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AN ALGEBRAIC APPROACH TO EXTERIOR
DIFFERENTIAL SYSTEMS

H. H. JOHNSON

This paper concerns E., Cartan’s theory of systems of ex-
terior differential forms, We define a purely algebraic model
which determines many of the system’s properties. By algebraic
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constructions such concepts as ‘“‘involutive’’, ‘‘characters’ and
‘“prolongations’’ are defined and the main theorems are given
simple algebraic proofs. These methods are applied to charac-
terize systems which reproduce themselves under prolongations.
The prolongation theorem of Kuranishi is proved algebraically.

The purpose of this section is to explain the sources of the alge-
braic structures studied in the rest of the paper. E. Cartan initiated
the study of exterior differential systems in [1, 2]. In [2] they were
treated in a very algebraic manner which was used in Cartan’s theory
of infinite groups. Kuranishi in his prolongation theorem [6] again
reduces problems to algebraic questions. We wish to isolate and ex-
ploit the purely algebraic characteristics of these systems even more
fully in this paper.’

Cartan studied systems of ‘‘Pfaffians’’, i.e., differential equations
defined by a finite number of linearly independent real analytic 1-forms
on an open ball in E*. Let A denote the module of real analytic 1-
forms over the ring R of real analytic functions on a fixed open ball
in E*, Euclidean n-space. Consider AA = A°A + AN'A + .« + A"A,
the exterior algebra generated by A over R. Let S and I be sub-
modules of A. S is the given module of Pfaffians which define for
Cartan partial differential equations. I is called the module of inde-
pendent variables. Let (S) denote the ideal in A A generated by S.
We use this ideal because if S is zero on some integral submanifold of
E", so is every element of (S). Let d denote the exterior derivative.

Choose a linear subspace T of A so that A is the direet sum of I,
T, and S. Let j: N*A— N A/(S)~INITI+INT+TANT be the
natural epimorphism. Then jod:S—IANI+IANT+TAT. How-
ever, in [2, pp. 577-8] Cartan shows that we may always assume T
chosen so that jod:S—IAT=IQT, and so we are led to study
linear transformations 6: S — I ® T. This was the viewpoint in my
recent paper [5]. Observe that ¢ = jod is linear over R. For, if fe R,
ge 8, d(fo) =df N o+ fdo. Hence d(fo) = jod(fo) = j(df A o) +
fido) = fid(c) = fo(o), since df N g€ (S).
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Historically the use of R instead of the more customary ring of
C~=-functions was because the supporting partial differential equations
theory exists only in the analytic case. But R also has the property
of being an integral domain, If F' denotes its quotient field, then we
may consider S, I, T, I® T as vector spaces over F', and 0 as a linear
transformation on these vector spaces.

This will enable us to use the techniques of linear algebra to define
Cartan’s numerical invariants and his concept of ‘‘involutive’’. These
are usually defined pointwise and then their maximum values used in
studying the global systems. Cartan wrote of ‘‘generic’’ properties [3],
and we return to his concept, defining a generic system by extending
the field F' in a suitable manner. In § 4 these methods are applied to
the study of systems which reproduce themselves under prolongations.
In §5 the higher order prolongations of a system are identified as
certain mappings on tensor products of the original spaces. These
results are applied in § 6 to given an elementary proof of Kuranishi’s
prolongation theorem. In this paper it seemed more convenient to study
the dual of , defined below.

Differential systems and prolongations.

DerFINITION 1.1. A (differential) system (I, T, d, S) consists in 3
vector spaces I, T, S over a field F and a linear transformation
d: IQ® T —S. The space I is the vector space of independent variables.

Denote by 4 the identity transformation on various spaces and by
J:INI—IQ I the dual of the canonical epimorphism I* @ I* —I* A IT*,

DerINITION 1.2, (I, U, o, T) is a prolongation of (I, T, d, S) if
A @ NITRX NI NIRU)=0. That is, the composition

AU 2Ieuen) g%

is zero.

DEFINITION 1.3. The (total, normal) prolongation is defined as
follows. Let
V={¢peHom ([, T)|d@ & ¢)J(I A I) = 0} .

There is a natural linear transformation 6: IQ V — T satisfying, for
wel, eV, 6(0Q g¢) = ¢(w).

In [5] the author showed that the normal prolongation is a pro-
longation and in fact maximal in a certain sense among all prolongations.
In the present paper all prolongations will be normal, so we shall omit
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the qualification ‘‘normal’’.

2. Involution. E. Cartan characterized algebraically exterior
differential systems of equations which could be solved by the Cauchy-
Kowalewski system [4]. Systems satisfying these algebraic conditions
are called ‘‘involutive’’, We shall define this notion and prove some
results about it.

Let (I, T, d, S) be a system, Let w, .-+, w, be abasisof I. Let
I, denote the subspace of I spanned by @, ---, ,.

DEFINITION 2.1. An integral element of dimension h (relative
to w,---,®,) is a linear transformation ¢,:I,— T such that
d(t @ ¢,)5(I, N\ I,) = 0. This means that for all 1 < h, j < h,

d(@; Q ¢,(®;)) = d(@W; Q ¢1(®))) .

Let _# denote the linear space of integral elements of dimension
h. Then % and % are isomorphic to T and V, respectively (see
Definition 1.3). There are natural linear transformations 0, A, — A
obtained by restricting elements in %, to I, h=1,2,.--,p — 1.

DEFINITION 2.2. (I, T, d, S) is h-involuttve (relative to wy, -+, @)
if p,,, is @ epimorphism. It is involutive (relative to w,, -+, w,) if
it is h-involutive for each A =1,2, -+, p — 1. (I, T, d, S) is 1nvolutive
if it is involutive relative to at least one basis w,, -+, W,.

Let &7, be the kernel of p,_,, let 7,(®,, -+, ®,) = 7,(w) = dim &,
(@) = dim 7, Then dim . 7_, < 7,(w) + dim _#, and equality holds if
and only if (I, T, d, S) is h-involutive (relative to ®,, --+, ®,). Hence
one can prove the following:

THEOREM 2.1.
dimV = t(w) + 7(®) + +++ + 7,(®) ,

and equality holds tf and only if (I, T,d,S) is involutive (relative
tO wly ) wp)-

Now, let w,, ---, w, be any fixed basis. Let F(x) be the field of
rational functions over F' in variables xi; 4,7 =1,2,--.,p. Let I* =
IR Fx), T*=TQR F(x), S* = SR F(x), regarded as vector spaces
over F(x), and extend d to be a linear transformation over F(x) on

I*Q@ ryT* into S*. Let

p .
ﬂk:Z{w};wiy k:]—r“'yp-
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Then p,, -+, ¢, form a basis of I*., We intend to use p, ---, ¢, as
a ‘‘generic’’ basis of I. Let I} be the subspace spanned by w,, ---,
®,, and define _#*, of,,, F7F, T} as before.

ProrosiTioN 2.1. If 7,(®) is defined relative to some basis @,, - - -
@, then 7,(®) < ¢}, and equality holds for some basis ®@,, ++-, @,.

Proof, Let m, ---,7m, and 6, ---, 0, be bases of T and S, re-
spectively. Then d(w; @ ) = all,. If ¢c &, then 4(r;) =0 for
i < h, and §(ty,)) = 3467y, where

A6 @ il A ) = 3, Pl @ )

yd q
= 2 > caiand, = 0, i< h.
k=1 A=1
Thus, the ¢ must satisfy the pr linear equations
P g ’I, = 1, LN h
S S erxtay, =0,
k=1 x=1 u:l,---,q.

Conversely, every solution of these equations yields an elements of 7%,
7§ is the number of linearly independent solutions.
Now suppose Z! are elements of F' such that @; = 3, Tfw,. Then

the equations for members of &7, (relative to w,, :--, ®,) aré
P4 .
> > wtag, =0, 1=h.
k=1 A=1

Hence 7,(®) = 7},

We also see from this that it is possible to choose Z!e F' so that
(@) = 7}, all h.

COROLLARY 1. 7} does not depend on w,, «-+, ®,.
We also observe from the above equations

COROLLARY 2. 7} < 7§,

REMARK. This device of introducing F'(x) is often of practical
value in computing 7, in examples, since the results are independent
of w,, +++, w,.

Then if 7, denotes the maximum of 7,(w) over all bases w,, ---,
®, we have [3, p. 91].

THEOREM 2.1. dimV =<7, + -+ + 7,_,, and equality holds if and
only ©f (I, T,d,S) ts involutive.
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To compare our definitions with those of Cartan, see [2, p. 579].
Matrix (14) there is the matrix associated with the equations for the
¢* in Proposition 2.1. The o, in Cartan’s notation are related to our
T by T=q— (0, + -+ + o))

3. Prolongations of involutive systems. We shall now give
an elementary proof that the normal prolongation of an involutive
system is also involutive [7]. Let (I, T, d, S) be an involutive system
relative to a basis w, -+, w, of I. The (normal) prolongation (I, V,
9, T) is defined by V={pcHom (I, T) |d(z R ¢)j(I A I) = 0}, 0(®w & ¢) =
(w). Let I,, %, P, Owi1, Ti(®) be as before for the system (I, T,
d, S). The entities corresponding to these for (I, V, ¢, T') will be denoted
by I, .4', F%, Oha, Ti(®), respectively.

ProposiTION 3.1. If (I, T, d, S) is involutive (relative to w,, ---,
w,), so is (I,V,0,T).

Proof. We shall show that p,_; is an epimorphism for each
h=1,---,p—1. Let ¢c.%’. We wish to define § on w,., so that
0t ® P)J(Luss N L) = 0, given that 6(¢ ® ¢)j(l, A I,) = 0. Thus,
é(w,.;) must be chosen so that if ¢=h, 0o;R® ¢(w,..)]=
O[@y: @ $(w,)]. By definition this requires that

(1) (@) (@) = F(@)(@41) .
Hence, ¢(w,_,) is defined uniquely on I,. In fact, if 7,k < h,

At @ d(@1)il(@e N @)
= d[w; ® §(@,.)(@)] — d[@; @ (@,1,)(@,)]
= d[w, ® $(@:)(@,.1)] — d[@; @ $(@,)(@;1,)] by (1)
= d[o, ® (@) (@411)] — d[©; 1, @ F(@;) ()]
+ d[@s 1 R F(@)(@,)] — @1, @ F(@)(@))]
+ A4 @ F(@)(@:)] — d[w; & F(@)(@,11)]
= d[i ® $(@)]F (@, N\ ®;41)
+ d{w, s ® 0t Q $)j(w; N @)} — d[i @ @) ]d(@w; A @4 11)
=0 s

since @(w;) and @(w,) belong to V and 6(i ® #)j(I, A I,) = 0. Thus
#(w,.) e 4. Sinece (I, T,d,S) is involutive, p,:; are epimorphisms, so
there exists an extension of ¢(w,,) to all of I, this extension being in
V. In this way ¢ is defined on I,., into V and becomes an element
of _#},. Thus p;,, is an epimorphism for all %.

ProposiTioN 3.2. If (I, T,d,S) is involutive, 27/ is isomorphic
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to the direct sum
ﬁh+gah+1+ e ‘i‘ﬁp_l.

Hence 7)(0) = >\7=1 7i(w).

Proof. Let e &#. Then ¢:1I,,,—V, ¢(I,) =0, and 5[t R ¢]5 (L4, N\
I.,)=0. Ifj =k, 0[i ® $li(w; A @41y) = 0[0; Q $(@,1)] = $(@,1.)(@,)
= 0. Thus, ¢(w,,,) is in V and is zero on I,. Let &, = {6 € V| ¢(I,) = 0}.
Then ¢(w,:.) € &, and conversely every element of &, corresponds to
a unique member of <?/. Hence &7/ is isomorphic to &,.

We have an exact sequence 0 — &, — &, — ., and when (I, T,
d, S) is involutive the last linear transformation is an epimorphism.,

Hence
@Nﬁh‘i‘Q’thlN"'Nﬁh‘i‘ghi.-l'i‘ ‘P‘ﬁp-q-

Observe that even when (I, T, d, S) is not involutive one has an
exact sequence 0 — &, — &, — F%, and &), ~ .

THEOREM 3.1. If 7i(®w), h=10,1,---,p — 1, are the numbers
associated with the mormal prolongation (I,V,0,T) of (I,T,d,S),
then

T (W) = T(w) + Thpy(@) + -+ + Tpoa(@) .

If (I, T,d,S) is tnvolutive, then so ts (I,V,d, T), and equality holds
wn the above relation.

4. Self-reproducing systems. The methods will now be applied
to study certain systems which remain unchanged under prolongations.
Let (I, T, d, S) be a given system, (I, V,d, T') its prolongation, and ®,
a nonzero element of I. Define f:V — T be f(¢) = ¢(w,). Let F =
1 QRLIQRV—-IRT. Define G: T— S by G(r) = d(w, ® 7).

PROPOSITION 4.1. Go = dF'.

Proof. We have Gi(®w QR ¢) =d(w, R ¢(®)) and dF (0 ¢) =
Ao @ ¢(w). Since geV, 0=deR ¢)i(w N ®) = d(® Q ¢(w,)) =
A, ® $(w)).

ProposiTiON 4.2, If (I, T, d, S) is involutive (relative to w,, ---,
,), then F' is an epimorphism.

Proof. Given o QrelIQ T, let ¢(w,) =7, g€ 4. Then ¢ may
be extended to I,, hence to I;, ete., hence to I. Thus, there is an
element ¢ € V such that ¢(w,) = 7. Then F(w R ¢) = v Q7.
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ProrosiTioN 4.3. If (I, T, d, S) is involutive (relative to w,, ---,
®,) and 7, = 0, then F' is an endomorphism.

Proof. The exactness of 0 — A, — . %, — % — 0 implies that
the restriction linear transformation p,., is an isomorphism for all = 1,
since Corollary 2 to Proposition 2.1 implies <7, = 0 for all A = 1.
Then given ®, and =, there exists a unique ¢ € V such that ¢(w,) = x.

Define g: T— V by g(x) = ¢ provided ¢(w,) = 7 is an isomorphism
by the above remarks., Thus, dmIQV =dimIKQ T =dimIKRQV —
dim (ker ¥'). Hence ker F' = 0.

ProrosiTiON 4.4. If (I, T,d, S) is involutive (relative to w,, +--
®,) and d is an epimorphism, then G is an epimorphism.

’

Proof. 0 is an epimorphism; for, given we T, then as in Pro-
position 4.2 we can choose ¢ € V' so that ¢(w,) = 7. Hence é(w, ® ¢) = 7.
F is an epimorphism by Proposition 4.3, so by Proposition 4.1. G must
be an epimorphism.

ProposITION 4.5. If (I, T, d, S) is involutive (relative to w,, ---,
®,), d is an epimorphism, and dim 7 = dim S, then G is an endo-
morphism,

Proof. Immediate consequence of Proposition 4.4.

DEFINITION 4.1. Two systems (I, T,d,S) and (I’, T’,d’, S") are
equivalent if there exist isomorphisms f: T — T and G: S — S’ such
that if F=t1 QR IQT—-1IQR T, then Gd = d'F.

" We have proved the following

THEOREM 4.1. If (I, T, d, S) s involutive (relative to w,, ---, w,),
7, =0, d is an epimorphism, and dim T = dim S, then (I, T, d, S) and
I,V,5,T) are equivalent. Thus, under these conditions the prolon-
gation reproduces a system equivalent to the original system.

5. Higher order prolongations. In this section we study the
process of iterated prolongations and identify the system obtained by
prolonging (I, T, d, S) a number of times. This will be used in §6 to
prove a theorem of Cartan and Kuranishi that every system becomes
involutive after a sufficient number of prolongations [6].

If o is any permutation of 1,2, .-- &k, we denote by p, the auto-
morphism on @ *I which satisfies (0, Q -+ R ®) = Voiy Q + + + R W1y
A linear transformation 7: ® *I — T is called symmetric when 1 = 5p,
for every o.
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DEFINITION 5.1, Let

V*={neHom (Q*I, T)|7n is symmetrie, and
At @I QNI N I) Q] = 0}

if E>0,and V=T, If £ >1, 6% IQ V*— V*!is defined such that
ifwel, ne V' ve® ", then [§*(® Q N)](V) = (v Q w). Also, &* =
of Definition 1.3, The system (I, V¥, §*, V*¥) is called the kth (total,
normal) prolongation of (I, T, d,S).

It is a computation to check that 6* maps into V*-!, The second
condition in the definition of V* means that if w,, w,, -, ®, are in I,
then

d[a)0®77(a)1®(02® M ®wk)] - d[w1®7](wo®w2®"’®wk)] .

THEOREM b.1. (I, V%, % V) 1s equivalent to the system obtained
by successively prolonging (I, T, d, S) k times.

Proof. For induction, one shows (I, V¥ ¢ V*) is equivalent to
the prolongation of (I, V¥, 0%, V*). Let

U={peHom (I, V¥ [ Q ¢y (I N I) =0},

let p: IQ U—V* be defined by p(w® ¢) = ¢(w). Then it must be
shown that ([, U, p, V*) is equivalent to (I, V** 0¥, V'*), In fact,
one can define f: U— V*+ as follows: if w,, +++, 0, €1, ¢ U, let

SO0, R+ Q W) = W) (@, Q -+ @ W,:;). Then a computation
shows that f is well-defined. Also f has an inverse g: V¥ — U con-
structed similarly. Moreover, ¢*+(@w & f($))(7) = () (0w Q) = ¢(w)(7) =
1w ¢). Henceletting F =t QR 1 IQU — IR V**and G = identity:
VE—V* we have ¢*"'F = Gp.

Next we shall identify integral elements of the system (I, V*, d%,
. VFY, Let w, ---, ®, be a basis of I. Let I, be spanned by w,, ---, ®,.

DEFINITION 5.2. Let, for 1 =k < p,
A ={peHom (Q*IQI,, T)|¢ is symmetric and
de QI RQINI N QIR L] = 0} .

(‘*‘Symmetrie’’ refers to all possible symmetries preserving & *I Q) I,).
Let pf,.: A% — %" be the restriction linear transformation, with

kernel 7. Let

@t = e Vi g(@HQL) =0 if L>0,
Q‘;k:VIﬁLl.
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Observe that A% = V*+ &k = 0.

THEOREM 5.2. _%" is tsomorphic to the space of tntegral elements
of dimension h (relative to w,, --+,w,) on (I, V* é* Vi), If we
identify these isomorphic spaces, pf., corresponds to the restriction
linear transformation, and F} and &F* are isomorphic.

Proof. The first two assertions follow by a computation. The last
isomorphism is defined as follows: ¢ € &#* is identified with the element
of &)}~* whose value on 7€ ® I is ¢(v Q W, ;).

ProposiTION 5.1, For any element w,<€ I, there exists a linear
transformation NY(w,): &) — &~ which satisfies, for ne &F, ve QI

V(@) 1) = 7(7 Q@ ) .

If w, = w,,,, the kernel of N(w,) 1s &F,,.

Proof. A computation shows that \*(w,) is well-defined. The second
assertion follows from the definitions.

THEOREM 5.3. (I, V*, 0%, V*') 4s involutive tf and only of V***
18 1somorphic to the direct sum

(2) @Bk‘l—{'—@k_l—i- cee 4 p’¢_—11NVk—-1’
or, if and only if N(w,.,) ts an epimorphism for h = 0,1, --- p — 1,

Proof. The first condition follows from Theorem 2.1 and the last
statement of Theorem 5.2, Next, M(w,.,) is an epimorphism if and
only if

k E—1 k
&y ~ &)t + &by,

and & = V**', This implies isomorphism (2). If some \M(w,.,) were
not an epimorphism, the dimensions of the various spaces would preclude
any such isomorphism (2).

6. The prolongation theorem. We shall next prove that if
I, T,d,S) is any given system, there exists an integer k, such that
the k™ prolongation (I, V'*, §*, V*') is involutive for all £ = k,. In faect,
we shall show the existence of one basis w,, ---, w,, relative to which
all (I, V*, 6% V**') are involutive for k = some k,.

To show this it is sufficient to show that \M(w,.,): &) — &) is
an epimorphism for all & =k, by Theorem 5.3. This will be done
inductively, choosing ®,,, after w, ---, w, such that \(w,.,) is an
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epimorphism, Choice of ®,., is accomplished by relating this problem
to one in classical ideal theory. Let us temporarily extend w,, ---, w,
to any basis @,, -+-, w, of I. Then @,,, will be chosen later so that
using @,.,, M (®,,,) will be an epimorphism.

Let Flx,, -+, x,]"® be the vector space of polynomials in @, -+ -, @,
over F' which are homogenous of degree k. Define an epimorphism
V:iQH — Flw,, + -+, x,]*" so that v, Q@ -+ Q ;) =a; -+~ ;. If
ne V* 7 is symmetric, hence 7 (ker v) = 0. It follows that 7 induces
a unique linear transformation 7 on Flx,, ---, z,]"® into T.

These 7 can be considered linear transformations on Flx,, ---,
2, Q T* into F, where T* is the dual of 7. If dim 7T = q and
¥, «+ -, wf is a basis of T*, we can identity Flx,, -, ,]* @ T* with
the vector space F'[x,, <+, a,, &, -+, t]% " = Flx, ]V of polynomials
ina, -, x,, ¢, -+, t, which are homogenous of degree & in the x; and
degree 1 in the ¢,. Then V* is identified with a subspace of the dual
space of F'lx, t]* ., Let

A(VF) ={X e Fla, t]"") | (X) = 0 for every ¢ V*} .,

Next, consider &', consisting of all members of V* which are
zero on QIR I,. If (x, ---,x,) is the ideal in F'[x, ] generated by
X, e+, 2, and if (z,, -, 2;)® Y is its subspace of elements homogenous
of degree k in « and 1in ¢, let a[(z,, « - -, ;)] = {¢ € Hom (F'[x, t]*", F)|
Sy, +++, x,)* V] = 0} (the dual space to (x,, ---, x;)* ).

Then by definition

&t =VENal(ey, -+, )" "] .
It follows that
AF) = A(VE) + (g, -, )00,

PRoOPOSITION 6.1. x AF Y c A(e)) .

Let @ denote the element of F'[x, t]*” corresponding to we I. Then
M(w) is an epimorphism if and only if the following holds: whenever
@7 e A(«)), then ve A(&F).

Proof. \¥(w) is the dual of the linear transformation r;: F'[x, t]*"—
Flx, t]*+Y defined by 73(7) = vo. Since M(w) carries «F into &5,
rz,(A(@f™) C A(«z}). Hence the first assertion. The second remark
also follows from vector space theory.

Now let A, be the ideal in F'[z, t] generated by A(&5F), k=1,2, «--.
By the last Proposition Ay" = A(«3F~Y). If A, is the ideal generated
by A(V¥), k=1,2,---, we have A, = A, + (T, -+, Z}).
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PROPOSITION 6.2. There exists an element we Fx, {]*® and an
integer k, such that if k = k,, then @y — A(<F) implies v e A(&F).

Proof. Since A, is an ideal in a Noetherian ring it has a decom-
position A, = ¢;N+--Ngq, into primary ideals with distinet belonging

prime ideals p,, ---, p, such that
(pi)”CQiy izly"'yt-

Let k&, > max (o, --+, 0,).

Now suppose pi»» = Flx, t]*?. Then (pf)* " = Flx, t]* ", Hence
if k=k,>o;, Fl,t]"" = (g)"*", so @veq¢? implies ve qi*",

Now suppose p{? ... p? contain all Flx, ], while pL9, .-,
pi#” do not. Each p{.) is a proper subspace of F'[x,¢]"”, so we can
choose @e Flx,t]"” not in any »&%, j=1,.--,t —s. Then if
wveqll, @ ¢ p,.;, hence ve qf7""

For this @, if @ve A(&)}) = A} A, =qN---Ngq, then

vyeqN---Ngq, provided k = k,. Hence ve A" = A(&F).

COROLLARY. There exists we I and an tnteger k, such that w is
linearly independent of w,, -+, w, and N'(w) is an epimorphism for
all k = k,.

Proof. If Flax, t]*" = A(«f™") for some k = k,, let ve Flx,t]" " —
A(z)}Y). If ® chosen in Proposition 6.2 depends on %, ---,2,, then
wye A(VFY) + (2, « -, @)D = A(<f), while v¢ A(«&f), a con-
tradiction. Hence the we I corresponding to @ cannot depend on

Wyy »ooy Wy

If Flx, t]%? = A(e) for all k = k,, any we I will suffice.

THEOREM 6.1. It is possible to choose a basis w,, -+, w, of I and
an tnteger k, such that N (w,,,) s an epimorphism for all h and

k =k,

Proof. Having chosen w,, +--, w,, let ,., be the w of the pre-
vious Corollary.

THEOREM 6.2. (Kuranishi’s Prolongation Theorem) For any system
there exists an integer k, such that every kth (normal) prolongation

for k = k, tnvolutive.
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