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CLOSED OPERATORS AND THEIR ADJOINTS
ASSOCIATED WITH ELLIPTIC

DIFFERENTIAL OPERATORS

R. S. FREEMAN

We are concerned here with determining some closed
operators associated with a given elliptic differential operator
A of order 2m and some in general nonlocal boundary opera-
tors. We seek conditions in particular which guarantee that
the result is a normally solvable operator, i.e. with closed
graph and closed range in the sense of Visik. We follow
basically the method used in Bade and Freeman in the sense
that we regard the operator with nonlocal boundary conditions
as a perturbation of an operator with boundary conditions
defined by a normal set of differential operators B =
{Bo, "-,Bm-ι} satisfying the condition of Agmon, Douglis and
Nirenberg (also Browder, and Schechter). Since the basic a
priori estimate valid for such systems essentially says that
the resulting operator has closed graph we call such a system
(A, B) closable elliptic.

In addition to dealing with higher order elliptic operators
and general boundary conditions we also drop the requirement
that our region be relatively compact and instead make the
weaker requirement that the differential operator in H2m{Ω)
with local boundary conditions yields an operator with closed
range. We work here in L2 only and consider operators
defined in H2m(Ω), in the graph topology associated with the
so called maximal operator and in a family of spaces inter-
polated between these two. Most of our results can be
obtained, at least for relatively compact regions, in Lp with
1 < p < oo at the expense of a somewhat more complicated
treatment. A particular complication arises from the fact
that different interpolation methods which yield the same
spaces in L2 do not in general in Lp, p Φ 2.

The paper is divided into eight sections the first five of which
are of a preliminary nature and contain results many of which are
variants of well known results.

While in the process of writing this paper we were able to see
the thesis of R. W. Beals which he kindly sent to us. The two papers
are concerned with similar problems but the results cannot be ordered
by inclusion.

1* Preliminaries* As usual points in Rn (^-dimensional Euclidean
space) are denoted by x = (xu , xn) and ^-dimensional Lebesgue
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measure by dx. We let dσ denote n — 1 dimensional surface measure,
Dj = (l/i)(d/dXj) where i2 — — 1 and N denote the nonnegative integers.
If a = (au ---,an)eNn and ζ = (&, . . . ,£ Λ )eΛ n then | or | = Σ;=iα;>
£>« = D«i . Z>£ , f« = ffi . £;», and a\ = α j -.. aj.

If i? and F are two topological vector spaces over C the complex
numbers we will use the notation E a F to mean that E is a subspace
of F and that the topology of E is finer than that induced on E by
F. J*f(E, F) will denote the (algebraic) space of continuous linear
maps from E to F. As is usual Jk?(E, C) will be denoted by E'.

Using the notation of L. Schwartz [27] we let 3ί(Ω) be the space
of infinitely differentiable functions having compact support in Ω and
if £&(Ω) is equipped with its usual locally convex topology its dual
space, the space of distributions on Ω is denoted by 3ίf(β). In general
if J^~(Ω) i s a space of functions on Ω then ^(Rn) is simply denoted
by j ^ . &(Ω) is the space of restrictions to Ω of functions in &.
Sf will denote the space of rapidly decreasing functions on Rn. An
element in its dual is called a tempered distribution assuming that S?
has its usual locally convex topology.

For ue 3ί(Ω) and me N we let

_ f v
J°k=0 2-Λ Γ

\a\=k a]

suppressing the Ω when no confusion is likely to result.

When Ω is Rn and if ϋ denotes the Fourier-Plancherel transform

of u then | |^ | | 2

m = ί(l + | ξ | 2 ) m | u(ζ) \2dζ which is the reason for all

the factorials. The completion of &{Ω) in the norm || \\m is denoted

by Hm{Ω) and the completion of 2P(Ω) in the norm || ,|m is denoted

by H™(Ω). If Ω is Rn the two spaces are the same and their elements

are tempered distributions.

Let Ω be an open set in Rn whose boundary Γ is an infinitely
differentiable, orientable manifold. Ω is not assumed to be relatively
compact but is assumed to be uniformly regular in the sense of Browder
[5, 6]. Let &τ be the open unit ball of radius r about the origin.
Then we assume there exists a covering of Ω by open sets {Ωό: j e N},
a family of infinitely differentiable homeomorphisms {φJ:j = lf •••}
and a positive integer n0 such that

( 1 ) At most n0 of the 42/s have nonempty intersection.
( 2 ) For j = 1, φά\ ΩjΠΩ-^^n {yn > 0} and φά: Ω3 Π Γ ->

&' n {yn = 0}.
( 3 ) The derivatives of φ5 and its inverse are uniformly bounded.
( 4 ) \Jj φj\^^) covers a uniform neighborhood of Γ.

It follows [6] that there exists an infinitely differentiable partition of
unity {ηά: j e N} subordinate to the cover such that in a neighborhood
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of each point x e Γ at most n0 of the 37/s do not vanish. A number
of results usually obtained for compact regions can also be obtained
for uniformly regular regions. In an earlier version of this work we
included the modifications necessary to prove these results for uniformly
regular but not necessarily compact regions. Since that time we have
received a copy of the thesis of R. W. Beals in which detailed proofs
of these results are given. Consequently we do not duplicate them
here. We summarize some well known facts about the spaces Hm(Ω),
me N in the following

THEOREM 1.1. (i ) If m,peN and m <p then HP(Ω) cHm{Ω)
and HP(Ω) is dense in Hm(Ω).

(ii) Hm{Ω) can be identified with the space of distributions on
Ω all of whose derivatives up to and including order m are functions
in L\Ω) = H\Ω).

(iii) Let H™c be the closed subspace of Hm consisting of those
functions in Hm whose support is contained in Ωc. Each u e Hm(Ω)
is the restriction to Ω of a ue Hm and Hm(Ω) is topologically isomor-
phic to the quotient space HmIH™c if the latter space is given the
quotient topology.

(iv) // Ω is relatively compact, m, pe N with p > m then the
canonical injection of HP(Ω) into Hm(Ω) is compact.

A detailed proof of (ii) appears in Browder [6] and a detailed
proof of the first statement of (iii) appears in Beals [41 and for Ω
relatively compact in Lions [13].

For u e £2ίφ) we define two more norms

ίl u \ \ _ m , Ω = s u p {| ( u , v)Q \ : v e H % Q ) , \\ v \\m = 1 }

a n d

\\u\\_m = sup{\(u,v)o\:veHo

m(Ω), \\v\\m = 1} .

The completion of &(Ω) in the first norm is denoted by H^m and in
the second norm by H~m(Ω). When no confusion is likely to result
we suppress the Ω in the first norm. The space H~m(Ω) can be
identified with a space of distributions on Ω but since £&(Ω) is not
dense in Hm{Ω) this is not true for Hfm. We summarize some well
known facts about these spaces. A proof of the last appears in
Magenes-Stampacchia [21].

THEOREM 1.2. (i ) Hτ m (H~m(Ω)) is topologically isomorphic to
the dual space of Hm(Ω) (Ho

m(Ω)).
(ii) If u e Hm(Ω) (Ho

m(Ω)) and v e Hfm{H~m{Ω)) the expression
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(u, v)0 is well defined and \ (u, v)0 \^\\u\\m\\v \\_mtΩ (|| u\\m \\ v | | _ m ) .

(iii) If m, p are integers, m > p then H~P(Ω) c H~m(Ω)

(H-ffp a Hifm) and Hjfp is dense in Hfm (H~P(Ω) is dense in H~m(Ω)).

(iv) If me N the space Hfm can be identified with the closed

subspace of H~m consisting of those elements with support contained

in Ω.

2* Some interpolation results* There are two methods of
interpolating Banach spaces between pairs of Banach spaces which
have been widely used, a complex variable method introduced by
Calderon [7] and independently by Lions [14] and a real variable
method introduced by Lions [15]. Other methods have been discussed
for example in Lions-Peetre [20] and in Calderon [7]. We outline
briefly the first two mentioned methods here for the convenience of
the reader. We summarize below some facts all of which except
possibly the last are well known. We do not know whether the last
statement appears elsewhere in the literature. Its proof is quite
straight forward and we do not include it here.

THEOREM 2.1. Let HQ and Hx be Hilbert spaces with i ^ c fli,, Hx

being dense in Ho. Let || \\jy ( , )j,j — 0, 1 denote the norm and
scalar product in H3. Then

( i ) There exists a positive-definite, self-adjoint operator T2 in
Ho with domain D(T2) = {v e H^. for some k(v) > 0 | (u, v)x \ ^ k(v) \\u\\0

for all ueHj}. D(T2) is dense in Hx and for veD(T2) and ueHu

(u, v\ = (u, T2v\.
(ii) T, the positive square root of T2, has domain precisely

equal to Hx and is a continuous bisection of Hx onto Ho. For ue Hu

H Γ ι t | | o = l l » l l i .
(iii) T has an extension T to all of HQ and T is a continuous

bisection (i.e. an isomorphism) of Ho onto a Hilbert space H_x topolo-
gically isomorphic to the dual space of Hλ. If for ue Ho we set
|| u | |_ ! = || T-H&llo then \\ u 11 ^ = s u p { | (u, v)0 \:ue Hλ and \\ v [^ = 1}.

Since T is also self adjoint, if 0 < s < 1, the powers Ts of T can
be defined with the aid of the spectral measure of T (or of T2). They
are also positive-definite and self-adjoint. We make the

DEFINITION 2.2. For 0 < s < 1 let Hs be the domain of Ts and
for ue Hs set || u\\s = || Γ s ^ | | 0 . Let, for ueH0, \\ u\\_s = sup{| (u, v)01:
veHs and \\v\\s — 1}. Denote the completion of Ho in the norm || ||_s

by H_s.
Since Ts is self-ad joint it is closed and since it has also a continuous

inverse it follows that the spaces Hs, 0 < s < 1 and Hilbert spaces.
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We summarize some of the salient facts about Hs in the following

THEOREM 2.3. ( i ) For -1 ^ s <^1, Hs is a Hilbert space.
(ii) For —l<zS<t^l,Hta Hs1 Ht being dense in Hs.
(iii) The map Ts has an extension (Tsy = (T)s to HQ and yields

an isomorphism of Ho onto H_s. H_s is isomorphic to the dual space
of H..

(iv) Let Ho = Vo and Hs = V± for some 0 < s < 1. Construct
the space V0, for 0 < θ < 1, as above. Then Vθ — Hθs.

The last mentioned fact follows easily from the manner in which
the spaces have been constructed and the fact that a self adjoint
operator can have no proper self adjoint extension.

We give now a definition due (with a slight modification in nota-
tion) to Lions [14].

DEFINITION 2.4. Let ^(H2s, H01 R+) be the set of all strongly
Lebesgue measurable Hx valued functions on R+ = [0, oo) such that

ί°° \\u(t)\\\sdt and \°° \\u'(t)\\2

0dt < oo.

THEOREM [Lions] 2.5. For uej* (H2si HQ, R+) the map u--*u(0)
can be defined and is a continuous map of ^(H2s, Ho, R+) onto Hs.

Let Vt and Fo be another pair of Hilbert spaces with Vλ dense in
Vo, V1a Vo and construct for 0 < s < 1 the spaces Vs. Then

THEOREM [Lions] 2.6. If L e £f(H0, Vo) and in jSfiH^ \\) then
Le^f(Hs, Vs) for 0<s < 1.

The spaces Hs, 0 < s < 1 will be called trace spaces.
Now suppose Ao and Aγ are two Banach spaces each continuously

embedded in some topological vector space j^f. Equip Ao + Aλ with
the norm || a \\AQ+AI = inf (|| α0 \\Ao + || αt \\Ai: a = α0 + ax). Ao + A1 is then
a Banach space. Let J%f(AO1 Aλ) be the set of maps of the strip 0 ^
Re z 5̂  1 into Ao + Au holomorphic in 0 < Re z < 1 and continuous and
bounded in 0 ^ Re z ^ 1. Suppose moreover that f(iy) G AQ, /(I + iy) G Aλ

and as | y \ -> - \\f(iy) \\AQ ~_> 0 and || /(I + iy) \\Aί -> 0. Equip £ίf{AO1 A±)
with the norm || f\\^Uo,Al) = max (supy || f(iy) \\Ao, sup,, || /(I + iy) \\Al).
Let [Ao, Al9 δ(θ)] for 0 <̂  61 ^ 1 be the image in Ao + Aλ of the map
θ — /(*) and equip [Λ, Λ , S(β)] with the norm || α ||β = inf {|| / \UUo^
f(β) = a}. [Ao, Al9 d(θ)] is then a Banach space.

Suppose Bo and Bλ is another pair of Banach spaces each continuously
embedded in a topological vector space &. Then
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THEOREM (Lions [14], Calderon [7]) 2.7. If Te£f(AQ, Bo) and

ly Bλ) then for 0 < θ < 1, Γ e j2f([Λ, Λ , 3(0)], [Bo, 5

Let μ be a finite measure on R + and if0 = j£f2 [i2+, d/j], ίfi =
i2+, λdμ] then it is easy to see that [Ho, Hlf δ(θ)] is L2[R+, Xθdμ].

If HQ and i ^ are Hubert spaces, Hx a Ho and Hλ dense in HQ and if
/* is the spectral measure of the self adjoint operator T of Theorem
2.1 then there is a unitary map U mapping Hx onto L2\R+, Xdμ] and
HQ onto L2[J?+, d//]. Thus

THEOREM 2.8. If Hl9 Ho is a pair of Hubert spaces with Hx a Ho

and Hλ dense in HQ, then for 0 < θ < 1, [HOy Hi, δ(ΰ)] = Hθ.

DEFINITION 2.9. If s is a real number m ^ s ^ m + 1 we let
i ϊ s (β) = [Hm(Ω), Hm+\Ω), δ(s - m)].

THEOREM 2.10. HS(Ω) for s real, s Ξ> 0, is isomorphic to the
space of restrictions to Ω of elements of Hs{Rn).

REMARK 2.11. If 0 <Ξ s <̂  m we could also define H8(Ω) by inter-
polating between H\Ω) and Hm(Ω) using Theorem 2.1. By Theorem
1.1, part iii, and Theorems 2.6 and 2.7 the spaces are the same. The
operator T2 of Theorem 2.1 is the operator (I + Δ)m subject to the
Neumann boundary condition (homogeneous), where Δ — XJ=i-D|. If
m = 2p, the operator (I + Δ)v with domain HP(Ω) is not even closed,
much less self adjoint. Thus the square root of (I + Δ)2p with the
homogeneous, Neumann boundary conditions does not look like (I + Δ)v.

LEMMA 2.12. Given ε > 0 there exists a C(ε) > 0 such that for
0 ^ s < t and u e

u\

3* Boundary operators* If u e 3ίφ) we define (using the nota-
tion of Lions and Magenes [16]) the map τ0 by jou = u restricted to
Γ, and set Ύku = 7Q(d/dv)ku where v denotes the normal to Γ.

LEMMA (Ehrling [8]) 3.1. The map u —> 7'ku is a continuous map
of £&φ) with the topology induced by Hk+1(Ω) into H°(Γ) and thus
has a continuous extension to Hk+1(Ω). If e > 0 there exists a
C(e) > 0 such that for ueHk+1(Ω) \\7ku\\L2{n ^ e | |^ | | f c + 1 + C ( ε ) | | ^ | | 0 .

This is proved using a partition of unity just as in the usual
proof for compact regions. A detailed proof appears in the thesis of
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Beals [4] so we do not include it here.
Since τ0 is continuous, its kernel is a closed subspace of Hm(Ω)

for m a positive integer. Thus Hm(Ω)/ker 7Q is a Hubert space with
the quotient topology.

DEFINITION 3.2. The image of Hm(Ω) under the map τ0 with the
topology of Hm(ί2)/ker τ0 is defined to be the space Hm~il/2)(Γ). The
norm is written || ||w_(i/2)fjΓ. It follows that τ0 is a topological homo-
morphism of Hm(Ω) onto iϊm- ( 1 / 2 )(Γ).

If β is the half space {a;e2?w: αΛ > 0} so that Γ is i J ^ 1 and if xf

denotes points in Rn~x and ξf points in the dual space, then

(1 ). \(1 + I ς I ) I J{ς ) I aξ

and

l!/li«-(i/2,,r = ( j ( i + I £ ' | T - ( 1 / 2 ) ! fin\2d

Using a partition of unity and local homeomorphisms just as when Γ
is compact another definition of Hm-{1'2)(Γ) (and in fact HS(Γ) for s
real) can be given and the two definitions yield the same spaces. It
is worth mentioning that difficulties appear when p Φ 2, see for example
Lions-Magenes [17].

DEFINITION 3.3. If s is real and m < s < m + 1 define HS(Γ) =
, Hm+\ δ(s - m)].

THEOREM 3.4. For s ^ 0 the space HS(Γ) coincides with the space
defined in the discussion preceding Definition 3.3.

LEMMA 3.5. 3f(Γ) is dense in HS(Γ).

LEMMA 3.6. Given ε > 0 there exists a C(e) > 0 such that for
0 ^ s < t and ue^r(Γ), \\Ύ3U\\8 ^ eWjjuWt + C(e) | | 7 ^ | | 0 .

THEOREM 3.7. Let s > 1/2 be real and m = [s] the greatest integer
ίgs. The map u—+ju = (ΎQU, •• ,7m_iW) is a continuous linear mo,p
of Sfφ) with the topology induced by HS(Ω) onto ΐ[J=o &(Γ) with the
topology induced by Π^o1 Hs~j~{ll2)(Γ). 7 can be extended conti-
nuously to HS(Ω) and yields a continuous linear map of HS(Ω) onto
ΐ[?=o Hs~j-{1I2)(Γ). The kernel of 7 is HO

S(Ω).

Now let Bo, , Br_τ be a family of r differential operators with
infinitely differentiable coefficients defined on some open set Ωr contain-
ing Ω.
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DEFINITION [2] 3.8. The set BQ, Bu , Br_λ is called a Dirichlet
set of order r if and only if

( 1 ) Bk = bk(x)yk + Ak where the order of Bk is k and the normal
order of Ak is ^k — 1.

( 2 ) inf {| bk(x) \:0 ^ k ^ r - l,xeΓ} > 0.
A subset of a Dirichlet set the highest order appearing being p is
called a normal set of order p. A set of differential operators having
the properties of a normal set can be extended in many ways to form
a Dirichlet set.

THEOREM 3.9. Let B = {Bo, •• ,i?TO_i} be a normal set of order
MQ, the order of Bό being mά. If s is a real number, s > MQ + 1/2,
then the map u —> Bu = (Bou, , Bm_{ώ) is a continuous linear map
of 3ίφ) with the topology induced by HS(Ω) onto ΐ[J=o £&(Γ) with
the topology induced by ΠlPo1 Hs~mi~{ll2)(Γ) and can be extended con-
tinuously so as to be a homomorphism of HS(Ω) onto ΠΓ^o1 Hs~mΐ~{ll2)(Γ).
If B is a Dirichlet set, the kernel of B is HQ

S(Ω).

4* Closable elliptic operators. Let A — Xiα|,iβ!̂ m Dβaaβ(x)Da be
a differential operator of order 2m with infinitely differentiate coeffi-
cients defined on an open set Ωf containing Ω. Let

A(x, ξ) = Σ aaβ(x)ξa+β

DEFINITION 4.1. ( i ) A is uniformly elliptic if and only if there
exists a number α0 > 0 such that for xe Ω,\ AQ(x, ξ)\ ^ α01 ξ |2 m.

(ii) A is properly elliptic if and only if for each xe Γ denoting
by vx the inner directed unit normal to Γ at x and τx a unit tangent
vector to Γ at ίc the polynomial in λ A0(x, τz + λy j has precisely m
roots with positive imaginary part and m roots with negative imaginary
part. It is known that when n > 2 every elliptic operator is properly
elliptic.

We now introduce a condition on boundary operators associated
with A which has almost as many names as there are authors who
have introduced it. It has been called the complementing condition
by Agmon, Douglis and Nirenberg [1], regularity condition by Browder
[5], and the boundary operators are said to cover A by Schechter [23].

DEFINITION 4.2. Let B = (Bo, , Bm_λ) be a normal1 set of boun-
dary operators, the order of Bά being m5 and m3- < 2m. Let Bd =
bj(x)Ύmj + AJ a n ( i C(χ> τ) be a closed Jordan curve in the upper half
plane containing those roots of A0(x, τx + Xvx) with positive imaginary
part. Set

1 Normality is not essential for this definition.
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(x) = \ \k~%(x, τx + Xvx)[A0(x, τx
JO

pjk

The system (A, B) will be called closable, elliptic if and only if
inf {| pjk(x) I ^ a > 0, x e Γ, \ τx\ = 1, 0 ^ j ^ m - 1,1 ^ & ̂  m}. We
are using the form as given in Browder [5],

Notation 4.3. We will denote the formal adjoint of A by A'.
If B is a given normal set of orders <^2m — 1, B = (Bo, , J3m_i),

let C = (Co, , Cm-i) be another normal set such that the set (B, C)
is a Dirichlet set of order 2m. We let m, be the order of Bό and μ5

be the order of Cj9j = 0, ,m — 1. The following result is basic.
We assume all operators have infinitely differentiable coefficients.

THEOREM 4.4. Given an elliptic differential operator of order
2m and a Dirichlet set (B, C) of order 2m, there exists another
Dirichlet set (B', O) having infinitely differentiable coefficients with
the order of B'ά — m' = 2m — 1 — μjy and the order of C'ά = μ'ά =
2m — 1 — m5, j = 0, , m — 1, and such that for u, ve

(4.1) (Au, v) - (u, A'v) = Σ 1 Γ( CMW/V dσ - [ BjuCγvdσ\ .
3=0 LJίf JΓ J

If (A, B) is closable elliptic then (Ar, Bf) is also closable elliptic.

We will refer to (4.1) as Green's formula. A proof can be found
in Schechter [24].

Assumption I 4.5. We will always assume that (A, B) is closable
elliptic unless something is stated to the contrary.

We will need the following

DEFINITION {Lions-Magenes [16]) 4.6. For 0 ^ s let

Ξf\{Ω) - {u e HS(Ω): Au e L\Ω)} .

Equip Sf\(Ώ) with the norm \\u\\s,A = (\\u\\2

s + \\Au\\l)1'2 which makes
it a Hubert space.

PROPOSITION 4.7. Let V, H be Hubert spaces with V (zH. Let

Te£f(V, H); then the graph of T is closed in H x H if and only if

there exists a constant K such that for ue V, \\u\\v ^ K[\\ Tu\\H +

I I ^ I I J .

LEMMA 4.8. The map Dά e Sf(Ή-s{Ω), Hs~ι{Ω)) for s real, s Φ 1/2.
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Proof. Lions-Magenes [17, 18].

DEFINITION 4.9. Let VB(Ω) = {ue^r(Ω): Bu = 0}.

THEOREM 4.10. There exists a constant C2m > 0 such that for

ueVB(Ω),\\u\\im^Cim[\\Au\\0 + \\u\\Q].

Proof. This inequality has been proved by a great many authors,
for example Browder [5], Agmon, Douglis and Nirenberg [1], Schechter
[23].

REMARK 4.11. It follows that for u e VB,{Ω), \\u\\2m<L C2m[\\Afu ||0 +
H^llo] for some C2m > 0.

DEFINITION 4.12. The closure of VB in the topology of HS(Ω)
will be denoted by Vί(Ω).

COROLLARY 4.13. The operator A(Ar) with domain V2

B

m(Ω) (VB^(Ω))
is a closed operator in U(Ω).

REMARK 4.14. There are numerous generalizations of Theorem
4.10 now in the literature. Some of these will be discussed in what
follows.

THEOREM (Browder [5], Schechter [24]) 4.15. Let AB be the
operator A with domain Vlm{Ω) and AB, the operator A with domain
VβT(Ω). Regarding each as an operator in L\Ω) the adjoint of AB,
is A'B,.

THEOREM 4.16. There exists a constant C2m such that for u e £^

( 4 . 2 ) || u ||2W ̂  C 2 m Γ | | Au [|0 + || u ||0 + Σ II B ά u ||2m_w (1
L i=o J

Proof. Theorem 4.10, Lemma 4.8 and Theorem 3.9. This result
appears for example in Agmon, Douglis and Nirenberg [1].

COROLLARY 4.17. // Ω is relatively compact then the kernel of
AB(ABf) is finite dimensional, the range is closed and has finite
co-dimension.

Proof. This follows by Rellich's lemma, i.e., the cannonical injec-
tion of Hk(Ω) into Hj(Ω) (k > j) is compact; see Browder [5].
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5* Some interpolation results and normally solvable opera-

tors*

DEFINITION 5.1. The Dirichlet operator is the operator A with

domain V2

r

m(Ω).

THEOREM (Lions and Magenes [19]) 5.2. If the Dirichlet operator
is an isomorphism and Ho = &°A(Ω), Hλ = j£?7(Ω), then forO^θ^l,
Hθ = &TΘ(Ω), so long as 2mθ Φ s + (1/2), s an integer ^ 0 .

Proof. This follows from Propositions 5.4 and 5.6 of Lions-Magenes
V [19], Theorem 2.8 and the fact that for s = 0 and 2m the map
(A, 7) is an isomorphism of &A(Ω) onto H\Ω) x ΠΓ-o1 Hs-^ι'2)(Γ) and
of course Theorem 2.6.

DEFINITION 5.3. For 0 ^ s ^ 2m, let £§rA(Ω) be the spaces inter-
polated between &\(Ω) and ^T(Ω).

Thus if the Dirichlet operator is an isomorphism, Theorem 5.2

says that £2?A(Ω) can be identified with £&A(Ω) for 0 ^ s ^ m so long

as s — (1/2) is not an integer. Observe that 3PA(Ω) c SfA(Ω) always

the injection being continuous. We shall identify the spaces £§rA(Ω)

in what follows.

THEOREM 5.4. // (j?, C) is a Dirichlet set of order 2m, the map

(J5, C) is a continuous linear map of 3S

A{Ω) into ΠΓ^o1 £Γ S-^'- ( 1 / 2 )(Γ) X

U?=o H'-μ3-{ll2) for 0 ^ s ^ 2m.

Proof. For s = 2m this is just Theorem 3.9 and for s = 0 it is
proved in Lions-Magenes [16]. For 0 < s < 2m, use interpolation.

THEOREM 5.5. For ue&rA(Ω) and ve^2™~s(Ω),

m—1

(Au, v) - (u, A'v) - v {<Cju, B'jVy - ζBjU, C ^ » ,

then brackets representing the duality betiveen ΠiS)1 Hs~μi~{m(Γ) and
U7=o H2m-s-m'rill2)(Γ) and ΠiS 1 Hs~mό-^(Γ) and ΐ[?=o H2m-s-μ'r{

DEFINITION 5.6. Let NB(NB,) be the kernel of AB(A'B,).

THEOREM 5.7. For 0 <£ s ^ 2m Zβί iVs denote NB equipped with
the topology of HS(Ω) and N_s denote NB equipped with the topology
Hjfs. For —2m rg s, ί ^ 2m iVs is topologically isomorphic to Nt



82 R. S. FREEMAN

and is thus closed in each such topology.

Proof. Freeman [10].

DEFINITION 5.8. For 0 ^ s ^ 2m let NS

L,B = {u e HS(Ω): (u, v)0 = 0
for v e NB} and N±8tB = {ue H-^1: (u, v)0 = 0 for v e NB}.

LEMMA 5.9. Let P be the orthogonal projection of H° onto NB

and 0 ̂  s < 2m. Then Pe^f(Hs(Ω)y HS(Ω)) and Pe£?(H-f8, H^s).

THEOREM 5.10. Let 0 <̂  s ^ 2m; then each ueHs(Ω) (H-fs) can

be written uniquely in the form u = uf + u" with uf G NB and

u" e NUN±..B).

Proofs can be found in Freeman [10]. Corresponding results hold
for NB,, Nϊ,,8.

THEOREM 5.11. Let V and H be Hilbert spaces with V c H.
Let TG J5f(V, H) and assume T is a closed linear operator in H.
Let N denote the kernel of T and Nv = {ue V: (u, v)π = 0 for v e N}.
Then the range of T is closed in H if and only if there exists a
constant C > 0 such that for ueN£, \\u\\v ^ C| | Tu\\H.

Proof. Open mapping theorem.

THEOREM (Kato [11]) 5.12. Let T be a closed densely defined
linear operator mapping a Banach space E into a Banach space F, T"
the adjoint of T. Then the range of T is closed in F if and only
if the range of Tr is closed in E''.

ASSUMPTION 5.13. In the remainder of this section we assume
that the operator AB (and thus also A'B,) has closed range in H\Ω).

LEMMA 5.14. Let feH°(Ω) and

φ = (φ0,
m—1

3=0

There exists a ue H2m(Ω) such that Au = / and Bu — φ if and only

if for all v e NB,:

m—1

(5.1) (/, v) + .Σ <Ψ;, C'jV} = 0 .

Proof. If such a u exists then by Green's formula the condition
is clearly verified.
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Now suppose / and φ are given subject to the orthogonality
condition (5.1). There exists uλ e H2m(Ω) such that Buλ = φ. Let
AuΎ = f and apply Green's formula to ux and v e H2m(Ω) to obtain

Σfo> s> ( ,̂ ) Σ
i=o i=o

Thus for veNB, we have (/x, v) + Σ?=iζφj, C^> = ° a n d using the
condition of the theorem we have (/ — fl9 v) — 0 for all w e iVg,. But
by Assumption 5.13 there exists ^ 2 e VT{Ω) such that A^2 = f — flm

Then % ^ ^ + ^ G H2m(Ω) and AM = f, Bu = φ.
The set of /, ^, / G iϊo(.Q), cp e Π5S1 H2m-mJ~ill2)(Γ) which satisfy

(5.1) is clearly closed.

COROLLARY 5.15. ( i ) (A, J3) maps H2m(Ω) onto the closed subspace

, φ): fe H*%Q), φ e *§ H2—^'2\Γ): (/, v)
0

(ii) (A, B) is an isomorphism of Nim,B onto its range and for

u e NL,B, II u ||2m ^ C'J\\ Au\\
L

2
i=o

LEMMA 5.16. For fe H\Ω) and φ e U?=o H~m^ιl2)(Γ) there exists
a ue £&°Λ(Ω) such that Au — f and Bu = φ if and only if there exists
a constant K such that for all v e VβT(Ω)

(5.2)
m—l

3=0 i, C'3v>
< K WA'v ίίo

Proof. Suppose such a u exists and ve FJf(β). Then

3=0

and (5.2) is satisfied with | | ^ | | 0 = K. Now suppose (5.2) is satisfied
and define F(A'v) = (/, v) + Σ ^ 1 <<pi? C^>. By (5.2), F is a continuous
conjugate linear form on a closed subspace of H°(Ω) and has a con-
tinuous extension to all of H\Ω). Thus there exists ueH°(Ω) such
that (u, A'v) = (/, v) + v-Γoiζφ.9 cζϊy for v e V$?(Ω). Taking v e ^ ( β )
we see that u e £&°A(Ω) and Au = /. But then (u, A'v) = (Au, v) +
ΣJ=o ζBjU, C'jVy and since it is clear from Theorem 3.9 that C'v fills
up Π S 1 H2m-μj-{ll2)(Γ) as v runs through Fjr it follows that Bu = cp.

THEOREM 5.17. Lβί feH°(Ω) and φeJlT^o H-m^-{ll2)(Γ). There



84 R. S. FREEMAN

exists u e ^°A(Ω) such that Au = / and Bu — φ if and only if for
all v e NB,

m—1

(5.3) (/, v) + X <Ψj, C » = 0 .

Proof. Let v e VBf(Ω) and write v = v' + v" with Ί/ e JV5, and
v" e NB,,2m. Since iV̂ , c V%? it follows that v" e VB? and by Assumption
5.13 and Theorem 5.11 there exists a constant K such that ||i?"|i2m ^
UL || A'v||0. Now using (5.3) we have for

m—1

v e Vir: (f, v) + Σ <<PS, C',v> = (f, v") + X <•?,., C>">

and thus

TO—1 m—1

/, v) + Σ < 9 ί , c » ^ II /I l -2» II«" ll«- + K' Σ I! <ps l l - ^ - α , ^ i! v " lis«
3=0 3=0 J

Now apply Lemma 5.16.

COROLLARY 5.18. (A, B) maps 3?\{Ω) onto the closed suhspace of
H°(Ω) x Πf^o1 H~mi~{ll2)(Γ) consisting of those (/, < )̂fs which satisfy
(5.3)

The kernel of A, B in 3f\(Ω) is just NB and JVi>0 Π ̂ i(-O) is
closed in &r°A(Ω).

COROLLARY 5.19. (A, 5) is an isomorphism of NB>0 Π 3Ϊ\(Ω) onto
its range. There exists a constant C[ > 0 such that | | u | | 0 ^
Qil Aw Ho + ΣyS 1 II Byw I U -u/2)! for u e NB-,0 Π &°A(Ω).

Now by Corollary 5.15 (A, B) maps HZm(Ω) onto a closed subspace
of H\Ω) x Πi^o1 H2m-mJ-{1'2)(Γ) and by Corollary 5.18 (A, JB) maps
3ί\{Ω) onto a closed subspace of H\Ω) x ΠPo1 ί f- m ^ ( 1 / 2 ) (Γ). Thus to
each element (/, φ0, , φm^) in the image of (A, B) in H°(Ω) x
ϊ[JiϊH8-m3'--'m(Γ),s = 0,2m, there corresponds a unique w e ^ Ι ( f l ) ΠiVi,s

for s = 0, 2m? such that A^ = / and Bu = φ. Define a map T by
T(f, φ) = u. By Corollary 5.15 and Corollary 5.19 T is a continuous
map of the image of (A, B) into &f*A{Ω) and into ^T(Ω). By letting
Γ be zero in the orthogonal complement of the image of (A, B) in
the respective spaces we see that Te£f(H°(Ω) x ΠyS)1ίίs~mi~(1/2)(Γ),
£2r*A(Ω)) for s = 0, 2m and thus by interpolation for 0 < s < 2m, using
a result of Lions [14].
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THEOREM 5.20. ( i ) For u e &A(Ω) Π N^B, 0 ^ s ^ 2m, there
exists a constant C's such that

(5.4) \\u ||. S C'.[|| Au ||0 + g lί ^

(ii) (A, B) maps ^S

A(Ω) Π N8lB onto the closed subset of

H\Ω) x Π1 Hs-^'-{ll2)(Γ)

consisting of those (/, <p)'s ΐw

fl"°(fl) x ΓI Hs-mi~il

(5.5) (/, v\ + X <9>ίf G » = 0 /or all v e N°B, .
3=0

(iii) ΓΛβrβ exists a constant Cs such that for u e *£

(5.6) || u ||. ^ C;Γ|| Au\\0 + || w ||0 + S II ̂  II (1
L i=o J

Proof. ( i) Follows from the preceding discussion. This is
essentially the argument used in a slightly different context in
Schechter [25].

(ii) (5.4) implies that the image of (A, B) is closed whereas the
set of (/, φ) satisfying (5.5) is clearly closed and contains the image
of (A, B). If the sets were not the same there would exist an

m - l

\jj φ) & -ti (U) x 2 J Λ
 3

 Λ1 )

satisfying (5.5) and a

(v, r) e H\Ω) x 5 H2m-S^ιj-{1I2)(Γ)

such that (/, v) + Σ?=o^Pjy Ψj}^® whereas {Au, v)— Σ?=O<\BJU> ^i>= °
for u e £&8

A(Ω). It follows in particular that (Au, v) = 0 for ue VB

and thus v e N'. Hence (Au, v) - X ^ 1 <Bάu, C^> = 0 for u^3s

A(Ω).
It follows then that C'dv = fj and thus that (/, v) + Σΐ=o (pji^jv} ^ 0
for v e Nβ, which contradicts (5.4).

(iii) If u e &A(Ω), with u = u' + t6" with %' e ΛΓ and

we have
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I I M I I . ^ | | i t ' l l . + 11M" 11.^11 w ' l l .

+ C f l l A u ||0 + X II B 3 u | j . _(1/!) + ' £ \ \ B j U ' \\,_m ( 1 / 2 ) 1
L J=0 J j=0 J J

since Au/ = 0. But ^ is continuous on £&*A(Ω) and Au' = 0 so
Biu

9\\,_m.^mK\\v!\u. But using Theorem5.7, || w' | l .^ ^11 ^ΊIo^ϋΓ||%110

by Lemma 5.9.

When s — (1/2) is not an integer, £2fA{Ω) can be identified. In
general assuming 5.13, the closed range assumption, as was remarked
in [10], using the results of [10] and an argument similar to that
which preceded Theorem 5.20 one can show that (5.4) and (5.6) are
true for u e 2$(Ω) Π N^s and u e &(Ω) respectively.

DEFINITION 5.21. For ue^(Ω) let

II w l 1 ^ . ( f l ) = II u \\l + lί A u \\ι + Σ !! Bsu\\* lllt)
Λ 3=0 J

and let &8

A(Ω) be the completion of £&(Ω) in this norm.

By the preceding remarks (A, B) maps £2t*A(Ω) onto a closed sub-

space of H\Ω) x Π^o 1 ί ί s " m i ~ ( 1 / 2 ) (Γ). Now &Λ(Ω) is continuously

embedded in &A(Ω), £&(Ω) is dense in &*A(Ω) and each Bό is continuous

on ^ i ( β ) . It follows that 3f*A(Ω) is continuously embedded in 3f*A(Ω).

Since on the one hand the image under (A, B) of SfA{β) is characterized

by (5.4) while on the other hand the image under (A, B) of &*A(Ω)

satisfies that condition, the two images must be the same. Thus if

u e £&S

A{Ω) there exists v e £&\(Ω) such that A(u — v) = 0 and Bj(u — v) = 0*

Consequently u - v e N c £2ί*A{Ω). Thus

THEOREM 5.22. Under assumption (5.13) <md /o?" 0 ^ s ^ 2m ίfee

spaces £&A(Ω) and &A(Ω) are the same.

Following Schechter [25] for ue^(Ω) we define

u |__β = sup {| (M, V)0 |: for ve VB, and || t; ||β = 1}

where s ^ 0. Observe that for w e &f(Ω) \u\_s S \\ v, j | _ s ^ || u ||0.
The following result was proved by Schechter [26]; see also Peetre
[22].

THEOREM 5.23. Let s Ξ> 0. There exists a constant C_s > 0 such
that for u e &r

|| u |U ^
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Moreover, there exists a constant CLS > 0 such that for u: (u, v)Q — 0,
for all v e N, then

11^11- ^ CLs[\Au\_2m_s + Σ ll^ll-» i-β-<i/2)J .

REMARK 5.24. ( i) Both Peetre and Schechter assume that Ω
we relatively compact. However, as was remarked in [10], Schechter's
proof can be adopted to situations where Ω is not relatively compact
if AB has closed range.

(ii) Each result in this section has a corresponding analog if A
is replaced by A' and B is replaced by B'.

6* Perturbed boundary operators* Let L = (L0, , Lm__λ) where
Lη e £f(H2m(Ω), H2m-mi-{ll2)(Γ)) and'3

m—1

Ls = Σ LkjCk , Lkj e

k = 0, . . . , m - 1

j = 0, . . ,m - 1 .

Moreover, let U = (L'o, , Um_x) where Lf

ά = XΓΓo1 •ί'^C; and

Notation 6.1. For s ^ 0 we will let

= Π Hs~m>~{ll2)(Γ) , §ίs = Π H-P
j=0 j-=0

m—1 m—1

= Π Jϊ8"—";- ( 1""(r) and 3i; = Π
J=0 j=0

LEMMA 6.2. For w, v e i^(β) we

{An, v) - (u, A'v) = Σ {<Csu, B'}v - L » -
i=o

LEMMA 6.3. Let φ e 2I2m. ΓΛere βα ΐsίs ^̂  e F|ϋz(ί2) ŝ cΛ that
Cu — φ, the map φ-^u being continuous.

Proof. Let φ = (φQ, , φm^) be given and let

where ψy = X?^1 Lkjφk. There is a ueH2m(Ω) depending continuously
on (9?, π/r) such that Cu = φ, Bu — ψ. Then ue VB-L(Ω).
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THEOREM 6.4. Let A he the differential operator A with domain
VB1L(Ω) and A* the differential operator A! with domain
VVz'(£) Π &A>(Ω). Then A* is the Hilbert space adjoint of A.

Proof. It is clear by integration by parts that A* is a restriction
of the adjoint of A. If v is in the domain of the adjoint of A then
v e Sf\,(β) and for u e V%1L(Ω)

0 = (Au, v) - (u, A'v) = m£ {ζCjU, B^ΰy - ζBjU, C>>}
3=0

m—1

3=0

By the preceding lemma (£>' — L')v = 0.
Now using the notation of the preceding theorem the operator A!

with domain Vl_L,(Ω) Π &A,(Ω) is the adjoint of A. Consequently A'*
the adjoint of A! with domain V%,_V(Ω) is A**. Thus

THEOREM 6.5. A'*, the Hilbert space adjoint of the operator A!
with domain Vl^L>{Ω) Π 3P\>(Ω) is the closure of A with domain
VR^L(Ω) and is therefore equal to A ivith domain VBOLL(Ω) if and
only if that operator is closed.

REMARK 6.6. In general A with domain V$1L(Ω) to not closed
without some further restriction on L. For example, let Ω — {(x, t):
xeBn and t > 0} so that Γ = Rn. Let Δ = Σ?=i A* a n d ! b e t h e

identity map of L\Ω) onto L2(Ω). Let ζ denote the dual variable to
x and / the Fourier-Plancherel transform of / in L2(Γ). Define
L e J5f (£P'2(Γ), Hιι\Γ)) by (LfΓ(ξ) =-(l + \ζ |2)1 / 2/(ί) so that L is in
fact an isomorphism. Let the domain of A be {u e H2m(Ω): (du/dt) — Lu — 0
on Γ] and for such u let Au = (J + Δ)u. If u is such that u(ξ, t) =
e x p { - (1 + I ί |2)1/2^}/(ί) where feH9l\Γ) then u is the domain of A
but there is no C > 0 such that \\u\\2m £ C(\\(I + Δ)u\\0 + | |^ | ! 0 ) for
all such u. By Proposition 4.7, A cannot be closed.

In view of the inequality 4.1 it is easy to impose a norm condition
on L in order that A with domain FjUL(i2) be closed.

THEOREM 6.7. / / there exists a δ: 0 < δ < 1/m swA ίAαί /or
0 ^j £m - 1 and all u e H2m(Ω)

| [|| Au \

A 'w iί/i domain V%!L(Ω) is closed.
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For the remainder of this section we assume that the operator AB

has closed range so that by Corollary 5.15 for all u e N^m,B

^ Cf

2m[\\ A U \ \ 0 + 2 * I! Bju | | 2 m _ m ._ ( 1 / 2 ) ] .I u , _ _ _ „ ___
3=0

Since the Hubert space adjoint of AB is A!B, it also has closed range
so that for u e Ni-m,B,

\u\ CrΛ\\ A'u Ho + X,1 II B]u | | 2 m _ _ w , . _ ( 1 2 ) Ί
L 3=0 J A

where the constants C[m may not be the same. Thus we can immediately
assert

THEOREM 6.8. Suppose L e j£f(H%m(Ω), <§έf2m) and that there exists
a δ: 0 < δ < 1/m and such that for 0 ^ j <J m — 1 and u e H2m(Ω) we
have I! Lόu ί|2m__Wi_(1/2) ^ δ/C'2m \\ u | |2 m. Then for v e Ntm,B we have

\u\Lm^KL\\\Au + X 1 1! (Bj - Ls)u ||2m_w._(1/2)] .

Thus the operator A with domain V%™LL{Ω) also has closed range and
its kernel is contained in NB. In particular if AB is injective then
A with domain V%™LL{Ω) is also injective and has a continuous inverse.

For ue£^A,(Ω) Π NB,,0 we have by Corollary 5.19,

\\U\\Q^ Cί\\A'il\\0+ χΊ|S>l i-m'-( l/2) l
L 3=0 J A

N o w l e t K > 0 b e s u c h t h a t f o r u e H2m(Ω): \\ C > ||2m_^_(1/2) ^ K \\u ||2m,
0 ^ j ^ m — 1 and for u e &\,{Ω), || C'όu \\_μ'._{lj2) ^ K[\\ u ||0 + || Au | | 0 ] .
Let 0 < δ < 1/m and suppose XX̂ o1 II Lkj \\ ̂  min [δ/mKCΌ, δjmKC2m\ for
0 ^ j ^ m - 1 and t h a t J^-,1 \\Ujk\\ ̂  min [δ/mKC'o, δ/mKC2m\. Then
for u e £&\\Ω) Π -ZViS0 we have

||tt||o^<

THEOREM 6.9. Suppose that AB is an isomorphism, and that
Ljf L'j, Q^j<,m — 1 satisfy the above conditions. Then for u e H2m(Ω)

\\u\\2m^ CίJl lA^Ho + S l K ^ . - Lό)u\\2m_m { ι l Λ
L 3=o 3 A

and for u e &A,{Ω)

[ m-l Π

II A'u Ho + Σ II (B'J - L'j)u\Um>-{m .
j=o ' A
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Thus A and its adjoint are isomorphisms on their respective domains.

COROLLARY 6.10. Suppose that in addition to the hypothesis of
Theorem 6.9 L can be extended to &f\(Ω) so as to be a continuous
linear map of S>\(Ω) into < ^ 0 and that there exists a δ: 0 < δ < 1/m
such that for 0 ^ j <̂  m — 1 and u e 2$\(Ω) || L3u ||_mi_(1/2) <̂
δ/C0[\\u \\o + K || Au\\_2m\ where IHUm is the norm in Hγm. Then
the domain of A*, where domain of A is V%!L(Ω), is contained in
H2m(Ω).

Proof. Using the condition on L and Theorem 5.23 we have

|| u Ho S κ[\\Au\\_2m + g lί (B> - Ls)u | | _ m i _ ( 1 / 2 ) ]

for ue^°A(Ω) and thus for u e 2^\(Ω) c V°B_L(Ω) we have | | ^ | | o g

K \\Au\\_2m* Let v e domain of the adjoint of A. Then there exists

a number k(v) > 0 such t h a t for u e V^L(Ω), \ (Au, v)Q \ ^ k(v) \\ u | |0 <̂

Kk(v) \\Au\\__2m. The linear form F on the image of A defined by
F(Au) = (Au, v)Q is thus continuous in Hψm and can be extended so
as to be continuous in all of H^2m. There exists a w e H2m(Ω) such
that F( ) = ( , w)Q. It follows that (Au, v)0 = (Au, w)0 or that
(Au, v — w)0 = 0 for ue VB^L(Ω). But since A is an isomorphism on
VgLL(Ω), v = we H2m(Ω).

PROPOSITION 6.11. If each Lό is compact then A with domain
VB1L(Ω) has closed range.

Proof. The map u-^ (Au, Bu) has closed range in H°(Ω) x
and the map u-^(0, —Lu) is compact. Thus the map u—>(Au, Bu —Lu)
has closed range and hence the map u —> Au of Y^LL(Ω) —> L2(i2) has
closed range.

PROPOSITION 6.12. Suppose Ω is relatively compact and that A
with domain VB™L(Ω) is closed. Then the kernel of A is finite dimen-
sional and the resolvent of A, when it exists, is compact. The range
of A is closed. If the domain of A* is contained in &*A(Ω) with
s > 0 then the range of A has finite codimension.

Proof. The proof of each statement but the last is no different
from the usual proof for operators defined by differential boundary
conditions. As for the last statement since the domain of A* is
contained in HS(Ω) then by the closed graph theorem

\\u\\s^C's[\\A'u\\0+ \\u\\0]
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for u e £gf(A*). It follows from Rellich's lemma that the kernel of
A* is finite dimensional and thus that the codimension of the range
of A is finite.

7* Some consequences of interpolation*

DEFINITION 7.1.

i#*(A, B-L,Ω) = Vί_L(Ω) n ΦAψ)

where L e

We will extend the method used in Bade and Freeman [3] to
higher order equations. In the remainder of this section we assume
that the operator AB has closed range.

THEOREM 7.2. Suppose L e £f(H*(Ω), £έf8). Then for 0 ̂  s g 2m

(i) If for ue &'A(Ω) and 0 £ j ^ m - 1, || L,u ||s_m ._(1/2) ^

δ/Cs \\u\\s + i ί s [ | | A^ ||o + || u ||0] where 0 < δ < 1/m ίAβ^ ίfeβ operator

A with domain ^S(A, B — L, Ω) has closed graph)

(ii) if for u e &S

A{Ω) and 0 ^ j ^ m - 1, || L. v IUmi_(i,2) ^
^/C^ II ̂  II. + K8\\ An Ho where 0 < <5 < 1/m ίfeβπ £fee operator A with
domain ^S(A, B — L, Ω) is closed and has closed range. Its kernel
is contained in NB.

Proof. By (i) and (5.5) we have for u e &Ά(Ω)

II u II, ^ C.[ | | Au ||0 + || u ||0 + X 1 II ( B y -

which implies the result.

By (ii) and (5.4) we have for u e ££\(Ω) Π

(7.1) I! u ||β g

For u e ,ΦS

A(Ω) u — uf + %" where w' G JV̂  and %" e &Ά(Ω) Π iVβl5.
Since for u' e iVB, Au' = 0 we have || (J?,. - L,-K IL-m.-d/a) ^ K \\ u'\\s.
Moreover || u'\\8 ^ K j | u ||0 where here E" represents a constant, not
necessarily the same one each time it appears. Thus writing

\\u\u\\s^\\u'\\s + \\u"\\s^K\\u

[ m - l

IIAtt | | 0 + x I I ( 5 y - LS)UI|._mί_(1/

yields
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(7.2) !| u i|. ^ [ II | X

This coupled with (7.1) yields (ii).

REMARK 7.3. Analogous results are valid for A', B' - L'.
Following the procedure used in Bade and Freeman [3] we define

a map on H°(Ω) x 21, as follows.

DEFINITION 7.4. Let the domain of S be the set of (u, Cu) such
that ue3s

A(Ω) and let S(u, Cu) = (An, Bu). Thus S: H°(Ω) x 21, -*
H\Ω) x 3(?Λ. Analogously let the domain of S' be the set of (u, Cu)
such that u e ^~S{Ω) and let S'(u, Cu) = (A'u, B'u). Thus Sf: H\Ω) x
%'. -> H\Ω) x

THEOREM 7.5. S(S') is closed and densely defined. The adjoint
of S(S') is S'(S).

Proof. We prove the result for S, the proof for S' being identical
modulo a change of notation. Closedness follows immediately by (5.6)
of Theorem 5.20 and the fact that C is continuous on &Ά(Ω). That
the domain of S is dense in H°(Ω) x 2ΪS is clear.

Suppose

(v, φ, - / , f) e H\Ω) x 2IJ x H\Ω) x

and for t6 e 3s

Aψ)
m—1 , m—1

(7.3) (AM, v) + Σ <#,«, 9>ί> - (%- /) - Σ <Qw.
i-=o i=o

Then for ueNB we have —(u,f) — Σ?=oζCjuf Ψsϊ ~ 0 a n (^ applying
part (ii) of Theorem 5.20 to A', B', C and ^^~s(i2) there exists
w e 3)2T~SΨ) such that A'w = f and Brw = α/r. But then for % e j^i(β)
we have

m—1

= {Au, w) - (it,/) - Σ {<C,«, ^y> - <BjU, C'jtv}} = 0 .
i=o

Combining this with (7.3) yields for u e &

m—1

(Au, v — w) + X <βάu, φά — CjWy = 0 .
j=0

In particular for u e VT(Ω) we have (Au, v — w) = 0 and thus
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v - w e NB, c H2m{Ω). Thus v = w + (v - w) e 3\m~sΨ) and B'v =
B'w = τ/τ and A'v = A!w — f. Thus we have for u e &r\(Ω)

{An, v) - (u, f) - m£ {<Cόu, ψjy - (Bόu, C^>} = 0 .
3=0

Combining this with (7.3) yields Σ?=o\BjU, φ5 - Cjv} = 0ΐorue
which implies that <pό — C]v = 0 for j = 0, , m — 1.

THEOREM 7.6. Let L e £f(Hs(Ω), ^fs) and define L by L(u, Cu) =
(0, LCu). Then Le^(H°(Ω) x HS{Ω), H\Ω) x ^\) and the dual of
S — L is S' — U. Moreover, if L satisfies the conditions of Theorem
7.2, part (ii), S — L has closed range in H°(Ω) x

We can now apply the procedure of Bade and Freeman [3], in
particular Lemmas 5.8-5.10 to show the following

THEOREM 7.7. With the above hypotheses on L and an analogous
one on ΊJ the operator A with domain &S(A, B — L, Ω) is a closed,
densely defined linear operator in L2(Ω), with closed range. Its
adjoint operator is Ar with domain £^y2m~s(Af', Br — L\ Ω) which is
also closed and has closed range. Moreover, (/, φ) e H°(Ω) x Sίf\ is
in the image of (A, B — L) on ^S

A(Ω) if and only if for all v in
the kernel of A on ^2m~s{Af, Br - Z/, Ω) we have

n— 1

3=0

Finally if AB is an isomorphism so is A with domain &>\A, B — L, Ω).

REMARK. Most of this has already been proved.

COROLLARY 7.8. // Ω is relatively compact and 0 < s < 2m the
operator A with domain &S(A, B — L9 Ω) has finite dimensional
kernel. Its range is closed and has finite codimension. The resolvent
operator where it exists is compact.

REMARK 7,9. The example of Remark 6.6 works just as well in
&8

A{Ω) for 0 < s < 2 to show that some additional condition (other
than continuity) is required of L.

8. Lower bound conditions* Let a(u, v) = Σ\a\,\β\^m(aaβDau, Dβv).
Then we can write

OT—1 f

(Au, u) = a(u, v) + y, \ NjUΎj
3=0 JΓ
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where {Nji 0 <̂  j <^ m — 1} is a normal set of boundary operators with
infinitely differentiate coefficients, the order of Nd being 2m — j — 1.
The system (A, AO is closable elliptic. Similarly

m - l Γ

V, \ jMNjVdσ .

Let JVCJV) denote the set {N5: 0 ^ i ^ m - l}({iSΓ;: 0 ^ i ^ m - 1}).
If C(C) is a Dirichlet set of order m, C = {Co, , C^}, C =
{CO, , C^i}, the order of ^-(Q) being j , we can find another normal
set B = {B0, . . . ,-B^} and B' - {Bf, - , BL-i}, the order of By(B;.)
being 2m — j — 1. The above formula remains valid if Nά, Ύjf Nj, Ύ3

are replaced by Bjy CJ, Bj, C,.
We use the terminology of Lions-Magenes [16] and say

DEFINITION 8.1. A is Hm(Ω) elliptic if and only if for all u e Hm(Ω)
Re a(u, u) ^ <xo\\u \\2

m, a0 some positive real number.
Let Ld £ J\k~o Lkj7k where Lkj e j£f (Hm-k-{m(Γ), H~m+^[m\Γ)) and

L = (Lo, •••,.!/„_!). Then Lj e ^(H^Ω), H-m^j+{lj2)(Γ)) and we will
write L e Jf(U7^o Hm(Ω), U7~o H-m+^ll2)(Γ)). Let

TO-l

aL(u, v) = a(u, v)+ Σ

for u, veHm(Ω).

PROPOSITION 8.2. αz( , •) is a continuous sesquilinear form on
Hm(Ω) and defines a linear map A of a dense subspace of H°(Ω) into

REMARK 8O3. The linear map does not necessarily have closed
graph. See the example of Remark 7.9. If additional conditions are
imposed on L so that ReαL(^, u) ^ aλ \\n\\\ then the operator is not
only closed but is an isomorphism of its domain with the graph topology
onto H°(Ω). This is essentially the result of Lax and Milgram [12];
see also Freeman [9], Theorem 2.2. Some conditions which guarantee
this are stated in the following

THEOREM 8.4. Suppose A is Hm(Ω) elliptic and that aL is given
by Definition 8.1. Suppose

( i) Re ΣJ?=O ζLju> Tfϋy Ξ> ax\\u \\2

m with aλ + a0 > 0. Then the
operator A given by Proposition 8.2 is an isomorphism.

(ii) If 1/2 < s, < 1 and for 0 ^ j ^ m - 1, L3 e jέ?(Hm{Ω),
H-{m-j-si](Γ)) or Lj e £f(Hm-sJ(Ω), H-m+j+{ll2)(Γ)) then (i) is valid for
aL(u, v) + X(u, v) where λ > 0 is sufficiently large, i.e. thus the operator
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A + XI is an isomorphism.

Proof. Part (i) is immediate. For Part (ii) we have either

I <Lόu, TfHy \^Kj\\n\\m\\ ΎjU 11 „_,•_,,.

o r

\<Lάu, ϊ~ύy\ ^ Kj\\u\\m__s.\\yjn\\m_j_{ll2) g K3 \\ u \\m_Sj \\ u \\m .

Then using either Lemma 3.6 and Lemma 3.1 or Lemma 2.12 we find
that given ε > 0 there exists a C(ε) > 0 such that 2 | ζLόu, τ/w} | ^
ε || u \\2

m + C(ε) \\u\\l and (ii) follows from (i) by choosing ε > 0
sufficiently small.

COROLLARY 8.5. Under the above conditions and for the same
X, Af + XI is also an isomorphism. The operator A(Af) has domain
^m{A, N -L,Ω) (^m(A\ N' - L', Ω)).

COROLLARY 8.6. The adjoint of A with domain &m{A, N — L, Ω)
is Af with domain &m{A'', Nf — L\ Ω).

REMARK 8.7. If Corollary 8.6 were true for any L e ^(JU-^Hm{Ω),
ΠiS1 H-(m-j-{1{2))(Γ)) with no additional conditions required then it
would also be true that A with domain &m{A1 N — L, Ω) is the
adjoint of Ar with domain ^m(Af, N' — U, Ω) and would thus be
closed. Thus by Remark 8.3 some additional condition on L is needed.

If N3; Ύj, Nj, Ύj are replaced by B3, C' , B'j9 Cd the result is still
true.

After this manuscript was completed we learned that Schechter
has considered similar problems in Lp but with bounded Ω. The
boundedness of Ω is essential because he needs Rellich?s lemma. In
this manuscript which he kindly sent us he has an elegant proof of
the inequality

\ \ B i u \ \ B _ m . _ _ { l l 2 ) ^ c [ \ \ A u \ \ B _ Z m + \ \ u U f o r u e (Ω) .

It follows from this that &Ά(Ω) is the completion in the norm
(ll ΐlϊ + ll^.||?)1/2 of S&(Ω) under the closed range assumption.

We wish at this time to express our gratitude to the referee for
his comments and suggestions. In particular Theorem 8.4 is basically
his generalization of our result and the proof is basically his. Also
a question of his is answered in the negative by Remark 8.7.
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