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RELATIVE GENERAL POSITION

DAVID W. HENDERSON

In this paper we will say that a piecewise linear map
fιK-^M from a finite complex into an n-manifold is a general
position (gp) map, if for every pair of simplexes, A9 B9 contained
in K,

(dimension of the singularities of / 1 A + B)
^ (dimension of A) + (dimension of B) — n .

By letting B — 0, we see that a gp map into an w-manifold
is an embedding on each simplex of dimension less than or
equal to n. Also note that the restriction of a gp map to a
subcomplex is again a gp map. It is well known that every
map / of a complex into a combinatorial manifold can be
homotopically approximated by a gp map, g, on some subdivision
of the complex. One might suppose that, if L is a subcomplex
on which / is already a gp map, then g \ L could be made
equal to f\L. However, this cannot be done, in general,
even if the manifold is a Euclidean space and the complex is
a subdivision of a cell. (See the Remark at the end of § 3.)

In § 3 are two general position theorems which fix the
map on a subcomplex on which it is already a gp map, but
not without some severe restrictions. These theorems are
stated in terms of relative general position (rgp) which applied
to maps from a pair into a pair. Section 4 considers maps
/: φ, Bd D)->(M, N) of a 2-manifold, D, into a 3-manifold, M,
with 2-submanifold, N, with the added restriction that
/(Bd D) - f(D - Bd D) = 0. It is, in general, impossible in this
setting to make / into an rgp map while keeping /1 Bd D
fixed. However, two "relative normal position theorems" are
proved which make the singularities "nice" while not consider-
ing a particular subdivision.

The proofs are contained in § 5 through 8.

It should be pointed out that E. C. Zeeman's definition of general
position (see [9], p. 59, for general description and [10], Chapter 6,
for detailed discussion and proofs) differs from the one used here and
avoids most, if not all, of the difficulties encountered in this paper.
Thus in a round-about fashion this paper points up several advantages
in Zeeman's definition. However, Zeeman's definition may be undesir-
able for certain purposes. The main difference between the definitions
is that Zeeman cannot require that a general position map from a
complex K into a manifold to be both in general position on each
subcomplex of K and a homeomorphism on each simplex of K.
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2* Definitions*

2.1. A complex K will be considered to have a given fixed
triangulation. L is called a subcomplex of K if L is a complex each
of whose simplexes is a simplex of if. L is called a polyhedron in
K if L is a subcomplex of some subdivision of if.

2.2. If if is a complex and L a subset of [if], then ίΛ,e
of L in if, st(L, if), is the union of all (closed) simplexes of K

which intersect L. The open star of L in if, ost(L, if), is the union
of all open simplexes whose closures intersect L.

2.3. A mapping, /, from a complex if to a complex L is called
piecewise linear (pwl) if the graph of / is a polyhedron in the product
complex K x L. If if is finite, then there are subdivisions a, β such
that /: aK—*βL is simplicial.

2.4. A n-manifold Mn is a separable metric space each of whose
points has a closed neighborhood homeomorphic to In, the standard
n-cell.

The boundary of Mn, Bd Mn, is the set of points of Mn which
do not have arbitrarily small neighborhoods homeomorphic to En,
^-dimensional Euclidean space.

A combinatorial n-manifold is a complex such that the closed
star of each vertex has a rectilinear subdivision which is isomorphic
to a rectilinear subdivision of an ^-simplex.

It follows easily from [1; 5] that all 2- and 3-manifolds may be
given combinatorial triangulations, and henceforth in this paper we
shall assume that this has been done.

If Np and Mn are triangulated manifolds of dimension p and n,
respectively, then Np is a p-submanifold of Mn if Np is a subcomplex
of M\

2.5. If /: K—>L is a pwl map of one complex into another, then
by the singularities of /, S(f), we shall mean the closure of the set
of all points in L which are the images under / of more than one
point of K. The cardinality of f~\x) is called the order of x.

2.6. Let L be a subcomplex of K and let Np be a polyhedral
p-submanifold of the π-manifold Mn. A pwl map /: (K,L)->(Mn,Np)
is said to be a relative general position (rgp) map if

(a) for every pair of simplexes (A, B) in K such that B is not
in L, dim S(f | A + B) <> dim A + dim B - n
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(b ) for every pair of simplexes (A, B) in L, dim S(f | A + B) ^
dim A + dim B — p.

2.7. Let f:J—+K be a pwl map of a 1-manifold into a 2-manifold.
We shall call / normal if

( a ) / is at most 2-to-l and S(f) is a finite set of points, and
(b) f(J) crosses itself at each point of £(/).

2.8. Let C3 denote the solid cube in E* whose vertices are the
eight points in E°° which have as each coordinate either 1 or —1.

2.9. Let / : (D, Bd D) -> (M\ N2) be a pwl map of a 2-manifold
D with boundary into a 3-manifold Mz with 2-submanifold N2. We
shall call / a relative normal position (rnp) map if

( a ) /(BdZ>) / φ - B d Z > ) = 0
(b ) / is at most 3-to-l
( c ) /1 Bd D : Bd D -> N is normal
(d) is a 1-dim polyhedron in M3 consisting of (i) double curves

(curves along which two sheets of f(D) cross), (ii) triple points
(points with arbitrarily small neighborhoods N such that (N, N f(D))
is homeomorphic to (E3, coordinate planes)), (iii) branch points (points
with arbitrarily small closed neighborhoods N such that (N, JV f(D))
is homeomorphic to (C3, cone from the origin over a singular curve
on Bd C3)), and (iv) pinched branch points (points with arbitrarily
small closed neighborhoods V such that (V,V f(D)) is homeomorphic
to (C3, cone from origin over two paths on Bd C3)).
A pinched branch point is simple if the two paths on Bd C3 are arcs.
Note that all pinched branch points must be crossing points of BdD
on N2 because of (<?).

2.10. If /: K-+M and f: L—+M are maps, then the disjoint sum
of f and g is a map fQ)g:K@L—> M defined by

/(a?) , if x e K

g{x) , if x e L ,

where K ® L denotes the abstract disjoint sum of K and L.

3* Relative general position theorems*

THEOREM I. Let f: (K, L) —> (Λf, JV) &e α ^ ^ i map o/ a pair into
a pair, where L is a (^p)-dimensional subcomplex of the finite
and (^n)-dimensional complex K and N is a p-submanifold of the
combinatorial n-manifold M. Let s be a positive number.
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If there exists a subdivision a of K and a pwl map g:
such that

(3.1) g\L ~ f\L:aL—*N is a gp map,

(3.2) g takes each closed star of a simplex in aK into the open star
of a vertex in M,

(3.3) g is a pwl embedding on each simplex of aK, and

(3.4) g is obtained from f by a homotopy of (K, L) into (M, N)
which leaves L pointwise fixed and moves each point less than ε,

then these exists an rgp map gr: (aK, aL) —> (M, N) that satisfies

THEOREM II. Let f\ (K, L) —> (M, N) be a pwl map of a pair
into a pair, where L is a (^p)-dimensional subcomplex of the finite
and (s^n)-dίmensional complex K and N is a p-submanifold of the
combinatorial n-manifold M, Let e be a positive number.

If there exists a subdivision β of K such that

(3.5) /1 L: βL —> N is a gp map,

(3.6) S(f\L) is a finite set of points, and

(3.7) if A is a simplex in βL such that A f~~\S(f\L)) is not empty,
then f\A can be extended to a pwl map F[A] : st (A, βK) —> M
which is a homeomorphism on each simplex;

then there exists a subdivision, a, of K and an rgp map
g: (aK, aL) — (M, N) that satisfies (3.1)-(3.4).

COROLLARY Πa. If f:K—*M is a map of a finite (^
dimensional complex into the combinatorial n-manifold M,

then there exists a subdivision, a, of K and a pwl gp map
g:aK—>M such that g is arbitrarily close, homotopically, to /.

Moreover, if L is a subcomplex of K and f\L is a pwl
homeomorphism, then we may require that f\L — f\L.

(To prove the Corollary, apply the relative simplicial approximation
theorem [11] and Theorem II to /: (K, L) — (M, M).)

REMARK. Theorem II is false with (3.7) deleted. To see this,
let M—N~ E\ K be some subdivision of 4-simplex, and L~ A + A
be the union of two disjoint 2-simplexes on BάK. Let D[ be a
polyhedral disk in JB4 which fails to be locally flat at a point p in
the interior of D[, and let D'2 be any polyhedral disk in E4 such that
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D[ D[ — p. (For example, consider Ez to be a 3-hyperplane of E4

with pe E4 — E3, and let Ό\ be the cone from p over a sec J{ in E\
where Jx is knoted in E3 and J2 links Jln) For i = 1, 2, let / | A be
a pwl homeomorphism onto A ; and then extend to the rest of K in
any pwl fashion. / satisfies (3.5) and (3.6) but there is no extension
of / | A + A which is a gp map. This is because if g: K—> M — E4

is an extension of /1 A + A a n d a homeomorphism on each simplex
of some subdivision λ of K, then, in order that g | λ(A + A) be a
gp map, a neighborhood of p in A lies on the boundary of the pwl
homeomorphic image of a 4-simplex and thus A is locally flat at p.

QUESTION. Can (3.6) 6β weakened!

4+ Relative normal position theorems*

THEOREM III. If f: (D, J) —> (M, N) is a pwl map of a pair into
a pair, where D is a 2~manifold with boundary J and N is a 2-sub-
manifold of the 3-manifold M, and, in addition, f(D — J)*f(J) — 0 ,
f\J is normal, and ε is a positive number,

then there exists a pwl map g: (D, J) —> (M, N) such that

(4.1) g is obtained from f by a homotopy of (D, J) into (M, N)
which moves each point less than ε and only moves points at
all in an ε-neighborhood of the set of points in M at which f
fails to be in rnp (see 2.9),

(4.2) g is a rnp map, and

(4.3) g\J = f\J.

COROLLARY Ilia. If f:D—>M is a Dehn surface in the 3-
manifold, M, (i.e. S(f) f(BdD) = 0 and f is pwl),

then by a "slight adjustment'9 of f we can get a pwl map
g: D—>M and a neighborhood N of BάD in D such that g\N = f\N
and g:D-^M is a normal Dehn surface (i.e. S(g) consists of double
curves, branch points, and triple points (see 2.9)).

THEOREM IV. Let N be a 2-submanifold of the Z-manifold M
and h be a fixed-point-free pwl homeomorphism of (M, N) onto
(M, N) such that hh equals the identity map. Let ε be a positive
number.

Iff: (D, J)—>(M, N) is a pwl map of a 2-manifold D with boundary
J into (M, N) such that (f(D - J) + hf(D - J)) (/(J) + hf(J)) = 0 ,
and f(&hf\J(£)J is normal [ f l φ f l is the abstract disjoint union
of two copies of D and fφhf is the mapping which is equal to f
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on one copy of D and hf on the other (see 2.10)];
then there exists a pwl map g: (D, J) —> (M, N) such that

(4.4) g is obtained from p by a homotopy of (D, J) into (M, N)
which moves each point less than ε and only moves points at
all in an ε-neighborhood of the set of points in M at which
f@hf fails to be in rnp.

(4.5) gφhg: (A, Λ) Θ (A, J*) — (Λf, N) is a rnp map, and

(4.6) g\J = f\J.

COROLLARY IVa. Let M be a S-manifold and h a pwl homeo-
morphism of M onto M such that hh equals the identity map.

Iff:D—*M is an embedding of a surface into M such that
hf(ΈdD).f(D - BAD) = 0 .

then by a "slight adjustment" of f we can get a pwl embedding
g\D—>M and a neighborhood N of BάD in D such that g\N — f\N
and g(D) hg(D) is a finite collection of disjoint simple closed curves.

To prove the Corollary apply the Theorem and note that the only
singularities possible are double lines.

The Corollaries are used in the various proofs of Dehn's Lemma
and the Loop Theorem. (Corollary Ilia is used in [6] and its proof is
indicated in [2], Corollary IVa is used without proof in [7] and [8].)
The relative versions in the Theorems are used in the proofs of the
author's extensions of Dehn's Lemma and the Loop Theorem, [3] and

[4].
It should be noted that if g: D —> M is a normal Dehn surface,

then there are arbitrarily fine subdivisions of D with respect to which
g is a gp map. However, there is not necessarily any triangulation
with respect to which a given rnp map is a rgp map, because a non-
simple pinched branch point must be the image of a vertex if the
map is a homeomorphism on each simplex.

5. Proof of Theorem I. Let ^ L ^ L o C L i C ^ c c L ^ aKt

where for i = 0,1, 2, , k — 1, Li+1 = L4 + Au A{ is a simplex of aK,
and Ai Li — Bd Ai% (This can be accomplished by adding the simplexes
of aK0 not in aL in some order of increasing dimension.) Assume
inductively that there is a map gm; (K,L)—*(M,N) such that (let g0 = g)

(5.1)m gm satisfies (3.1)-(3.4) with "g" replaced by "gj\

(5.2)m gm I Lm : (Lm, aL) -> (Λf, N) is a rgp map, and

(5.3)m gm\K~ ost (Am_u aK) - gm^ \ K - ost (Am_u aK). (Note t h a t
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Let P = st (Am, aK) and OP = ost (Aw, aK). We shall now alter
gm in P, keeping it fixed on P - OP. Let Q be closed star of a
vertex of ikf such that gmP czintQ and let A be a pwl embedding of
Q onto the standard ^-simplex A, which we consider as a convex
subcomplex of ^-dimensional Euclidean space, E*. Let β be a subdi-
vision of aK such that βa(g^(Q)) is a subcomplex of βaK, and

takes simplexes linearly into simplexes, and such that each simplex
of βA has at least one vertex in OP. Call h o [gm \ g~\Q)] = H and

βa{g-m\Q)) = R.
If C is a collection of simplexes in En, let T(C) denote the union

of all hyperplanes in En which contain n vertices of C. For a finite
collection of simplexes, C, En — T(C) is open and dense and each of
its components is convex.

Let vuv2, *,vr be the images of those vertices of βAm which are
not /3(Bd Am). (Remember that gmi and therefore H, are embeddings
on each simplex of aK and therefore are embeddings on each simplex
of βaK.) Let v? be a point "very close" to v1 in A-[En - T(H(E))]
such that the straight line segment from vλ to v* intersects T(H(R))
only at v±. Define H1:R^AaEn to be equal to H on iZ-os^if-1^, βP)
and HiiH^Vj) = vt and extend linearly to the rest of st (H~1vu βP).
We leave to the reader the easy verification that H1 is an embedding
on each simplex of P. We now repeat the process with "v" and "H"
replacing "v" and "H", and so forth until we get a map H' — Hr

that is a linear embedding on each simplex of R and a pwl embedding
on each simplex of P, and such that, for each ί, H\H^v^) = vf
belongs to [En - T(H(R - OP) + vf + + vti)\-A. (Note that
H\R~OP= H1\R-OP = Hi\R-OP= = H'\R- OP.) Define
(/w+11 aK - OP = gm \ aK - OP and </w+11 P - hr*H\P.

We must now show that (5.1)m+1 — (5.3)m+1 are satisfied. (5.1)w+ι

is satisfied if we make Vi close enough to vf. (5.3)m+1 is inherent in
the construction. If (5.2)m+1 is not satisfied then there is a 6-dimensional
simplex B in aK such that (let a — dimension of Am)

dimension (S(gm+1 \Am + B))>b + a — n.

Then there would be a ( ^ 6)-dimensional simplex B' in βB-R and a
( ^ α)-dimensional simplex A' in βAm such that

dimension ((gm+1A'-gm+1B
f) - gm+1(A'-B')) > b + a - n .

However, if vf is the one member of {vf, ,v?}-gm+1A' with highest
subscript, then it is a straightforward exercise in linear algebra to
show that vf belongs to
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T[gm+1(A' + B') - ost (vf, gm+1A')λ c T(H(R - OP) + vf + . + ^ 0

which contradicts our restrictions on the choice of vf.
Thus we may conclude that there exists a map g' = gk that satisfies

(5.1)fc — (5.3)*.. This is the map required in Theorem I.

6* Proof of Theorem ΓL First, we prove a necessary

LEMMA. Let C be pwl homeomorphίc (under h) to the standard
n-simplex (Δ) in En, and let A be a (^n)-dimensional simplex.

If f: a A —> C is a pwl map which is a homeomorphism on each
simplex of a(Bd A), for some subdivision a of A,

then f is arbitrarily close, homotopically, to a pwl map g: πA^>C
such that g | Bd A = /1 Bd A and g is a homeomorphism on each
simplex of πA, where π is some subdivision of A and refines a.

Proof. Let π be a subdivision of A such that πA is a subdivision
of a A and hf: πA —> C —> Δ c En is linear on each simplex of πA.
Further, assume that, for each simplex B in πA, 2? BdA is a single
face (possibly empty) of B. Let vu , vr be the vertices of πA not
in π(BdA). Let v[, •••,< be a collection of points in Δ such that,
for each i, v\ is "close" to hf(v^) and v\ does not lie on any linear
subspace of E* that is determined by some collection of k(^ri) points
from {v[, , <•_!, v'i+1, - , <} + hf (the vertices of ττ(Bd A)). Define
g I Bd A = f\ Bd Ay g(Vi) — v\ for each i, and then extend linearly to
the rest of A. By making v\ close enough to hf(Vi), for each i, we
can make g as close, homotopically, to / as we please. It is an easy
exercise to show that g is a homeomorphism on each simplex of πA.

We now return to the proof of Theorem II. By the carrier of a
point, p9 in βK we shall mean the unique simplex of βK which
contains p in its interior. Note that any subdivision μ of βK satisfies
(3.5)—(3.7) if, for every point p of /-1(>S(/| L)), the carrier of p in
μβK has the same dimension as the carrier of p in βK. Therefore
we may assume without loss of generality that β is so fine that, for
every simplex A of βK, f(st(A, βK)) is contained in some open star
of a vertex of M. Let AU ,A8 be the collection of carriers of points
of f~\S(f\ L)). Since A+ is compact and there is a pwl homeomorphism,
keeping A{ fixed, of st(AifβK) into any neighborhood of A{ in st(AiyβK),
we may assume that, for each i, F[Ai](st(Ai9 βK)) is contained in the
same open star of a vertex as f(st(Ai, βK)). We also suppose that
f[Ai] = /1 st(A4, βK), if the latter is a homeomorphism on each simplex.
We can now easily obtain a pwl map /*: (βK,βL)—*(M,N) such that
/* I L = / | L and /* | &t(AifβK) = F[A \ and such that (3.4) is satisfied
with V replaced by "/*". Let Bl9 --,Bt be the simplexes of βK
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not in βL + Σ [st(Ai,βK)] and suppose that they are arranged in some
order of increasing dimension. Let

L3- = βL + Σ£ί[st(A ί f βK)] + Σ " = ί Ί ^ ] ,

for j = 0,1, •••,£. Note that B d B j + 1 a L3. We assume inductively
that we have a subdivision μό of if and a pwl map / y : (^-iΓ, μ3-L) —•
(M, N) such that

(6.1)j fj is a homeomorphism on each simplex of μόLjΊ

(6.2), fd\L0=f*\L0,

(6.3),- /^if is a subdivision of ̂ SϋΓ,

(6.4),- each A{ is a simplex of μs-K,

(6.5)j fj maps the star of each simplex of βK into the open star of
a vertex of M, and

'(6.6)j fj is obtained from / by a homotopy of (K,L) into (M,N) which
leaves L pointwise fixed and moves each point less than ε.

Note that / * = /0 satisfies (6.1)0—(6.6)0. We will now use the
Lemma and μ3- and f3 to construct μj+1 and fj+1. Let C be the open
star of some vertex of M such that fd(st(Bi+1, βK)) c C. Thus we
can apply the Lemma and obtain a pwl map g: πBj+1 —• C arbitrarily
close, homotopically, to fd \ Bj+1 such that g \ Bd Bj+ί = /,-1 B i + 1, g is a
homeomorphism on each simplex of πBj+1, and π(BdBj+1) is a subdivi-
sion of μj(BάBj+1). Then define μj+1(Bj+1) = π(Bj+1) and extend to a
subdivision of μ,, Z. Since st(Aί,/9iΓ) is contained in Lo and therefore
in Lj, we may do the extending in such a way that (6.4) i+1 is satisfied.
We define fj+11 Bj+1 = βr and

fj+11 iΓ - ost(Si+1, βK) =fj\K~ ost(Bj+ί, βK)

and then extend (in C) to the rest of st(Bj+1, βK). It is clear that if
g is close enough to fd \ Bj+1 then (6.5) i+1 and (6.6) i+1 will be satisfied.
(6.1)5 +i is satisfied because μj+1K is a subdivision of μάK.

Thus by induction we may assume that there is a pwl map
ft: (μtK, μtL)-+(M, N) that satisfies (6.1),—(6.6),. We now show that
/, and μt satisfy (3.1)—(3.4) with "g" replaced by "/ f " and "a" replaced
by "μΓ. (3.1) follows from (6.2),—(6.4),, (3.2) follows from (6.5),, (3.3)
follows from (6.1),, and (3.4) follows from (6.6),.

Thus Theorem II now follows from Theorem I.

7* Proof of Theorem III* We first obtain a subdivision λ of
D and a pwl map g':\D—>M that satisfies (4.1) and (4.2) with "g"
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replaced by "gr", and so that gr is a homeomorphism on each simplex
of XD. The proof that such a X and gf exist follows closely the
arguments in § 6, with the arguments dealing with the A[s omitted;
and therefore we will not give the details here. Suffice it to say
that one should find a subdivision β of M so that ε is larger than
the diameter of each vertex star of βM and then require that the
image under / and gf of each vertex star of XD must be contained in the
open star of a vertex of M.

Let a and δ be subdivision of M and D, respectively, so that g*
is simplicial from δD to aM. Then g\D) is a subcomplex of aM and
S(g') is a subcomplex of gr{D). Let a2 denote the second barycentric
subdivision of a. Note that S(g') g'(J) is just the crossing points of

g*\J.
If ω is a 2-simplex of S(g'), then g'~ι(ω) is the union of two or

more 2-simplexes of D and st(ω, a2M) is a 3-cell of which ft) is a
spanning disk. Being careful not to move things too far we can
adjust the interiors of the images of each 2-simplex of g'^ω) so that
they still lie in st(α>, a2M) but are disjoint except for their boundaries.
By applying this procedure to each 2-simplex in S(g') we can get a
pwl map g":D-*M that satisfies (4.1) and (4.3) and S(g") is a 1-
subcomplex of aM.

If τ is a 1-simplex of S(g"), then st(τ, a2M) is a 3-cell of which
τ is a spanning arc and (/""^(stίτ, a*M)) is the union of two or more
subdisks of D, the image of each being a spanning disk of st(r, a2M).
We may then alter these spanning disks slightly in the interior of
st(r, a2M) so that the only singularities in the interior of st(τ, a2M)
are double lines whose endpoints are the endpoints of τ. In this
fashion we can obtain a pwl map g"f that satisfies (4.1) and (4.3) and
g"! fails to be a rnp map only at the vertices of S(g"). Analogously,
we adjust slightly the images in st(v, a2M) for each vertex, v, of
S(g") — ΰ"{J) so that the only singularities in st(v, ceM) are triple
points, branch points, and the ends of double lines. The pwl map
then obtained is the desired map g. The vertices of S(g") g"(J) are
just the crossing points of gnt \ J — g" \ J and thus the pinched branch
points of g'" \ D.

8. Proof of Theorem IV* First we wish to pick subdivisions
of D and M so that both / and h are simplicial with respect to these
subdivisions. Let v and β be subdivisions so that /: vD —> βM is
simplicial. Since h is pwl, there exist refinements β1 and β2 of β
such that h: β^—^β^M is simplicial. Let (β^β^M denote the convex
linear cell complex composed of all cells of the form zvr2 where τ{ is
a simplex of βζM. (See [10], Chapter 1, page 5, for a description of
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convex linear cell complex.) Now the image under ft of a cell of
(βsβ^M is again a cell of (β^β^M. Then, order the cells of {β^β^M
in some order of increasing dimension, μu μ2, , μp, so that for each
t9 μu — h(μ2t-i). We now subdivide, one at a time in order, each cell
into a simplex, while leaving the subdivision fixed on the boundary of
the cell; and in doing this we let h(μtt^ determine the subdivision on
μ%u for each t. (See [10], Chapter 1, Lemma 1.) In this way we obtain
a subdivision a of M that refines β, and such that h:aM—> aM is
simplicial. By Lemma 5 of Chapter 1 of [10], there is a subdivision δ
of D such that /: SD —> aM is simplicial.

Theorem IV can now be proved using essentially the same argu-
ments used in the proof of Theorem III, with the exception that all
subdivisions of M should be such that h is simplicial with respect to
them and in altering the maps the changes made in the star of a
simplex should "agree" with the changes of the maps in the image
of that star under h.
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