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RELATIVE GENERAL POSITION

DavipD W. HENDERSON

In this paper we will say that a piecewise linear map
f: K— M from a finite complex into an n-manifold is a general
position (gp) map, if for every pair of simplexes, A, B, contained
in K,
(dimension of the singularities of f|A + B)
=< (dimension of A) + (dimension of B) — n .

By letting B = O, we see that a gp map into an n-manifold
is an embedding on each simplex of dimension less than or
equal to n. Also note that the restriction of a gp map to a
subcomplex is again a gp map., It is well known that every
map f of a complex into a combinatorial manifold can be
homotopically approximated by a gp map, g, on some subdivision
of the complex. One might suppose that, if L is a subcomplex
on which f is already a gp map, then g | L could be made
equal to f| L. However, this cannot be done, in general,
even if the manifold is a Euclidean space and the complex is
a subdivision of a cell. (See the Remark at the end of §3.)

In §3 are two general position theorems which fix the
map on a subcomplex on which it is already a gp map, but
not without some severe restrictions. These theorems are
stated in terms of relative general position (rgp) which applied
to maps from a pair into a pair. Section 4 considers maps
f:(D,Bd D)—»(M, N) of a 2-manifold, D, into a 3-manifold, M,
with 2-submanifold, N, with the added restriction that
f(Bd D) f(D—Bd D)=, Itis, in general, impossible in this
setting to make f into an rgp map while keeping f|Bd D
fixed. However, two ‘‘relative normal position theorems’ are
proved which make the singularities ‘‘nice’’ while not consider-
ing a particular subdivision,

The proofs are contained in § 5 through 8.

It should be pointed out that E. C. Zeeman’s definition of general
position (see [9], p. 59, for general description and [10], Chapter 6,
for detailed discussion and proofs) differs from the one used here and
avoids most, if not all, of the difficulties encountered in this paper.
Thus in a round-about fashion this paper points up several advantages
in Zeeman’s definition. However, Zeeman’s definition may be undesir-
able for certain purposes. The main difference between the definitions
is that Zeeman cannot require that a general position map from a
complex K into a manifold to be both in general position on each
subcomplex of K and a homeomorphism on each simplex of K.
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2. Definitions.

2.1. A complex K will be considered to have a given fixed
triangulation. L is called a subcomplex of K if L is a complex each
of whose simplexes is a simplex of K. L is called a polyhedron in
K if L is a subcomplex of some subdivision of K.

2.2. If K is a complex and L a subset of [K], then the closed
star of L in K, st(L, K), is the union of all (closed) simplexes of K
which intersect L. The open star of L in K, ost(L, K), is the union
of all open simplexes whose closures intersect L.

2.3. A mapping, f, from a complex K to a complex L is called
precewise linear (pwl) if the graph of f is a polyhedron in the product
complex K x L, If K is finite, then there are subdivisions «, 8 such
that f: aK — BL is simplicial,

2.4. A n-manifold M™ is a separable metric space each of whose
points has a closed neighborhood homeomorphic to I”, the standard
n~-cell.

The boundary of M™, Bd M", is the set of points of M™ which
do not have arbitrarily small neighborhoods homeomorphic to E™,
n-dimensional Euclidean space.

A combinatorial n-manifold is a complex such that the closed
star of each vertex has a rectilinear subdivision which is isomorphic
to a rectilinear subdivision of an n-simplex,

It follows easily from [1; 5] that all 2- and 3-manifolds may be
given combinatorial triangulations, and henceforth in this paper we
shall assume that this has been done.

If N? and M" are triangulated manifolds of dimension p and =,
respectively, then N7 is a p-submanifold of M™ if N? is a subcomplex
of M~,

2,5, If /1 K— L is a pwl map of one complex into another, then
by the singularities of f, S(f), we shall mean the closure of the set
of all points in L which are the images under f of more than one
point of K. The cardinality of f~'(x) is called the order of x.

2.6. Let L be a subcomplex of K and let N? be a polyhedral
p-submanifold of the n-manifold M". A pwl map f:(K,L)—(M",N?)
is said to be a relative general position (rgp) map if

(a) for every pair of simplexes (4, B) in K such that B is not
in L, dim S(f|A+ B)=dmA +dimB —n
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(b) for every pair of simplexes (A4, B) in L, dim S(f|A + B) =
dim A + dim B — p.

2.7. Let f:J— K be a pwl map of a 1-manifold into a 2-manifold.
We shall call f normal if

(a) fis at most 2-to-1 and S(f) is a finite set of points, and

(b) f(J) crosses itself at each point of S(f).

2.8. Let C® denote the solid cube in E* whose vertices are the
eight points in E*® which have as each coordinate either 1 or —1.

2.9. Let f:(D,BdD)— (M?* N* be a pwl map of a 2-manifold
D with boundary into a 3-manifold M*® with 2-submanifold N2, We
shall call f a relative normal position (rnp) map if

(a) f(BAD)-f(D—BAdD)= @

(b) f is at most 3-to-1

(¢) f|BdD:BdD— N is normal

(d) is a 1-dim polyhedron in M?* consisting of (i) double curves
(curves along which two sheets of f(D) cross), (ii) triple points
(points with arbitrarily small neighborhoods N such that (N, N- f(D))
is homeomorphic to (£?, coordinate planes)), (iii) branch points (points
with arbitrarily small closed neighborhoods N such that (N, N- f(D))
is homeomorphic to (C3? cone from the origin over a singular curve
on Bd C?%), and (iv) pinched branch points (points with arbitrarily
small closed neighborhoods V' such that (V, V. f(D)) is homeomorphic
to (C3, cone from origin over two paths on Bd C?)).
A pinched branch point is simple if the two paths on Bd C® are arcs.
Note that all pinched branch points must be crossing points of Bd D
on N*® because of (¢).

210, If f: K— M and f: L— M are maps, then the disjoint sum
of fand g is a map fPg: KP L — M defined by

fle), ifzekK

(fDg)x) = o), if wel,

where K @ L denotes the abstract disjoint sum of K and L.

3. Relative general position theorems.

THEOREM 1. Let f: (K, L)— (M, N) be a pwl map of a pair into
a pair, where L is a (=p)-dimensional subcomplex of the finite
and (Zn)-dimensional complex K and N is a p-submanifold of the
combinatorial n-manifold M. Let ¢ be a positive number,
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If there exists a subdivision « of K and a pwl map g: aK— M
such that

8.1) g|L=f|L:aL— N is a gp map,

(3.2) ¢ takes each closed star of a simplex in aK into the open star
of a vertex in M,

(3.3) g is a pwl embedding on each simplex of aK, and

(8.4) ¢ tis obtained from f by a homotopy of (K, L) into (M, N)
which leaves L pointwise fixed and moves each point less than &,

then these exists an rgp map ¢ : (@K, al)y— (M, N) that satisfies
(3.1)-(3.4).

THEOREM II, Let fi (K, L)— (M, N) be a pwl map of a pair
into o pair, where L is a (Zp)-dimensional subcomplex of the finite
and (Zn)-dimensional complex K and N is a p-submanifold of the
combinatorial n-manifold M, Let ¢ be a positive number.

If there exists a subdivision B of K such that

(3.5) f|L:BL— N is a gp map,
(8.6) S(f|L) is a finite set of points, and

(8.7 if A is a simplex in BL such that A-f~(S(f|L)) is not empty,
then f|A can be extended to a pwl map F[A]:st(4,8K)—M
which 18 a homeomorphism on each simplex;

then there exists a subdivision, «, of K and an rgp map
g: (@K, aL) — (M, N) that satisfies (3.1)-(3.4).

COROLLARY Ila. If fiK—M is a map of a finite (=n)-
dimensional complex into the combinatorial n-manifold M,

then there exists a subdivision, «, of K and a pwl gp map
9: K — M such that g is arbitrarily close, homotopically, to f.

Moreover, if L is a subcomplex of K and f|L is a pwl
homeomorphism, then we may require that f|L = f| L.

(To prove the Corollary, apply the relative simplicial approximation
theorem [11] and Theorem II to f: (K, L)— (M, M).)

REMARK. Theorem 11 is false with (3.7) deleted. To see this,
let M= N = E* K be some subdivision of 4-simplex, and L = D, + D,
be the union of two disjoint 2-simplexes on Bd K. ILet D! be a
polyhedral disk in E* which fails to be locally flat at a point p in
the interior of Dj, and let D} be any polyhedral disk in E* such that
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D;-D} = p, (For example, consider E® to be a 3-hyperplane of FE*
with pe E* — E3, and let D} be the cone from p over a scc J; in E?,
where J, is knoted in E® and J, links J,.) For 7=1,2 let f| D, be
a pwl homeomorphism onto D}; and then extend to the rest of K in
any pwl fashion. f satisfies (3.5) and (3.6) but there is no extension
of f| D, + D, which is a gp map. This is because if g: K— M = E*
is an extension of f|D, -+ D, and a homeomorphism on each simplex
of some subdivision A of K, then, in order that ¢|ND, + D,) be a
gp map, a neighborhood of p» in D, lies on the boundary of the pwl
homeomorphic image of a 4-simplex and thus D, is locally flat at p.

QUESTION. Can (3.6) be weakened?

4. Relative normal position theorems.

THEOREM III. If f:(D,J)— (M, N) is a pwl map of a pair into
a pair, where D is a 2-manifold with boundary J and N is a 2-sub-
manifold of the 3-manifold M, and, in addition, f(D — J) -fJ) =@,
fl1d is normal, and ¢ is a positive nwmber,

then there exists a pwl map g:(D,J)— (M, N) such that

(4.1) g 1is obtaimed from f by a homotopy of (D,J) into (M, N)
which moves each point less than & and only moves points at
all in an e-neighborhood of the set of points in M at which f
fails to be im rup (see 2.9),

(4.2) g is a rup map, and
4.3) glJ=rIJ.

COROLLARY Illa. If fiD— M is a Dehn surface in the 3-
manifold, M, (i.e. S(f)-f(BAD)= @ and f is pwl),

then by a “slight adjustment” of f we can get a pwl map
g: D— M and o netghborhood N of BdD in D such that g| N= f|N
and g: D— M is a normal Dehn surface (i.e. S(g) consists of double
curves, branch points, and triple points (see 2.9)).

THEOREM 1V. Let N be a 2-submanifold of the 3-manifold M
and h be a fixed-point-free pwl homeomorphism of (M, N) onto
(M, N) such that hh equals the identity map. Let ¢ be a positive
number.

If (D, J)—(M,N)is a pwl map of a 2-manifold D with boundary
J into (M, N) such that (f(D — J) + hf(D — J))-(AJ) + hAJ)) = @,
and fARF|JDJ is normal [D@ D is the abstract disjoint union
of two copies of D and fPhf is the mapping which is equal to f
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on one copy of D and hf on the other (see 2.10)];
then there exists a pwl map g: (D, J)— (M, N) such that

(4.4) g vs obtained from p by a homotopy of (D,dJ) into (M, N)
which moves each point less than ¢ and only moves points at
all in an e-neighborhood of the set of points im M at which
fFB RS fails to be in rup.

(4.5) gD hg: (D, ) D Dy, J.) — (M, N) is a rnp map, and
(4.6) glJ=fI[J.

COROLLARY IVa, Let M be a 3-mantfold and h a pwl homeo-
morphism of M onto M such that hh equals the identity map.

If f1D— M is an embedding of a surface into M such that
hf(BdD)-f(D— BdD) = @.

then by a “slight adjustment” of f we can get a pwl embedding
9:D— M and a meighborhood N of Bd D in D such that g| N=f|N
and g(D)-hg(D) is a finite collection of disjoint simple closed curves.

To prove the Corollary apply the Theorem and note that the only
singularities possible are double lines.

The Corollaries are used in the various proofs of Dehn’s Lemma
and the Loop Theorem. (Corollary IIla is used in [6] and its proof is
indicated in [2]. Corollary IVa is used without proof in [7] and [8].)
The relative versions in the Theorems are used in the proofs of the
author’s extensions of Dehn’s Lemma and the Loop Theorem, [3] and
[4].

It should be noted that if g: D— M is a normal Dehn surface,
then there are arbitrarily fine subdivisions of D with respect to which
g is a gp map. However, there is not necessarily any triangulation
with respect to which a given rnp map is a rgp map, because a non-
simple pinched branch point must be the image of a vertex if the
map is a homeomorphism on each simplex.

5. Proof of Theorem 1. Let «L =L, cL,cL,c---CL,=aK,
where for ©=10,1,2,---,k—1, L., = L; + A;, A; is a simplex of aK,
and A;-L; =Bd A;. (This can be accomplished by adding the simplexes
of aK, not in «L in some order of increasing dimension.) Assume
inductively that there is a map g¢.,.: (K, L)— (M, N) such that (let g, = g)

(5.1),, g, satisfies (8.1)-(3.4) with “g” replaced by “g,”,
(5.2)n  Gm | Ly : (L, aL)— (M, N) is a rgp map, and

(5.3), gu| K—ost(4,_,aK)=g¢,.| K —ost(4,_,aK). (Note that
L, . Cc K —ost(A,_, aK).)
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Let P=st(A,,aK) and OP = ost(A4,,,aK). We shall now alter
g, in P, keeping it fixed on P— OP. Let @ be closed star of a
vertex of M such that g, Pcint @ and let 2 be a pwl embedding of
@ onto the standard n-simplex 4, which we consider as a convex
subcomplex of n-dimensional Euclidean space, E". Let 8 be a subdi-
vision of aK such that Ba(g, (Q)) is a subcomplex of SaK, and

holgn|921(Q)] : B9 (Q)) — 4 E*

takes simplexes linearly into simplexes, and such that each simplex
of BA has at least one vertex in OP, Call holg, |9,;(Q)] = H and
Ba(g,'(Q)) = R.

If C is a collection of simplexes in E*, let T(C) denote the union
of all hyperplanes in E™ which contain » vertices of C. For a finite
collection of simplexes, C, B — T(C) is open and dense and each of
its components is convex.

Let v, v,,+--,v, be the images of those vertices of 84, which are
not B(Bd 4,). (Remember that g,, and therefore H, are embeddings
on each simplex of K and therefore are embeddings on each simplex
of BaK.) Let v§ be a point “very close” to v, in 4:-[E* — T(H(R))]
such that the straight line segment from v, to v{ intersects T(H(R))
only at »,. Define H;: R— 4 E™ to be equal to H on R-ost(H'v,, BP)
and H,(H 'w,) = v} and extend linearly to the rest of st(H ', BP).
We leave to the reader the easy verification that H, is an embedding
on each simplex of P. We now repeat the process with “v»,” and “H,”
replacing “v,” and “H?”, and so forth until we get a map H' = H,
that is a linear embedding on each simplex of R and a pwl embedding
on each simplex of P, and such that, for each ¢, H'(H ;) = v¥
belongs to [E* — T(H(R — OP) + vf + -+ + vf)]-4. (Note that
H/R—OP=H|R—OP=H,)R—OP=..-=H'|R— OP.) Define
Imei| 0K — OP =g, |aK — OP and g¢,..| P= h*H|P.

We must now show that (5.1),.,, — (5.8),,,; are satisfied. (5.1),,.,
is satisfied if we make v; close enough to v¥. (5.3),.: is inherent in
the construction, If (5.2),,., is not satisfied then there is a b-dimensional
simplex B in @K such that (let ¢ = dimension of A,)

dimension (S(¢,,4: | A, + B) >b+a—n.

Then there would be a (<b)-dimensional simplex B’ in SB-R and a
(= a)-dimensional simplex A’ in A, such that

dimension ((9n+14"*9n:B') — gu(4-B)) > b +a —n.

However, if v} is the one member of {vf,.--,v}}.9,..4" with highest
subscript, then it is a straightforward exercise in linear algebra to
show that v} belongs to
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T[gn+(A" + B') —0st (vf, g AN T(H(R — OP) + vf + + - +0F)

which contradicts our restrictions on the choice of vj.
Thus we may conclude that there exists a map ¢’ = g, that satisfies
(5.1), — (5.3),. This is the map required in Theorem I.

6. Proof of Theorem II. First, we prove a necessary

LEMMA. Let C be pwl homeomorphic (under h) to the standard
n-stmplex (4) in E*, and let A be a (<n)-dimensional simplex.

If fiaAd—C is a pwl map which ts a homeomorphism on each
stmplex of a(Bd A), for some subdivision « of A,

then f is arbitrarily close, homotopically, to a pwl map g: tA—C
such that g|BdA=7F|BdA and g is a homeomorphism on each
stmplex of wA, where w is some subdivision of A and refines a.

Proof. Let m be a subdivision of A such that w4 is a subdivision
of aA and hfimwA— C— d4C E" is linear on each simplex of 7A.
Further, assume that, for each simplex B in wA, B-Bd A is a single
face (possibly empty) of B. Let v, ---, v, be the vertices of A not
in w#(BdA). Let v{, ---, v, be a collection of points in 4 such that,
for each 1, v} is “close” to hf(v;) and v; does not lie on any linear
subspace of E™ that is determined by some collection of k{=<mn) points
from {v;, «++, Vi, Visq, =+, v} + hf (the vertices of #(Bd A)). Define
g|BdA=f|BdA, gv;) = v} for each 7, and then extend linearly to
the rest of A. By making v, close enough to Af(v;), for each i, we
can make g as close, homotopically, to f as we please. It is an easy
exercise to show that ¢ is a homeomorphism on each simplex of 7A.

We now return to the proof of Theorem II. By the carrier of a
point, p, in BK we shall mean the unique simplex of SK which
contains p in its interior, Note that any subdivision ¢ of BK satisfies
(3.5)—(3.7) if, for every point p of f~(S(f|L)), the carrier of p in
#BK has the same dimension as the carrier of p in BK. Therefore
we may assume without loss of generality that £ is so fine that, for
every simplex A of BK, f(st(4, BK)) is contained in some open star
of a vertex of M, Let A,,---,A, be the collection of carriers of points
of f=(S(f|L)). Since A; is compact and there is a pwl homeomorphism,
keeping A; fixed, of st(4;,8K) into any neighborhood of A; in st(4;,8K),
we may assume that, for each 7, F[A;](st(4;,8K)) is contained in the
same open star of a vertex as f(st(4;, BK)). We also suppose that
fIA] = flst(4;, BK), if the latter is a homeomorphism on each simplex.
We can now easily obtain a pwl map f*: (8K,SL)— (M, N) such that
S*IL=f|L and f*|st(4;,BK)= F[A,] and such that (3.4) is satisfied
with “g” replaced by “f*”., Let B, ---, B, be the simplexes of SK
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not in BL + 3[st(A;, BK)] and suppose that they are arranged in some
order of increasing dimension. Let

L; = BL + 2Zi[st(A;, BK)] + 20 [B:] ,

for j=0,1,---,¢t. Note that Bd B;,,C L;. We assume inductively
that we have a subdivision g¢; of K and a pwl map f;: (¢;K, ¢;L)—
(M, N) such that

(6.1); f; is a homeomorphism on each simplex of p;L;,
6.2);, f;|Li=f*|L,

(6.3); n;K is a subdivision of SK,

(6.4); each A, is a simplex of y,K,

(6.5); f; maps the star of each simplex of SK into the open star of
a vertex of M, and

(6.6); f; is obtained from f by a homotopy of (K, L) into (M, N') which
leaves L pointwise fixed and moves each point less than e,

Note that f* = f, satisfies (6.1),—(6.6),, We will now use the
Lemma and p; and f; to construct p;,, and f,,,. Let C be the open
star of some vertex of M such that f(st(B,., 8K))cC. Thus we
can apply the Lemma and obtain a pwl map g¢:zB; ., — C arbitrarily
close, homotopically, to f;|B;., such that g|Bd B;,, = f;| B;;, ¢g is a
homeomorphism on each simplex of 7B;.,, and 7(Bd B,,,) is a subdivi-
sion of p;(Bd B,,;). Then define y; (B;;;) = n(B;.,) and extend to a
subdivision of ;K. Since st(4;, SK) is contained in L, and therefore
in L;, we may do the extending in such a way that (6.4);,, is satisfied.
‘We define f;,,|B;,, = ¢ and

fin| K — ost(Bj., BK) = f;| K — ost(B;,,, SK)

and then extend (in C) to the rest of st(B;., BK). It is clear that if
g is close enough to f;|B;., then (6.5);,, and (6.6);,, will be satisfied,
(6.1);,, is satisfied because y;,K is a subdivision of #;K.

Thus by induction we may assume that there is a pwl map
S (K, pr,L)— (M, N) that satisfies (6.1),—(6.6),. We now show that
f: and e, satisfy (3.1)—(3.4) with “g” replaced by “f,” and “a” replaced
by “p.”’. (3.1) follows from (6.2),—(6.4),, (3.2) follows from (6.5),, (3.8)
follows from (6.1),, and (3.4) follows from (6.6),.

Thus Theorem II now follows from Theorem I.

7. Proof of Theorem III. We first obtain a subdivision \ of
D and a pwl map ¢’: AND— M that satisfies (4.1) and (4.2) with “g”
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replaced by “¢’”, and so that ¢’ is a homeomorphism on each simplex
of AD. The proof that such a A and ¢ exist follows closely the
arguments in § 6, with the arguments dealing with the Als omitted;
and therefore we will not give the details here. Suffice it to say
that one should find a subdivision 8 of M so that ¢ is larger than
the diameter of each vertex star of AM and then require that the
image under f and ¢’ of each vertex star of A.D must be contained in the
open star of a vertex of M,

Let a and 6 be subdivision of M and D, respectively, so that ¢’
is simplicial from 6D to aM. Then ¢'(D) is a subcomplex of aM and
S(¢’) is a subcomplex of ¢’(D). Let o denote the second barycentric
subdivision of a. Note that S(¢’)-¢’(J) is just the crossing points of
g'1J.

If w is a 2-simplex of S(¢’), then ¢’""(w) is the union of two or
more 2-simplexes of D and st{(w, «®M) is a 3-cell of which » is a
spanning disk. Being careful not to move things too far we can
adjust the interiors of the images of each 2-simplex of ¢’~(w) so that
they still lie in st(w, @*M) but are disjoint except for their boundaries.
By applying this procedure to each 2-simplex in S(¢’) we can get a
pwl map ¢": D— M that satisfies (4.1) and (4.3) and S(¢”) is a 1-
subcomplex of aM.

If 7 is a 1-simplex of S(g”), then st(r, @*M) is a 3-cell of which
T is a spanning arc and ¢”~'(st(z, @*M)) is the union of two or more
subdisks of D, the image of each being a spanning disk of st(z, a*M).
We may then alter these spanning disks slightly in the interior of
st(z, M) so that the only singularities in the interior of st(z, &*M)
are double lines whose endpoints are the endpoints of z. In this
fashion we can obtain a pwl map ¢’” that satisfies (4.1) and (4.3) and
g fails to be a rnp map only at the vertices of S{¢g”’). Analogously,
we adjust slightly the images in st(v, @*M) for each vertex, v, of
S{g”) — ¢""{J) so that the only singularities in st(v, @*M) are triple
points, branch points, and the ends of double lines, The pwl map
then obtained is the desired map g. The vertices of S(g”)-g”(J) are

just the crossing points of ¢”’|J = ¢”|J and thus the pinched branch
points of ¢'”| D.

8. Proof of Theorem IV. First we wish to pick subdivisions
of D and M so that both f and % are simplicial with respect to these
subdivisions, Let v and B be subdivisions so that f:vD-— BM is
simplicial, Since & is pwl, there exist refinements B, and B, of 8
such that h: 8,.M— B, M is simplicial, Let (8,-8,)M denote the convex
linear cell complex composed of all cells of the form 7,-7, where 7, is
a simplex of B;,M. (See [10], Chapter 1, page 5, for a description of
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convex linear cell complex.) Now the image under & of a cell of
(B.-B,)M is again a cell of (8,-8,)M. Then, order the cells of (8,-8,)M
in some order of increasing dimension, f,, ft,, + -+, tt,, so that for each
t, tty = k(). We now subdivide, one at a time in order, each cell
into a simplex, while leaving the subdivision fixed on the boundary of
the cell; and in doing this we let A(g,,_,) determine the subdivision on
My, for each t. (See [10], Chapter 1, Lemma 1.) In this way we obtain
a subdivision « of M that refines £, and such that h:aM —alM is
simplicial. By Lemma 5 of Chapter 1 of [10], there is a subdivision ¢
of D such that f: 6D — aM is simplicial.

Theorem IV can now be proved using essentially the same argu-
ments used in the proof of Theorem III, with the exception that all
subdivisions of M should be such that 4 is simplicial with respect to
them and in altering the maps the changes made in the star of a
simplex should “agree” with the changes of the maps in the image
of that star under h.
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