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BOUNDEDNESS PRINCIPLES AND
FOURIER THEORY

R. E. EDWARDS

A systematic application of simple functional analytic tech-
niques (boundedness principles and the Hahn-Banach theorem)
is made to establish a few results in harmonic analysis,

For the circle group, results are obtained about the possi-
ble misbehaviour of conjugate functions and related multiplier
transforms.

For infinite compact Abelian groups, results are obtained
about the possible misbehaviour of functions or pseudomeasures
f for which the Fourier transform 7 is o(o), where o is a
preassigned nonnegative function on the character group.

1. Concerning conjugate functions. Except in Remark (e) at the
end of this section, all functions and distributions appearing this section
are assumed to have period 27, and may thus be regarded as functions
and distributions on the circle group. The n-th Fourier coefficient of
any such (integrable) function or distribution f will be denoted by 7 (n),
n here ranging over the set Z of integers.

It is known from the work of Lusin and Tolstov (see [1], Vol. 2,
pp. 95-98) that

(i) There exists an absolutely continuous function f whose con-
jugate function f is essentially unbounded on every nondegenerate
interval;

(ii) The function f referred to in (i) may be so chosen that the
Fourier series of f and of f are each pointwise convergent a.e..

The Lusin-Tolstov approach is constructive and we have nothing
to add to it. Instead, we present an existential proof of (i). Although
the proof is nonexplicit, it sheds some light on the underlying reasons
for the occurrence of the phenomena concerned.

In discussing (i) we use the fact that, at least for (measurable)
functions f such that f-log* | f|e L', the traditionally-defined conjugate
function f may be identified distributionally with Hxf, where H is the
distribution
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the series being distributionally convergent. It will be convenient to
refer to H as the (periodic) Hilbert distribution.

In view of the following theorem, the crucial property of H
leading to the phenomenon (i) is seen to be expressed by the formula
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(1.1) H~2D@&Fm54>—D@,

where the derivation symbol D is understood in its distributional
sense.

THEOREM 1. Let K be any distribution which is not of the
form

(1.2) K =c¢+ D¢

¢ denoting a constant and ¢e L. Then there exist absolutely con-
tinuous functions f such that Kxf, if a function at all in the dis-
tributional sense, is essentially unbounded on every nondegenerate
interval. (The set of f with the stated property will indeed form
a comeagre subset of the space of absolutely continuous functions,
the latter being regarded as a Banach space in the fashion described
in the proof to follow.)

Proof. Denote by E the space of absolutely continuous functions
f, and introduce into E the norm

(1.3) 1 file = 1) [ + [ DfIL .

It is a simple task to verify that E is complete for this norm and is
therefore a Banach space.

Enumerate as ()7, all nonvoid open subintervals of [0, 27] with
rational endpoints, and observe that any nondegenerate subinterval of
[0, 27] contains I, for some r. For each r define the function N,
from E into [0, ] by

N.(f) = Sup [<0, Kxf) ],

the supremum being taken with respect to all periodic C= functions
6 whose support is contained in I, and which satisfy |6}, < 1.
Adopting the usual conventions:
X+ 00 = 00 4+ oo = o lf()éaéoo,
qeco = oo Hf0<a< «,0000 =0,

it is very simple to check that
N.(f +9) = N.(f) + N.(9) ,)
NOF) = [N NLF) J

for f,ge E and ) a scalar.
To this must be added the observation that if fe E is such that
N,(f) < <o, then the distribution Kxf coincides on I, with a function

(1.4)
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in L= whose L~-norm does not exceed N,(f). This follows from the
definition of N,(f), the Hahn-Banach theorem, and the known form
of the dual of any L'-space (see, for example, [2], Theorem 4.16.1).

As a final preliminary step, we show that each N, is lower semi-
continuous on FE, i.e., that the set

S={fel:N(f) =1}

is closed in K. In fact, if the functions f, (k =1,2, --.) belong to
S and converge in E to the limit f, then (1.3) shows that f, — f
uniformly. Therefore Kxf, — Kxf distributionally. Using the sub-
stance of the preceding paragraph, it follows that Kxjf coincides on
I, with some L=-function whose L~-norm does not exceed 1; in other
words, feS.

Suppose now that Theorem 1 were false. In view of what we
know about the N,, a known boundedness principle ([2], Theorem 7.5.1)
would then entail that an integer » exists such that N, is finite-valued
and continuous on E, i.e., that there exists an f-independent number
k such that

N.(f) = k|l flis

for all f ¢ E. Choosing a € I, and translating f by amount a, it would
appear that, for all trigonometric polynomials f,

1.5) KKyl = kAl f(a)| + | DFIlL} .

Let T denote the linear mapping of the space P of trigonometric
polynomials into the product space @ x L' (@ the scalar field) defined
by Tf = (f(a), Df) and define the linear functional I" on T'(P) by
the formula I'(Tf) = {f, K>. Then (1.5) would imply that I" is con-
tinuous on the subspace T'(P) of @ x L' and would therefore, by the
Hahn-Banach theorem, admit a continuous extension to this product
space. As a consequence one would have a representation formula

{f, Ky = I(TF) = e-f(@) = (1/2m)| Df-p.-dar

wherein ¢ is a scalar and ¢, ¢ L>.
In distributional notation, this would signify that

<f’ K> = C'<fs €a> + <fy D¢1>
where ¢, denotes the Dirac measure at «, so that
K =c-¢, + Dg, .

Adding to ¢, a function of bounded variation whose distributional
derivative is equal to c¢(¢, — 1), one would obtain a function ¢e L=
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for which the forbidden formula (1.2) would hold. This contradiction
establishes Theorem 1.

REMARKS. (a) The preceding proof shows indeed that there
exist absolutely continuous functions f with the following property: for
each nondegenerate subinterval I of [0, 27], either Kx*f agrees distri-
butionally on I with no (integrable) function, or Kx*f does so agree on
I with an (integrable) function which is essentially unbounded on I.

(b) In applying Theorem 1 to K = H in order to derive (i),
observe that Hxf is obviously a function in L* whenever f e L2,

It may also be remarked that the fact that H is not a measure
is, in a similar way, the root reason why there exist integrable func-
tions f such that Hxf is not integrable, and continuous functions f
such that H=xf is not continuous.

(c) Since f is absolutely continuous if and only if f is continuous
and Df e L?, it is worth noting that there is an analogue of Theorem 1
applying to functions f such that f is continuous and Df ¢ L? for some
p > 1. This analogue asserts the existence of such functions f for
which

lim sup w., f(a)/@(a) = oo as a0
a—0

whenever w(a) is a preassigned function, bounded away from zero
with «, and such that

w(a) = o(a*?) ,

(Here o, f(a) = Sup, | f(x — a) — f(x)|.) A possible proof proceeds along
the lines of that of Theorem 1. Alternatively, as was pointed out by
a referee, one can proceed on the basis of the fact that, for 1 < p < oo,
the Hilbert transform is an automorphism of the subspace

Ly = {f e L*: f(0) = 0}

of L?, while for a given a the functional

f= | r@ads
has a norm equal to a'~"/? when acting on L3.

(d) Theorem 1 shows that the multiplier operators from absolutely
continuous functions to L= (or to the continuous functions) are precisely
those obtained by convolution with a distribution of the form (1.2).

(e) It is perhaps worth noting that Theorem 1 has an analogue
for the case in which the circle group is replaced by the additive
group R of real numbers and restrictions of periodicity are dropped,
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namely: Suppose that K is a distribution on R which is not of the
form

(1.27) K=+ + Dg,

where ¢ and + belong to L=. Then there exists an absolutely con-
tinuous function f which tends to zero at infinity, for which f and Df
belong to L!, and for which Kxf, if a function at all, is essentially
unbounded on every nondegenerate subinterval of RB. (The proof follows
the same lines as does that of Theorem 1.)

This result applies in particular when

K = D(log |v) = F-P-|z|~,

in which case Kxf = f is the one-dimensional Hilbert transform of f.

2. Results for compact Abelian groups. From statement (i)
of §1 follows the existence of functions f (necessarily in L?) on the
circle group such that

‘]?(7’6) = 0(1/7@) as 71 — oo

’

and yet f is essentially unbounded on every nondegenerate interval.
In this section we shall obtain a result which is at once more precise
and more general.

It is assumed throughout this section that G denotes an infinite,
compact (Hausdorff), Abelian group, while (2,):, denotes a sequence
of nonvoid open subsets of G. (The term “measurable” refers to
normalised Haar measure on G, and L? will denote the associated
Lebesgue space.) One may, if G is first-countable, choose the Q, to
form a countable open base for G. Furthermore, 0 will denote a
nonnegative valued function on the (infinite discrete) character group
X of G. Summation signs which are otherwise unspecified will refer
to summation over X.

THEOREM 2. To each p satisfying
(2.1) 20 =

corresponds at least one function f on G such that
(1) feLr for every p < oo;
(ii) f is essentially unbounded on 2, for every r;

@2 (i) fip = SGf(x»de = o(0() as 71— .

Proof. A preliminary argument, the details of which are omitted,
shows that any o satisfying (2.1) can be replaced by a nonnegative
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function o’ which is O(p), which satisfies (2.1), and for which
SO < e for every ¢ > 0.

We may as well, therefore, assume that

2.3) S < oo for every ¢ > 0.

Let X, = {y e X: o(x) # 0}.

Denote by E the linear space of functions f which belong to L?
for every finite p, which satisfy A(X \X,) {0}, and which satisfy (2.2).
Define on E the norms

N,(f)y =1flL+ A (p=1,2,---)
where
1£11* = Sup IF /o) -
Endowed with the topology having as base at 0 the sets

Up:s:{feE:Np(f) <5},

where p ranges over the positive integers and & over the positive
numbers, F is easily seen to be a Fréchet space.
Define further the functions

MJ(f) = ess sup ()],

where » = 1,2, ..., Each M, has the properties expressed in (1.4)
and is further lower semicontinuous on E.

Were Theorem 2 to be false, to each fe E would correspond an
integer r = »(f) such that M. (f) < c. Then, by Theorem 7.5.1 of
[2], there would exist an f-independent integer » such that M, is
finite-valued and continuous on F. In other words, there would exist
for this » a number & > 0 and an exponent p < < such that

M(f) = KA1 + 1A

Since E is evidently translation-invariant, and since 2, in nonvoid and
open, this inequality would combine with compactness of G to entail
that

(2.4) W1l = E{ILA 1 + LAY

for each fe E.
As a consequence of (2.4) it would appear that, for each ge L',
the linear functional
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f=| fods @@ = g

is defined and continuous on E. By an argument similar to that used
at the corresponding stage in the proof of Theorem 1, it would follow
that there exists he L* and « e l'(X,) such that

| fide = flids + S afoiew
0

for each f e E, so that, in particular,

(2.5) 0§ = ph + a,

provided we define a(y) = 0 for y e X\X..

Now 9’ >1 and, by considering separately the cases in which
1 <9 <2 and p’ = 2, the Hausdorff-Young and Parseval inequalities
would lead from (2.3) and (2.5) to the conclusion that

20101 < e

for each ge L'. An application of Corollary 7.1.2 of [2] would then
yield the result

(2.6) > 09| < const.|gll .

Finally, on letting ¢ range over an approximate identity in L%,
(2.6) would lead to a contradiction of (2.1), and thus to an indirect
proof of Theorem 2,

REMARKS. (a) If G is the circle group (so that X = Z), and
if it be assumed that

limsup [ | o(n) < e,
[n|—c0

then (2.2) ensures that the Fourier series of f is a.e. pointwise con-
vergent (as follows from Fatou’s theorem; see [1], Vol. 1, p. 178).
(b) Things can be made more explicit, if it is given that

@.1) Se=e

for some Sidon subset S of X (see [3], 5.7); here >¢ denotes sum-
mation extended over S. In this case one may assume without loss
of generality that in addition

200 < oo
S

and it then follows from 5.7.3 and 5.7.7 of [3] that, on choosing any
function 6 ¢ ¢ (X), the space of complex-valued functions on X which
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tend to zero at infinity, for which

S00 = eo
the function

folm) = 3 o000 ()

satisfies (i) of Theorem 2 and does not belong to L=; and it is evident
that f, satisfies (iii) of Theorem 2.

An application of the boundedness principle to the space of func-
tions f,, obtained when 6 ranges over ¢, (X), shows that 6 may be
chosen so that f, satisfies condition (ii) of Theorem 2.

A referee has kindly pointed out that the known properties of
random Fourier series may also be used to much the same end.

(e¢) It is known that if

(2.7) S0t = e

then there exist functions @ on X which are o(l) and such that
SLone)y(x) is not the Fourier-Stieltjes series of any measure on
G.

Supposing that G is first countable, the proof of Theorem 2 can
be modified so as to prove more, namely: Suppose that o satisfies
(2.7), that 1 < p < o, and that a is a nonnegative function on X
such that

((ael(X) for some ¢ <2/2—p) f 1 =p<2

2.
@8 e if2<p< o

then there exists a pseudomeasure ¢ on G (see [4],][5],[6]) such that

sing supp ¢ = G, 6 = o(p) ,
(2.9) { ios

a'l?g e [P(X) .
When p = 2, the final clause of (2.9) means that ¢ has “finite energy”
in a sense which depends upon the choice of «a.
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