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CLOSED OPERATORS AND THEIR ADJOINTS
ASSOCIATED WITH ELLIPTIC
DIFFERENTIAL OPERATORS

R. S. FREEMAN

We are concerned here with determining some closed
operators associated with a given elliptic differential operator
A of order 2m and some in general nonlocal boundary opera-
tors. We seek conditions in particular which guarantee that
the result is a normally solvable operator, i.e. with closed
graph and closed range in the sense of Visik., We follow
basically the method used in Bade and Freeman in the sense
that we regard the operator with nonlocal boundary conditions
as a perturbation of an operator with boundary conditions
defined by a normal set of differential operators B =
{Bo, - -+, Bn-1} satisfying the condition of Agmon, Douglis and
Nirenberg (also Browder, and Schechter). Since the basic a
priori estimate valid for such systems essentially says that
the resulting operator has closed graph we call such a system
(A, B) closable elliptic.

In addition to dealing with higher order elliptic operators
and general boundary conditions we also drop the requirement
that our region be relatively compact and instead make the
weaker requirement that the differential operator in H 2™(Q)
with local boundary conditions yields an operator with closed
range. We work here in L? only and consider operators
defined in H*(92), in the graph topology associated with the
so called maximal operator and in a family of spaces inter-
polated between these two. Most of our results can be
obtained, at least for relatively compact regions, in L? with
1< p < o at the expense of a somewhat more complicated
treatment. A particular complication arises from the fact
that different interpolation methods which yield the same
spaces in L? do not in general in L7, p + 2.

The paper is divided into eight sections the first five of which
are of a preliminary nature and contain results many of which are
variants of well known results.

While in the process of writing this paper we were able to see
the thesis of R. W. Beals which he kindly sent to us. The two papers
are concerned with similar problems but the results cannot be ordered
by inclusion.

1. Preliminaries. As usual points in R" (n-dimensional Euclidean
space) are denoted by x = (¢, ---,2,) and n-dimensional Lebesgue
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measure by do. We let do denote » — 1 dimensional surface measure,
D, = (1/i)(0/0x;) where ©* = —1 and N denote the nonnegative integers.
If a=(a,---,a,)eN" and & = (&, ++-,&,)e R then || = 37, «y,
D* = Dt eee Din E% = Ef1 o ve £2n, and al = «a,! el

If E and F are two topological vector spaces over C the complex
numbers we will use the notation F C F to mean that E is a subspace
of F and that the topology of E is finer than that induced on E by
F. <7(E, F) will denote the (algebraic) space of continuous linear
maps from E to F. As is usual &7(E, C) will be denoted by E’.

Using the notation of L. Schwartz [27] we let =(2) be the space
of infinitely differentiable functions having compact support in 2 and
if =7(Q) is equipped with its usual locally convex topology its dual
space, the space of distributions on 2 is denoted by <’(2). In general
if 7 (Q) is a space of functions on Q then & (R™) is simply denoted
by 7. <= (2) is the space of restrictions to @ of functions in <.
& will denote the space of rapidly decreasing functions on R". An
element in its dual is called a tempered distribution assuming that &
has its usual locally convex topology.

For ue &7(2) and me N we let

2 k=0 lal=t @)

m : !
w2, = S S (2’“) st M| Doy pd

suppressing the 2 when no confusion is likely to result.
When 2 is R™ and if % denotes the Fourier-Plancherel transform

of % then ||u]|} = S(l + [ & 5™ | (&) |*dé which is the reason for all

the factorials. The completion of <(2) in the norm || - ||,, is denoted
by H™(2) and the completion of < (2) in the norm || -, is denoted
by H™Q). If Q is R™ the two spaces are the same and their elements
are tempered distributions.

Let 2 be an open set in R™ whose boundary [I” is an infinitely
differentiable, orientable manifold. 2 is not assumed to be relatively
compact but is assumed to be uniformly regular in the sense of Browder
[5, 6]. Let <Z” be the open unit ball of radius » about the origin.
Then we assume there exists a covering of £ by open sets {Q,: j € N},
a family of infinitely differentiable homeomorphisms {p,:5 =1, ---}
and a positive integer n, such that

(1) At most n, of the 2,’s have nonempty intersection.

(2) Forj=1-- 922;N2— 2" N{y, >0} and p;: ;NI —

ZB' Ny, = 0} .

(3) The derivatives of ¢, and its inverse are uniformly bounded.

(4) U, @7(<#*%) covers a uniform neighborhood of I°.

It follows [6] that there exists an infinitely differentiable partition of
unity {1,:j € N} subordinate to the cover such that in a neighborhood
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of each point x e I" at most n, of the »;’s do not vanish. A number
of results usually obtained for compact regions can also be obtained
for uniformly regular regions. In an earlier version of this work we
included the modifications necessary to prove these results for uniformly
regular but not necessarily compact regions. Since that time we have
received a copy of the thesis of R. W. Beals in which detailed proofs
of these results are given. Consequently we do not duplicate them
here. We summarize some well known facts about the spaces H™(Q),
m € N in the following

THEOREM 1.1. (i) If m,pe N and m < p then H?Q)cC H™Q)
and H?(Q) is dense in H™Q).

(ii) H™Q) can be identified with the space of distributions on
Q all of whose derivatives up to and including order m are functions
n LAQ) = HYQ).

(iii) Let HZ be the closed subspace of H™ consisting of those
Sfunctions in H™ whose support is contained in 2°. FEach uwe H™(Q)
18 the restriction to Q of a %e H™ and H™(Q) 1s topologically isomor-
phic to the quotient space H™/HpZ 1f the latter space is given the
quotient topology.

@iv) If Q s relatively compact, m,pe N with p > m then the
canonical injection of HP(Q) into H™(2) is compact.

A detailed proof of (ii) appears in Browder [6] and a detailed
proof of the first statement of (iii) appears in Beals [4] and for Q
relatively compact in Lions |13].

For u e <7(2) we define two more norms

Hullome = sup {| (w, v} [: ve H™(D), [|v|l. = 1}
and
HuH—m = Sup {l (7/(/, /U)OE: /UeHOm(‘Q)y H?)Hm = 1} .

The completion of <7 (2) in the first norm is denoted by H;™ and in
the second norm by H-"(2). When no confusion is likely to result
we suppress the 2 in the first norm. The space H™(2) can be
identified with a space of distributions on 2 but since <= (2) is not
dense in H™(Q) this is not true for Hz™. We summarize some well
known facts about these spaces. A proof of the last appears in
Magenes-Stampacchia [21].

THEOREM 1.2. (i) Hz™ (H™Q)) is topologically isomorphic to
the dual space of H™(Q) (HMQ)).
(i) If we H™Q) (HMQ)) and wve Hy™(H ™Q)) the expression
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(u, v), s well defined and |(u, v)o| = [[%|[n [ V]|-mo (| %[|m |V ]|-n)-
(iii) If m,p are integers, m >p then H?(Q)c H™Q)
(Hz*C H7™) and Hgz® is dense in Hi™ (H~?(2) is dense in H—™(2)).
(iv) If me N the space H5™ can be identified with the closed
subspace of H~™ consisting of those elements with suppori contained
wm 2.

2. Some interpolation results. There are two methods of
interpolating Banach spaces between pairs of Banach spaces which
have been widely used, a complex variable method introduced by
Calderon [7] and independently by Lions [14] and a real variable
method introduced by Lions [15]. Other methods have been discussed
for example in Lions-Peetre [20] and in Calderon [7]. We outline
briefly the first two mentioned methods here for the convenience of
the reader. We summarize below some facts all of which except
possibly the last are well known. We do not know whether the last
statement appears elsewhere in the literature. Its proof is quite
straight forward and we do not include it here.

THEOREM 2.1. Let H, and H, be Hilbert spaces with H, C H,, H,
being dense in H,. Let || -|;, (-, );;d = 0,1 denote the norm and
scalar product in H;. Then

(i) There exists a positive-definite, self-adjoint operator T* inm
H, with domain D(T?) = {ve H;: for some k(v) > 0 | (u, v),| < k@) || %],
for all we H}. D(T? 1is dense in H, and for ve D(T?) and we H,,
(%, ) = (u, T*0),.

(ii) T, the positive square root of T*? has domain precisely
equal to H, and is a continuous bijection of H, onto H,. For we H,,
||Tu||o: % ). N -

(iii) T has an extension T to all of H, and T is a continuous
bijection (t.e. an tsomorphism) of H, onto a Hilbert space H_, topolo-
gically isomorphic to the dual space of H,. If for we H, we set
Hulloe =l T7ull, then [[ull_, = sup{| (%, v),|: w € H, and [[v], = 1}.

Since T is also self adjoint, if 0 < s < 1, the powers T° of T can
be defined with the aid of the spectral measure of T (or of T%). They

are also positive-definite and self-adjoint. We make the

DEFINITION 2.2. For 0 < s < 1 let H, be the domain of 7° and

for we H, set ||u]|l, = || T*uwll,. Let, for we H,, ||ul|_, = sup {| (%, v),|:
ve H, and ||v||, = 1}. Denote the completion of H, in the norm || - ||_,
by H_,.

Since T'* is self-adjoint it is closed and since it has also a continuous
inverse it follows that the spaces H,,0 < s <1 and Hilbert spaces.
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We summarize some of the salient facts about H, in the following

THEOREM 2.3. (i) For —1<s <1, H, is a Hilbert space.

(ii) For —1<s<t<£1l,H,CH, H, betng dense in H,.

(iii) The map T* has an extension (T*)" = (T)* to H, and yields
an tsomorphism of H, onto H_,. H_, 1s isomorphic to the dual space
of H,.

(iv) Let H,=V, and H, =V, for some 0 <s <1, Construct
the space Vy, for 0 < 0 <1, as above. Then V, = H,,.

The last mentioned fact follows easily from the manner in which
the spaces have been constructed and the fact that a self adjoint
operator can have no proper self adjoint extension.

We give now a definition due (with a slight modification in nota-

tion) to Lions [14].

DEFINITION 2.4. Let & (H,, H,, R.) be the set of all strongly
Lebesgue measurable H, valued functions on R, = [0, «o) such that

[ o) e and {j1wee) e < <.

THEOREM [Lions] 2.5. For we & (H,,, H,, R.) the map u — u(0)
can be defined and is a continuous map of & (H,, H, R.) onto H,.

Let V, and V, be another pair of Hilbert spaces with V, dense in
V., Vi<V, and construct for 0 < s < 1 the spaces V,. Then

THEOREM |[Lions] 2.6. If Le &2 (H, V,) and in & (H, V,) then
Le &Z(H,, V,) for 0 <s <1.

The spaces H,, 0 < s < 1 will be called ¢race spaces.

Now suppose A, and A4, are two Banach spaces each continuously
embedded in some topological vector space .o7. Equip A4, + A, with
the norm || a |44, = Inf ([l ao|l, + [[aills: @ = @+ a;). A, + A, is then
a Banach space. Let 2#(A,, A4, be the set of maps of the strip 0 <
Rez <1 into A, + A,, holomorphic in 0 < Rez< 1 and continuous and
bounded in 0 < Rez < 1. Suppose moreover that f(iy) € 4,, f(1 +1y) e A,
and as |y | — < || f(iy) ”AO_’ 0 and [| (1 + y) ”Al — 0. Equip 227(4,, 4,)
with the norm || f [ g4y = max (sup, || f(2Y) |4, sup, || f(1 + 1) [|4)-
Let [A4,, A;,6(0)] for 0 < 0 <1 be the image in A4, + A, of the map
¢ — f(0) and equip [A,, 4;, 6(6)] with the norm || a |l = inf {|[ || ugap:
f(6) = a}. [A,, A, 6(0)] is then a Banach space.

Suppose B, and B, is another pair of Banach spaces each continuously
embedded in a topological vector space <#. Then
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THEOREM (Lions [14], Calderon [7]) 2.7. If Te < (A, B) and
Te (A, B) then for 0 <0 <1, Te. &([A, A, 0(0)], [B,, By, 0(8)]).

Let p be a finite measure on R+ and H, = <*|R,, dy|, H, =
R, M) then it is easy to see that |H,, H,, 6(0)] is LI R., \dy].
If H, and H, are Hilbert spaces, H, C H, and H, dense in H, and if
1 is the spectral measure of the self adjoint operator T of Theorem
2.1 then there is a unitary map U mapping H, onto L}R.,\dy] and
H, onto L} R.,dy]. Thus

THEOREM 2.8. If H,, H, ©s a pair of Hilbert spaces with H, C H,
and H, dense in H,, then for 0 < 0 <1, [H,, Hi, 6(0)] = H,.

DEFINITION 2.9. If s is a real number m <s<m + 1 we let
H(Q) = |H™Q), H™(2), (s — m)].

THEOREM 2.10. H(Q) for s real, s =0, is tsomorphic to the
space of restrictions to Q of elements of H*(R™).

REMARK 2.11. If 0 < s < m we could also define H*(Q) by inter-
polating between H°(Q) and H™(Q) using Theorem 2.1. By Theorem
1.1, part iii, and Theorems 2.6 and 2.7 the spaces are the same. The
operator T of Theorem 2.1 is the operator (I + 4)™ subject to the
Neumann boundary condition (homogeneous), where 4 = S, D3 If
m = 2p, the operator (I + 4)? with domain H?(Q) is not even closed,
much less self adjoint. Thus the square root of (I + 4)*® with the
homogeneous, Neumann boundary conditions does not look like (I -+ 4)?.

LEMMA 2.12. Given € > 0 there exists a C(¢) > 0 such that for
0<s<tand ue Z(Q)

Hully = ellull + CE) [[ull .

3. Boundary operators. If ue€ <7 (2) we define (using the nota-
tion of Lions and Magenes [16]) the map v, by 7w = u restricted to
I, and set v,u = 7,(0/0v)*u. where v denotes the normal to 7.

LEMMA (Ehrling [8]) 8.1. The map u — 7,4 is & cORLINUOUS MAD
of () with the topology induced by H* Q) into H°(I") and thus
has a continuous extension to H*'(Q). If € >0 there exists a
C(e) > 0 such that for we H*(Q) |7 ller = el|wllin + CE) [ w|.

This is proved using a partition of unity just as in the usual
proof for compact regions. A detailed proof appears in the thesis of
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Beals [4] so we do not include it here.

Since 7, is continuous, its kernel is a closed subspace of H™(Q)
for m a positive integer. Thus H™(Q)/ker v, is a Hilbert space with
the quotient topology.

DEFINITION 3.2. The image of H™(2) under the map v, with the
topology of H™(Q)/ker~, is defined to be the space H™“*(["). The
norm is written || - ||._qp,r. It follows that v, is a topological homo-
morphism of H™(Q) onto H™ 92([").

If 2 is the half space {x € R":x, > 0} so that /" is R and if o’
denotes points in R** and & points in the dual space, then

H=0 (1) = {fe LAD): (L + | o | fe) e < o)

and
~ 1/2
1 e = ([ 18 Py F@y pag )

Using a partition of unity and local homeomorphisms just as when I”
is compact another definition of H™ *(I") (and in fact H*(I") for s
real) can be given and the two definitions yield the same spaces. It
is worth mentioning that difficulties appear when p = 2, see for example
Lions-Magenes [17].

DEFINITION 3.3, If s is real and m < s < m + 1 define H*(I') =
[H™(I), H"*, é(s — m)].

THEOREM 3.4. For s = 0 the space H*(I") coincides with the space
defined in the discussion preceding Definition 3.3.

LEmMmA 3.5. (') is dense tn H(I').

LEMMA 3.6. Given € > 0 there exists a C(¢) > 0 such that for
0=s<tand ue (D), |[7ull, =ellvull + CE) [ 7wl

THEOREM 3.7. Let s > 1/2 be real and m = [s] the greatest integer
<s. The map w— YU = (YU, *++, Yua) 1S @ continuous linear map
of = (2) with the topology tnduced by H*(2) onto 1175t = (I") with the
topology induced by n He==0E(), v can be extended conti-
nuously to H¥(Q) and yields a continuous linear map of H(Q) onto

r He =0, The kernel of v is Hi(2).

Now let B,, ---, B,_, be a family of » differential operators with
infinitely differentiable coefficients defined on some open set 2’ contain-
ing Q.
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DeriNiTION [2] 3.8. The set B,, By, ---, B,_, is called a Dirichlet
set of order r if and only if

(1) B, = by(x)v, + A where the order of B, is k and the normal
order of A, is <k — 1.

(2) inf{{b(x):0=k<r—1,2el}>0.
A subset of a Dirichlet set the highest order appearing being p is
called a normal set of order p. A set of differential operators having
the properties of a normal set can be extended in many ways to form
a Dirichlet set.

THEOREM 3.9. Let B ={B,, ---, B,_,} be a normal set of order
M, the order of B; being m;. If s is a real number, s > M, + 1/2,
then the map u— Bu = (B, -+, B,,_,u) 1s a continuous linear map
of = (2) with the topology induced by H*(Q) onto [["% <) with
the topology induced by []7= H—™i—"*(I") and can be extended con-
tinuously so as to be a homomorphism of H*(2) onto []7= Hs="i=">(]"),
If B is a Dirichlet set, the kernel of B is Hg(Q).

4. Closable elliptic operators. Let A = >\ ..p<m Daups(2)D be
a differential operator of order 2m with infinitely differentiable coeffi-
cients defined on an open set Q' containing 2. Let

Az, &) = | ]% Aap()E° .

DEFINITION 4.1. (i) A is unijormly elliptic if and only if there
exists a number a, > 0 such that for x e 2, | Az, &)| = a, | &|*™.

(ii) A is properly elliptic if and only if for each x ¢ I" denoting
by v, the inner directed unit normal to /" at x and 7z, a unit tangent
vector to I" at & the polynomial in N Az, z, + \v,) has precisely m
roots with positive imaginary part and m roots with negative imaginary
part. It is known that when n > 2 every elliptic operator is properly
elliptic.

We now introduce a condition on boundary operators associated
with A which has almost as many names as there are authors who
have introduced it. It has been called the complementing condition
by Agmon, Douglis and Nirenberg [1], regularity condition by Browder
[5], and the boundary operators are said to cover A by Schechter [23].

DEFINITION 4.2. Let B = (B,, -+-, B,_;) be a normal® set of boun-
dary operators, the order of B; being m; and m; < 2m. Let B; =
b;(®)Ym; + A; and C(z, 7) be a closed Jordan curve in the upper half
plane containing those roots of A.(x, 7, + \v,) with positive imaginary
part. Set

1 Normality is not essential for this definition.
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pgk(x) - S )\’k_lbj(xy Tac + 7\”J:t)[‘40(xy Ta: + >"1‘)rlz:)]_ld7\’ .
o

The system (A4, B) will be called closable, elliptic if and only if
lnf{'p.ﬂc(x)| ga> waeF!ITxI :1’0§J§m— 1y1 ékém}' We
are using the form as given in Browder [5].

Notation 4.3. We will denote the formal adjoint of A by A’.

If B is a given normal set of orders <2m — 1, B = (B,, ++-, B,._,),
let C =(C,, +--,C,_) be another normal set such that the set (B, C)
is a Dirichlet set of order 2m. We let m; be the order of B; and ;
be the order of C,,5 =0, ---,m — 1. The following result is basic.
We assume all operators have infinitely differentiable coefficients.

THEOREM 4.4. Given an elliptic differential operator of order
2m and a Dirichlet set (B, C) of order 2m, there exists another
Dirichlet set (B, C') having infinitely differentiable coefficients with
the order of B =mj;=2m —1 — p;, and the order of C; = ps =
2m — 1 —m;,j=0,---,m — 1, and such that for u,ve Z(2)

—1

(4.1) (Au, v) — (u, A'v) = mz [STCjuB7) do — SrBqu_ﬁdo] .

i=0

If (A, B) is closable elliptic then (A’, B') is also closable elliptic.

We will refer to (4.1) as Green’s formula. A proof can be found
in Schechter [24].

Assumption I 4.5. We will always assume that (A, B) is closable
elliptic unless something is stated to the contrary.
We will need the following

DEFINITION (Ltons-Magenes [16]) 4.6. For 0 < s let
%) = {ue H¥(Q): Au e LX)} .
Equip <%(2) with the norm ||u |, = (|| #]|]? + || Au [|)** which makes
it a Hilbert space.

ProprosiTION 4.7. Let V, H be Hilbert spaces with V — H. Let
Te <2(V, H); then the graph of T is closed in H x H if and only if
there exists a constant K such that for ue V,||u|, < K[|| Tu!lz +

[ B

LEMMA 4.8. The map D;e & (H(2), H(Q)) for s real, s # 1/2.
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Proof. Lions-Magenes [17, 18].
DEFINITION 4.9. Let Vu(9Q) = {u ¢ =7 (2): Bu = 0}.

THEOREM 4.10. There exists a constant C,, > 0 such that for
€ Vi(Q), || %lm = Conll] Aw o + [[w[l].

Proof. This inequality has been proved by a great many authors,
for example Browder [5], Agmon, Douglis and Nirenberg [1], Schechter
[23].

REMARK 4.11. It follows that for u e V,.(2), || % |jsn < Conll| A'u ||, +
[|w]],] for some C,, > 0.

DEFINITION 4.12. The closure of V, in the topology of H*(Q)
will be denoted by V3(Q).

COROLLARY 4.13. The operator A(A’) with domain ViM(2)(ViH(2))
18 a closed operator in L*Q).

REMARK 4.14. There are numerous generalizations of Theorem
4.10 now in the literature. Some of these will be discussed in what
follows.

THEOREM (Browder [5], Schechter [24]) 4.15. Let Ay be the
operator A with domain Vi(Q) and A} the operator A’ with domain
Vi2). Regarding each as an operator in L*Q) the adjoint of Ap
is A%,

THEOREM 4.16. There exists a constant C,, such that for uwe < (2)

@2l = Gl 1Al + 1l + 35 (1 Bty ] -

Proof. Theorem 4.10, Lemma 4.8 and Theorem 3.9. This result
appears for example in Agmon, Douglis and Nirenberg [1].

COROLLARY 4.17. If Q s relatively compact then the kernel of
A (AL) is finite dimenstonal, the range is closed and has finite
co-dimension.

Proof. This follows by Rellich’s lemma, i.e., the cannonical injec-
tion of H*(Q) into H(Q) (k > 7) is compact; see Browder [5].
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5. Some interpolation results and normally solvable opera-

tors.

DEFINITION 5.1. The Dirichlet operator is the operator A with
domain V().

THEOREM (Lions and Magenes [19]) 5.2. If the Dirichlet operator
is an isomorphism and H, = 2%RQ2), H, = 2(Q), then for 0 < 6 < 1,
H, = o*(Q), so long as 2mb + s + (1/2), s an integer =0.

Proof. This follows from Propositions 5.4 and 5.6 of Lions-Magenes
V [19], Theorem 2.8 and the fact that for s =0 and 2m the map
(4, v) is an isomorphism of <5(Q) onto HQ) x [[7= H*=~%3([") and
of course Theorem 2.6.

DEFINITION 5.3. For 0 < s < 2m, let <5%(Q) be the spaces inter-
polated between =9%(2) and =7(2).

Thus if the Dirichlet operator is an isomorphism, Theorem 5.2
says that <(2) can be identified with <%(2) for 0 < s < m so long
as s — (1/2) is not an integer. Observe that Q) C Q) always
the injection being continuous. We shall identify the spaces <%(Q)
in what follows.

THEOREM 5.4. If (B, C) ts a Dirichlet set of order 2m, the map
(B, C) is a continuous linear map of < (Q) into [zt He—"i~W3(I") x
TI7= He=#=0% for 0 < s < 2m.

Preof. For s = 2m this is just Theorem 3.9 and for s = 0 it is
proved in Lions-Magenes [16]. For 0 < s < 2m, use interpolation.

THEOREM 5.5. For ue &%(Q) and ve oy %(Q),

—1

(A?,{/, ,U) - (’LL, A’?)) - >:l {<Cju! m> - <B]-?/(/, C_IJ?)>} 9
i=o

then brackets representing the duality between T[Tt H*—#i~*(I") and
I17= Hemsmi=aln()y qnd (]2 He=™~Y() and T[75 Hm——5=92 (1),

DEFINITION 5.6, Let Ny(N,) be the kernel of Az(A4}).
THEOREM 5.7. For 0 < s < 2m let N, denote N, equipped with

the topology of H*(2) and N_, denote Ny equipped with the topology
Hz*. For —2m < s, t<2m N, is topologically isomorphic to N,
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and is thus closed in each such topology.
Proof. Freeman [10].

DEFINITION 5.8. For 0 < s < 2m let N/, = {ue H*(Q): (u,v), =0
for ve N3} and N+, , = {ue Hs*: (u, v), = 0 for ve Ny}

LEMMA 5.9. Let P be the orthogonal projection of H° onto NJ
and 0 < s < 2m. Then Pe F(H(Q), H(Q)) and Pe &7(Hz*, Hs®).

THEOREM 5.10. Let 0 < s < 2m; then each we H¥(Q) (H5®°) can
be written uniquely im the form w =u' + u” with v €Ny and
u"” € Ny z(NZ, ).

Proofs can be found in Freeman [10]. Corresponding results hold
for Ny, Ni.,,.

THEOREM 5.11. Let V and H be Hilbert spaces with V C H.
Let Te 2(V, H) and assume T is a closed linear operator im H.
Let N denote the kernel of T and Nj: = {ue V:(u,v)y =0 forve N}.
Then the range of T is closed im H if and only if there exists a
constant C > 0 such that for we N, |lully < C|| Tull,.

Proof. Open mapping theorem.

THEOREM (Kato [11]) 5.12. Let T be a closed densely defined
linear operator mapping a Banach space E into a Banach space F, T’
the adjoint of T. Then the range of T is closed in F tf and only
if the range of T' is closed in E'.

AssuMPTION 5.13. In the remainder of this section we assume
that the operator A, (and thus also A}) has closed range in H%Q).

LEvmMmA 5.14. Let fe HY(Q) and
P = ((po, cen, ¢m—«1) c I;IOH2"L—7"1—(1/2)(F) .

There exists a e H*™(Q) such that Auw = f and Bu = ¢ if and only
if for all ve Ny
m—1 e
(5.1) (fy0) + 5 <p; Civp = 0.
Proof. If such a u exists then by Green’s formula the condition
is clearly verified.
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Now suppose f and ¢ are given subject to the orthogonality
condition (5.1). There exists u,c H*™(2) such that Bu, = p. Let
Au, = f, and apply Green’s formula to u, and ve H*™(2) to obtain

(£ ) + 54y Tio> = (s, A) =5, <Cous, By

Thus for ve N, we have (f;,v) + 375 {p;, C;v> = 0 and using the
condition of the theorem we have (f — fi,v) = 0 for all ve N,. But
by Assumption 5.13 there exists u, e Vi"(2) such that Auw, = f — f..
Then v = u, + u,€ H*™(2) and Au = f, Bu = .

The set of f, @, fe H(Q), pe [I" H*™ ™~">([") which satisfy
(5.1) is clearly closed.

COROLLARY 5.15. (1) (A4, B) maps H*™(Q) onto the closed subspace
(4,90 Fe H™Q), p & T H"™==(I): (£, v)
+g<¢1, o> = O,veNB,} .
(ii) (A4, B) 1s an isomorphism of N, , onto its range and for
€ Niy 10 o = Ciaf [ Au s+ 5 1Bt 0] -

LEMMA 5.16. For fe H'(Q) and @ € [17= H="i—Y*(I") there exists
a e 2°%Q) such that Aw = f and By = ¢ if and only tf there exists
a constant K such that for all ve Vi(Q)

(5.2) (£, 00+ 2 <psy Ty | S K (A0l
Proof. Suppose such a u exists and ve ViQ). Then
(fy v)o + TS;I:<¢J'7 -C‘_;/l;> = (uy A’/U)

and (5.2) is satisfled with ||« ||, = K. Now suppose (5.2) is satisfied
and define F(A'v) = (f, v) + >\ {p;, Civ). By (5.2), F is a continuous
conjugate linear form on a closed subspace of H%Q) and has a con-
tinuous extension to all of H°Q2). Thus there exists uec H%Q) such
that (u, A'v) = (f, v) + S22 <{p;, Cv> forve VinQ). Taking ve o (Q)
we see that ue &2%Q) and Aw = f. But then (u, Av) = (Au,v) +
S»d{Bu, Civy and since it is clear from Theorem 3.9 that C'v fills

up II7= H m—p;—D([) g8 v runs through Vi it follows that Bu = P.

THEOREM 5.17. Let fe HY(Q) and pe 7y H-™i~"(I"). There
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exists we 2%Q) such that Au = f and Bu = @ if and only 1if for
all ve Ny,

(5.3) (f, v) + S 1<¢>], Cioy=0.

Proof. Let ve VZ(Q) and write v = o' + v with +' € N, and
v" e Nj ,,.. Since N c V2 it follows that v € Vi» and by Assumption
5.13 and Theorem 5.11 there exists a constant K such that |[v"|},, <
K || Av],. Now using (5.3) we have for

m=l = N T
(S ngn. (fy ?)) + _>.01 <§DJ" CJv> = (f5 v ) s ]\;_.61 <‘P.7's C_,’U >
7= =

and thus

m —1

m—1 [
(£, + 5490 T | S 1 F loaw 10 llem + K 5194 1y 197

m—1

< K11 Fllcom + K510 ey ) [1 A0

=0

Now apply Lemma 5.16.

COROLLARY 5.18. (A4, B) maps 2%Q) onto the closed subspace of
HQ) x TIr= H—™i=(I") consisting of those {f,)'s which satisfy
(5.3)

The kernel of 4, B in =2%Q) is just Ny and Ni,N 2%Q) is
closed in &%(Q).

COROLLARY 5.19. (A4, B) is an isomorphism of Ni, N 2% Q) onto
its range. There exists o constant Cy>0 such that |jull, <
Cilll Aully + X570 || Bl j—apm ] Sor we Nz o N Zu(Q).

Now by Corollary 5.15 (A, B) maps H*™™(2) onto a closed subspace
of H°Q) x IIr= H*™™i—»([") and by Corollary 5.18 (A, B) maps
%) onto a closed subspace of H(Q) x [[7 H—™~**(I"). Thus to
each element (f, ¢, +++, p,_;) in the image of (A4, B) in H%Q) x
mo ) He—mi=3(["),s=0,2m, there corresponds a unique u € Z5(2) N N3,
for s = 0, 2m, such that Aw = f and Bu = @. Define a map T by
T(f, ) = w. By Corollary 5.15 and Corollary 5.19 T is a continuous
map of the image of (4, B) into =2%(Q) and into =2%(2). By letting
T be zero in the orthogonal complement of the image of (4, B) in
the respective spaces we see that Te ZF(H(Q) x [I7 H=™i—U¥([),
Q) for s = 0,2m and thus by interpolation for 0 < s < 2m, using
a result of Lions [14].
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THEOREM 5.20. (i) For wue Q) NN, 0<s<2m, there
exists a constant C. such that

(5.4) lull = CJ1 4wl + 5 1 Btllemyam | -
(ii) (4, B) maps <4(2) N N:IB onto the closed subset of
H(@) x TT H*="-07(D)
consisting of those (f, p)'s in

H(Q) x I H="0 (1)
2=0
such that

(5.5) (fy ) + S {p;, Ty = 0 for all we N3, .
i=o

(iii) There exists a constant C, such that for we <%(Q)

—1

66 lull = CllAul + ol + 3By ] -

Proof. (i) Follows from the preceding discussion. This is
essentially the argument used in a slightly different context in
Schechter [25].

(ii) (5.4) implies that the image of (A, B) is closed whereas the
set of (f,p) satisfying (5.5) is clearly closed and contains the image
of (A, B). If the sets were not the same there would exist an

m—1
(f, p)e HY(Q) x >, Hs™i~2([")
i=

satisfying (5.5) and a
m—1
(v, v) e HY Q) x >, H™ =0
7=0

such that (f, v) + S {p;, ¥,>#0 whereas (Au, v)— "' <{Bu,¥,>=0
for we o5(2). It follows in particular that (Au,v) =0 for we Vy
and thus ve N’. Hence (Au,v) — 375 <Bu, Clvy = 0 for u e o(Q).
It follows then that Cv = +; and thus that (f, v) + 375 <{p,, Civ> = 0
for ve N3, which contradicts (5.4).

(iil) If ue o(Q), with u =« + w” with «' € N and

w'eNi, N 242,

we have
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Wulls = o' lls + [[a” [l = 11w |ls

m—1 . m—1
+ C;[H Au HO + JZ.(: “ B]u Hs—-mj—(l/2) + J;)' || Bju” Hs—wg—(l/ﬂ]

since Auw' = 0. But B, is continuous on <5(Q) and Auw' =0 so
B |lsm;—am K[| ||, But using Theorem 5.7, ||/ ||, = K |[|v' ||, = K |||,
by Lemma 5.9.

When s — (1/2) is not an integer, <%(Q) can be identified. In
general assuming 5.13, the closed range assumption, as was remarked
in [10], using the results of [10] and an argument similar to that
which preceded Theorem 5.20 one can show that (5.4) and (5.6) are
true for w e 2(2) N Nz, and u e <7(2) respectively.

DEFINITION 5.21. For we <7(2) let
s = Tw il + |l Au |f + ZO Bt (i m,—ap
=

and let ,@AZ(Q) be the completion of <7(2) in this norm.

By the preceding remarks (A4, B) maps <7%(2) onto a closed sub-
space of HQ) x [lr= H=™i—*(I"). Now o () is continuously
embedded in &(2), =/(2) is dense in <r*(2) and each B, is continuous
on %(2). It follows that <*(Q2) is continuously embedded in .@AZ(Q).
Since on the one hand the image under (A4, B) of <7%(9) is characterized
by (5.4) while on the other hand the image under (4, B) of =QA;(.Q)
satisfies that condition, the two images must be the same. Thus if

u e ,@A;(Q) there exists v € <°(2) such that A(x—v)=0and Bi(u—v)=0.
Consequently v — ve N c <%(2). Thus

THEOREM 5.22. Under assumption (5.13) and for 0 < s < 2m the
spaces 5(2) and jﬁ(!}) are the same.
Following Schechter [25] for u e &/(2) we define
lw|_, = sup {| («, v)o|: for ve Vy and [[v]], = 1}

where s = 0. Observe that for we 2(2) |w|_, < |lw|l_s =|l%wll.
The following result was proved by Schechter [26]; see also Peetre
[22].

THEOREM 5.23. Let s = 0. There exists a constant C_, > 0 such
that for we <(2)

m—1
s < E(| A ans + 5 Bty + 1] o) -
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Movreover, there exists a constant C_, > 0 such that for u: (u, v), = 0,
for all ve N, then

s < Ol At Loy + 35 1Bt oy -

REMARK 5.24. (i) Both Peetre and Schechter assume that 2
we relatively compact. However, as was remarked in [10], Schechter’s
proof can be adopted to situations where £ is not relatively compact
if A; has closed range.

(ii) Each result in this section has a corresponding analog if A
is replaced by A’ and B is replaced by B’.

6. Perturbed boundary operators. Let L=(L,, --+, L, _,) where
L; e o2(H™Q), H*™™~3([") and
Ly =S L,C., Ly .or(Hm =Ly, Himemi-w([),
k=0

k=0,.--,m—1;

j:(),...’m_]_.
Moreover, let L' = (Lg, +--, L},_,) where L) = > L",C} and

J

<ij¢v "T’> = <<pr L;cf‘/f> fOI‘ Py Q/f € Q(F) ’
Ly e 7 (H =i 3(I), H="5=03 (1))

Notation 6.1. For s = 0 we will let
m—1 m—1
o7, = 11 He=m= (), A, = 11 Hemr=9() ,
7=0 7=0
m—1 m—1
;//; — H Hzm—s—ﬂ'j_(l/Z)([v) and 2{; — H HZm»—s—m}.—(‘z/Z)([") .
j=0 7=0

LEMMA 6.2. For u,ve <(2) we have

m—1 - R
(Au, v) — (u, A) = >, {{Cyu, Bjv — Livy — {Bu — Lu, Cjv)} .

LemMA 6.3. Let peN,,. There exists uec Vi Q) such that
Cu = @, the map ¢ — u being continuous.

Proof. Let ¢ = (g, *++, pm_s) be given and let
q/f = (Qﬂm ctty "‘flf\m—l)ey/zm

where +;, = S\r! L,,»,. There is a u e H*(Q) depending continuously
on (p, ) such that Cu = @, Bu = +y. Then uwe Vi (Q).
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THEOREM 6.4. Let A be the differential operator A with domain
Vin(Q) and A* the differential operator A’ with domain
V3 ()N 2% (). Then A* is the Hilbert space adjoint of A.

Proof. It is clear by integration by parts that A* is a restriction
of the adjoint of A. If v is in the domain of the adjoint of A then

ve 2%(Q) and for ue Vit (Q)

m—

0 = (Au, v) — (u, A) = 5, KCju, Bjvy — {Byu, Civ)}

I

—1

5 KCu, Bpy — <L, Civd)

J=0

il

= m\Z_, {Cju, Biv — Liv) .
=0
By the preceding lemma (B’ — L')v = 0.
Now using the notation of the preceding theorem the operator A’
with domain V3._.(2) N £2%(Q) is the adjoint of 4. Consequently A’*
the adjoint of A’ with domain V3.,_.(Q) is A**. Thus

THEOREM 6.5. A'*, the Hilbert space adjoint of the operator A’
with domain V3 _(2)N 2%(Q2) 1s the closure of A with domain
Vin (Q) and is therefore equal to A with domain Vi (2) if and
only if that operator is closed.

REMARK 6.6. In general A with domain V3",.(2) to not closed
without some further restriction on L. For example, let 2 = {(x, t):
xeR™ and t > 0} so that /"= R". Let 4= >7.,D? and I be the
identity map of L*Q) onto L*Q). Let & denote the dual variable to
@ and f the Fourier-Plancherel transform of f in L¥I). Define
Le & (HY(I'), H'I")) by (Lf)"(5) = — (1 + | £[)"*f(£) so that L is in
fact an isomorphism. Let the domain of A be {u ¢ H*"(Q): (0u/ot) — Lu =0
on '} and for such u let Au = (I + d)yu. If w is such that 4(g, ¢t) =
exp {— (1 + | &)} f (&) where fe H¥XI") then u is the domain of A
but there is no C > 0 such that || u|, < C(|({ + Dull, + ||=]|l,) for
all such w. By Proposition 4.7, A cannot be closed.

In view of the inequality 4.1 it is easy to impose a norm condition
on L in order that A with domain V32,(2) be closed.

THEOREM 6.7. If there exists a 0:0 <o < 1/m such that for
0<7=<m—1 and all we H™Q)
WL jw oy < 0/Com || % |l + K[I] Al + [J 2 [l] ,

then A with domain Vim,(2) ¢s closed.
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For the remainder of this section we assume that the operator Ag
has closed range so that by Corollary 5.15 for all we N4, 5

m—1
[ lon = Cal 1Al + 55 11 Bty ] -

=0
Since the Hilbert space adjoint of A, is A% it also has closed range
so that for u e Ni,,»

m—1
10l S Co] il A+ 35 1 B0

where the constants C},, may not be the same. Thus we can immediately
assert

THEOREM 6.8. Suppose L ¢ &7 (H*™(Q), 57 ,,) and that there exists
a 0:0 <0 <1/m and such that for 0 <j < m — 1 and uwec H™(Q) we
have || L |lsmm;—jp = 0/Con || % |lom. Then for ve Ny,; we have

m—1
Vot lon = K[l Ay + 5511 (By = L)ty | -

Thus the operator A with domain Vi",(2) also has closed range and
its kernel is contained in Nz. In particular if Ay is injective then
A with domain Vi, (2) is also injective and has a continuous inverse.

For we 2°%(2) N N4, we have by Corollary 5.19,

m:\l ,

lul = O 14wl + 5 1l Bl | -
Now let K > 0 be such that for w e H*(Q): || C,u [lan—p,—ap) = K || % l[om,
0=j=m—1and for ue Z%(Q), || Cull_y_am = Klllull + || Aul].
Let 0 < 6 < 1/m and suppose S 7= || Ly; || < min [6/mKC;, 6/mKC;,,] for

0=<j=m—1 and that > 73| L}, || = min[6/mKC;, 6/mKC,,]. Then
for we 2°%(2) N N3, we have

lully = Gl 4wl + 5511 (B = L5 [l ] -

THEOREM 6.9. Suppose that Az is an isomorphism and that
L;, L%, 0< 5 <m—1 satisfy the above conditions. Then for uwe H™(Q)

m—1
Vo lon S Cf 11 Al + S 11 By = Lyt ey |
and for ue 2°%(Q)

m—1
tulo = cfllaull + 551 (B = L llowgom | -



90 R. S. FREEMAN
Thus A and its adjoint are isomorphisms on their respective domains.

COROLLARY 6.10. Suppose that in addition to the hypothesis of
Theorem 6.9 L can be extended to 2%R2) so as to be a continuous
linear map of 2%R) into 57, and that there exists a 6:0 < 0 < 1/m
such that for 0=<j<m—1 and wue 2% | L,u H_mj_(],z) <
o/Clilully + K || Aw||_sn] where ||+||_n s the nmorm in Hz*™. Then
the domain of A*, where domain of A is Vi, (Q), is contained in
H*™(0).

Proof. Using the condition on L and Theorem 5.23 we have
ol = K[l Awlaw + 5 1By = L]l

for we 2°%Q) and thus for uwe 2°%Q) Vi _.(2) we have ||ull, <
K || Au|l_;,. Let vedomain of the adjoint of A. Then there exists
a number k(v) > 0 such that for uwe Vi, (Q), | (Au, v),| £ kW) |[|ull, <
Kk(v) || Aw||_sm. The linear form F on the image of A defined by
F(Au) = (Au, v), is thus continuous in H7*™ and can be extended so
as to be continuous in all of H3*™. There exists a we H*™(Q) such
that F(-) = (-, w),. It follows that (Au,v), = (Au,w), or that
(Au, v — w), = 0 for ue Vi, (Q). But since 4 is an isomorphism on
m(2), v = we H™Q).

ProposiTION 6.11. If each L; is compact then A with domain
m (Q) has closed range.

Proof. The map u — (Au, Bu) has closed range in H(Q) X 57,
and the map u—(0, — Lu) is compact. Thus the map w—(Aw, Bu — Lu)
has closed range and hence the map w— Au of Vi, (Q)— L*2) has
closed range.

PROPOSITION 6.12. Suppose 2 is relatively compact and that A
with domain V3",(Q) is closed. Then the kernel of A is finite dimen-
sional and the resolvent of A, when it exists, is compact. The range
of A is closed. If the domain of A* is contained in &5(2) with
s > 0 then the range of A has finite codimension.

Proof. The proof of each statement but the last is no different
from the usual proof for operators defined by differential boundary
conditions. As for the last statement since the domain of A* is
contained in H*(2) then by the closed graph theorem

Hull, = ClIl A" [l + [[ %]
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for uwe 27(A%). It follows from Rellich’s lemma that the kernel of
A* is finite dimensional and thus that the codimension of the range

of A is finite.

7. Some consequences of interpolation.

DEFINITION 7.1.
A, B—L,Q) = Vi_ (2N )

where Le 72 (H*Q), 57,)

We will extend the method used in Bade and Freeman [3] to
higher order equations. In the remainder of this section we assume

that the operator A, has closed range.

THEOREM 7.2. Suppose L e ¥ (H(Q), 5#,). Then for 0<s<2m

(i) If for we=zy(Q) and 0=j=m—1, || Lat|l_pap <
o/Cillull, + K[|l Au |l + || |lo] where 0 < 6 < 1/m then the operator
A with domain (A, B — L, Q) has closed graph;

(i) if for wey®) amd 0=j=m— 1| Lol n um =
o/Ciilvll, + K, || Au|l, where 0 < 6 < 1/m then the operator A with
domain (A, B — L, Q) is closed and has closed range. Its kernel
18 contarned in Njp.

Proof. By (i) and (5.5) we have for ue <%(Q)
il = Gl Aw o+ allo+ S 1By = Lo o, |
which implies the result.

By (ii) and (5.4) we have for ue <7%(2) N N;B

m—1

@Dl = CflAul+ S B = Lyw ey ] -

i=o

~ ~ 1
For we &5(Q) w =4 +«” where %' eN, and «'e</\(2)N N,
Since for u’'e Ny, Au’ =0 we have [[(B; — Lu [[som;—am = K [/ [,.
Moreover ||u' ||, < K ||u||, where here K represents a constant, not
necessarily the same one each time it appears. Thus writing

Hulls = Hulls + Tu” |l = K {lull

+ Cf I Auly+ 5By = Ll + K )]

yields
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m—1
@2 luil = Ol Aullo+ llule+ 5 1B = L) llwam ] -
This coupled with (7.1) yields (ii).

REMARK 7.3. Analogous results are valid for A, B’ — L.
Following the procedure used in Bade and Freeman [3] we define
a map on HYQ) x A, as follows.

DEFINITION 7.4. Let the domain of S be the set of (%, Cu) such
that we <%(Q) and let S(u, Cu) = (Au, Bu). Thus S: HY(Q) x A, —
H(Q) x &#,. Analogously let the domain of S’ be the set of (%, C'u)
such that uw e £¥—(Q) and let S'(u, C'u)=(A'w, B'w). Thus S": HY(Q) x
A — H(Q) X &~

THEOREM 7.5. S(S’) is closed and densely defined. The adjoint
of S(S’) is S'(S).

Procf. We prove the result for S, the proof for S’ being identical
modulo a change of notation. Closedness follows immediately by (5.6)
of Theorem 5.20 and the fact that C is continuous on <°(2). That
the domain of S is dense in H*(Q) x 2, is clear.

Suppose

(v, p, =f, ¥) e H(Q) x A x HY(Q) x

and for ue o 2(Q)

m—1

(7-3) (A?/L, /U) + Z <Bjua ?:> - (’I,l/, f) - 21 <Cjuy q?a> =0.

j=0

Then for e Ny we have —(u, f) — 3,72 {Cu, ;> = 0 and applying
part (ii) of Theorem 5.20 to A’, B’,C’ and <**(2) there exists
we &m=5(Q) such that A’w = fand B'w = . But then for ue < %(Q)
we have

(Au, w) = (u, Aw) = 5 (Cpu, By — <Bju, T}

= (4w, ) — (, /) — 5 (KCyu, 73» — By, Ty} = 0.,
Combining this with (7.3) yields for ue <(Q)

(Au, v — w) + mj (B, 7, = Clw> =0 .

In particular for we Vi*(Q) we have (Au,v —w) =0 and thus
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v —weNy,CH™Q2). Thus v =w + (v — w)e () and Bv =
B'w =+ and A'v = A'w = f. Thus we have for ue Q)

(A?,(/, U) - (7,{,, f) - 21 {<Cju7 :‘l’f_1> - <Bju? (J——‘_J’v>} =0.

Combining this with (7.3) yields ¥\ 7='<B;u, go, C'v> = 0 for u e °(Q)
which implies that ¢; — Cjv = 0 for 7 = 0, ,m — 1.

THEOREM 7.6. Let L e o2(H(Q), 57,) and define L by L(u, Cu) =
(0, LCu). Then Le o7(HYQ) x H Q), HAQ) x 57,) and the dual of
S — L is 8 — L'. Moreover, if L satisfies the conditions of Theorem
7.2, part (i), S — L has closed range in HYQ) X 57,.

We can now apply the procedure of Bade and Freeman [3], in
particular Lemmas 5.8-5.10 to show the following

THEOREM 7.7. ‘ith the above hypotheses on L and an analogous
one on L' the operator A with domain GQNS(A, B — L, Q) is a closed,
densely defined linear operator in L*2), with closed range. Its
adjoint operator is A’ with domain ™A', B’ — L', Q) which is
also closed and has closed range. Moreover, (f,p)e HY(Q) x 7, is
wn the image of (A, B — L) on 53(9) iof and only if for all v in
the kernel of A" on ™A', B' — L', Q) we have

(fyv) — Z {p;, (B = Ly = 0.
Finally if Ay is an tsomorphism so is A with domain f}*(A, B — L, Q).
REMARK. Most of this has already been proved.

COROLLARY 7.8. If Q is relatively compact and 0 < s < 2m the
operator A with domain js(A,B — L, Q) has finite dimensional
kernel. Its range is closed and has finite codimension. The resolvent
operator where it exists is compact.

REMARK 7.9. The example of Remark 6.6 works just as well in
75(2) for 0 < s < 2 to show that some additional condition (other
than continuity) is required of L.

8. Lower bound conditions. Let a(u, v)= Y ..i56m (@asD*w, D?v).
Then we can write

(Au, u) = a(u, v) + El S Nuvyvdo
i=o Jr
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where {N,: 0 < j <m — 1} is a normal set of boundary operators with
infinitely differentiable coefficients, the order of N; being 2m — j — 1.
The system (4, N) is closable elliptic. Similarly

m—1
(u, A'v) = a(u, v) + 3, S v;uNjvdo .
j=¢ Jr

Let N(N') denote the set (N0 <j=m— 1L} ({N:0=j7=m— 1}).
If C(C') is a Dirichlet set of order m,C = {Cy ---,C, 4}, C" =
{c, ---,C,_}, the order of C,(C}) being j, we can find another normal
set B={B,, --+,B,_;} and B' = {B’, ---, B}, the order of B,(B))
being 2m — j — 1. The above formula remains valid if N;, v;, Nj,v;
are replaced by B;, C%, B}, C,.

We use the terminology of Lions-Magenes [16] and say

DEFINITION 8.1. A is H™(Q) elliptic if and only if for all » ¢ H™(2)
Re a(u, u) = «, || ||%, &, some positive real number.

Let L; < > L,yv,where L,; ¢ 7 (H™ 01", H-™++Y([")) and
L= (Ly,-+-+,L,). Then L,e c7(H™Q), H ™ +5(]")) and we will
write Le Z7(11r= H™(Q), [Ir= H—™+33(["). Let

m—1
(lL(’l/(/, /U) = a(u, ?))+ Zl <Lju9 W’>
for w, ve H™Q).

ProposiTiON 8.2. a;(-, -) is a continuous sesquilinear form on
H™(Q) and defines a linear map A of a dense subspace of H%2Q) into
HYQ).

REMARK 8.3. The linear map does not necessarily have closed
graph. See the example of Remark 7.9. If additional conditions are
imposed on L so that Re a,(u, u) = «, ||« |2, then the operator is not
only closed but is an isomorphism of its domain with the graph topology
onto H°(Q2). This is essentially the result of Lax and Milgram [12];
see also Freeman [9], Theorem 2.2. Some conditions which guarantee
this are stated in the following

THEOREM 8.4. Suppose A 1s H™(Q) elliptic and that a; is given
by Definition 8.1. Suppose

(i) Re>rt<{Lwu,vuy = a,||wl|? with o, + «, > 0. Then the
operator A given by Proposition 8.2 1s an isomerphism.

(i) If 1/2<s, <1 and for 0=j=m—1, L;e &F(H™Q),
H~=i=i([")) or Lj;e€ .7 (H™%(Q), H-™+t+2([")) then (i) is valid for
ar(u, v) + Mu, v) where x> 0 is sufficiently large, ©.e. thus the operator
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A + NI is an isomorphism.

Proof. Part (i) is immediate. For Part (ii) we have either
I<Lyw, Yy | = K[|l 1] Y50 |l
or
<Lt T | = K 11 e 1150 s S K 1 ey [0

Then using either Lemma 3.6 and Lemma 3.1 or Lemma 2.12 we find
that given ¢ > 0 there exists a C(¢) > 0 such that 3 |<{Lu, Y;uy| <
ellullf, + Ce)||wl? and (ii) follows from (i) by choosing &> 0
sufficiently small.

COROLLARY 8.5. Under the above conditions and for the same
N, A" + M is also an isomorphism. The operator A(A') has domain
™A, N — L,Q) (™4, N' — L, 2)).

COROLLARY 8.6. The adjoint of A with domain <2™(A, N — L, Q)
is A’ with domain <2™(A', N' — L, Q).

RemARrk 8.7. If Corollary 8.6 were true for any L ¢ &~ (I H™(2),
7=t H-m=i=2)([)) with no additional conditions required then it
would also be true that A with domain &2™A, N — L, Q) is the
adjoint of A’ with domain <™A’, N’ — L', 2) and would thus be
closed. Thus by Remark 8.8 some additional condition on L is needed.

If N;,v,, Nj,v,; are replaced by B,, C}, B}, C; the result is still
true.

After this manuscript was completed we learned that Schechter
has considered similar problems in L? but with bounded Q2. The
boundedness of 2 is essential because he needs Rellich’s lemma. In
this manuscript which he kindly sent us he has an elegant proof of
the inequality

N B llsomjap = ol Awll, o + [[w]l,] for we(2).

It follows from this that <%(Q) is the completion in the norm
(1-12 + ] A" of &7(Q) under the closed range assumption.

We wish at this time to express our gratitude to the referee for
his comments and suggestions. In particular Theorem 8.4 is basically
his generalization of our result and the proof is basically his. Also
a question of his is answered in the negative by Remark 8.7.
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