ in defining
T(Ω9f). From the definitions of the terms

is a constant function. It follows from Theorem 5.1 that T(Ω9f)
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We have established the fact that the following class of functions
is well-defined.

DEFINITION. An analytic function f: R —> S, where R is an
arbitrary open surface and S an arbitrary surface, is of bounded
characteristic, f e MS, if T(Ω, f) is bounded with respect to Ω gΞ R.

It follows from Lemma 6.1 that if fe MB, then the limit of y(Ω, q)
is a positive superharmonic function on R. Consequently R is hyperbolic
and we set

N(R, ζ, r) - lim N(Ω, ζ) = lim Σ ft>(*<, r) , {*<} - f~%) n Ω .
ΩR ΩB iΩ-*B

Since ([3] p. 429) N(R, ζ, r) = Σa θ(*i, r), M - f~\ζ), where g is Green's
function on R, it follows ([3] p. 418) that the class MB is identical
with the Lindelofian maps. We are able to obtain a characterization
in terms of N(R, ζ, q).

THEOREM 6.3. Iff:R—*S is analytic, the following statements
are equivalent:

(a) feMB
(b) there exists seR and open UξΞ= S such that N(R, ζ, s) < co

for ζeU,
(c) N(R, ζ, β)< co, s G R, ζ G S\/(r).

Proof. To prove that (b) implies (a) we select a e U\f(s) and a
parametric disk zf at a such that J g U\f(s).

Set Δn = {ζeln\ N(R, ζ, β) ^ w} then by Lemma 5.2 JV(R, ζ, β) is
lower semi-continuous and Δn is closed. Also Δ = U -4Λ. By Baire's
category theorem there exists ikί such that ΔM has an interior point.

Let Q ^ ΔM be an open region, and τeQ\(σ U/(«)). We define a
family ^7(7) at σ; t(ζ, σ, τ) has a level line 1? in Q. There is a principal
family ^V(J) such that £7 = {ζ | t'(ζ) = 0}, t' e ^Ϊ(I). Substitution in
(16) yields

" Md*t'(ζ) < co
E

for all Ω. Hence fe MB.
(c) implies (b) trivially. To show that (a) implies (c) we note that

by Lemma 6.1, N(Ω, ζ) is bounded above for s e R, ζ e S\f(s), whenever
/ G MB. This completes the proof.

An extremal decomposition characterization of MB functions is
given by the following:

THEOREM 6.4. An analytic f:R—>S is of class MB if and only



MAPPINGS OF BOUNDED CHARACTERISTIC 915

if t(f(z)) is the difference between two LP functions, where t may
be from any principal family

Proof. From the proof of Lemma 6.1,

) = u(Ω9 z) - u'(Ωf z)

for all Ω. If feMB, then the limits of u and u' are LP functions.
This proves the necessity.

For the sufficiency we assume t(f(z)) = v(z) — w(z), v, w e LP.
The singularities of u(Ω, z) are positive singularities of t{f{z)), and

so among the singularities of v(z). Hence v(z) — u(Ω, z) is superharmonic
on Ω and attains its minimum on dΩ.

Let w e dΩ. By (2), x{Ω, z) is the harmonic function on Ω with
boundary values t(f(w)) and

lim x(Ω, z) - t{f{w))
Z-+W

for any approach to w; also y(Ω, 2)—>0 as z—>w, and v(w) ^ t(f(w)).
Consequently v(z) — u(Ω, z) ^ 0 on Ω.

Since v{z) e LP, there exists r e Ω such that v(r) < co. Hence
u(Ω, r) is bounded for all Ω, and feMB. This concludes the proof.

The integrand of the proximity function used by Sario [8] is

β(ζ, a) = t(ζ, α, σ) + log (1 + e^) (1 + e2ί(α)), cc Φ σ

= log (1 + e2t^) , α - σ .

where t e . ^ and ί(ζ) = t(ζ, σ, τ). A comparison of the characteristic
functions, evaluated at σ, shows that the functions of bounded char-
acteristic with respect to Sario's characteristic function are the same
as those treated above.
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