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UNITARY INVARIANTS FOR NESTS
J. A. ErRDOS

A set of subspaces of a Hilbert space is called a nest if
it is totally ordered by inclusion. The aim of this paper is to
obtain a complete set of unitary invariants for a class of
nests satisfying certain conditions. The conditions imposed
are a countability condition, (satisfied by all nests of subspaces
of a separable Hilbert space), and a simple completeness
condition.

As the orthogonal projections onto the members of a nest form
a set of commuting projections, the problem has much in common
with the invariant theory of self-adjoint operators on Hilbert space
and a considerable part of this paper consists of reworking standard
multiplicity theory to suit the new situation.

However there is a major difference between the two theories.
The spectral projections of a self-adjoint operator can be indexed in
a unique way by the real numbers belonging to its spectrum but for
nests there is no such indexing that is in any sense canonical. This
difficulty is overcome by dispensing with numerical indexing and
using instead the set of subspaces of the nest considered as a topo-
logical space under its order topology. In this way the order
structure of nests is fitted into the invariants.

The problem has been solved for a special case, (nests which have
uniform multiplicity one), by R. V. Kadison and I. M. Singer ([4)
§3.4). Here the above difficulty was overcome by considering a class
of subsets of the real line which can be used to index the projections
and the order isomorphisms between members of this class which
carry sets of zero Lebesgue measure onto these sets of the image.
It is felt that this would prove rather cumbersome in the general
case.

1. Preliminaries and notation. Throughout this paper, the
terms Hilbert space, subspace and projection will be used to mean
complex Hilbert space, closed subspace and orthogonal projection
respectively. The set of all bounded linear operators on a Hilbert
space H will be denoted by <“(H). The orthogonal complement of
a subspace N of H will be denoted by HE® N. The symbol ¢ will
always denote orthogonal direct sum, If N is a subspace of H and
E is the projection onto N, then for any Aec <& (H) the operator of
F(N) formed by restricting the domain of FA to N will be denoted
by Ay or by Az. If .o~ is any subset of &7 (H), the set {4,;: Ae .}
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will be written as .o or as .94, If .o is a self-adjoint subset of
Z(H), (that is, Ae.»r implies that A*e. o), then the set
{A'e #(H): A’/A = AA’ for all Ae.o} is called the commutant of
. and will be denoted by .ov’. We note that a self-adjoint
subalgebra .o of & (H) is a maximal abelian subalgebra of .&7(H)
if and only if .o = .&7'. A separating vector for .o/ is a vector of
H which is annihilated by no operator of .o~ other than the zero
operator. A gemerating vector for .o is a vector x of H such that
the set {Ax: Ae . o7} is dense in H.

The topologies on <“(H) induced by the sets of seminorms
A—|<{Ax,x>| and A— || Ax|| for all x e H, are called the weak and
strong operator topologies respectively. A weakly closed self-adjoint
subalgebra of &Z(H) is called a W*-algebra. A well known result
due to von Neumann (see e.g. [1] Chapter I, §§3,4) shows that if
o7 1s a self-adjoint subset of <2 (H) containing the identity operator
then the W*-algebra generated by .o/ is 7", If .o/ is a W*-
algebra and every set of mutually orthogonal projections of .o is
countable, then .o is said to be countably decomposable. Clearly if
H is separable, every W *-subalgebra of <(H) is countably de-
composable. The following results are stated for reference, Proofs
may be found in [1] (for (i), p. 6 and p. 20, and for (ii), p. 89).

THEOREM 1.1. Suppose .27 is an abelian W* subalgebra of
F(H). Then

(i) o7 1s countably decomposable if and only if .7 has a
separating wvector,

(i) If there exists a generating wvector for .o them .7 1is
mazximal abelion.

In measure theory we shall follow the definitions and terminology
given in [2]. However, as we shall be concerned with compact spaces,
we note that in this case the Borel sets are the elements of the o-
ring generated by all closed (or all open) subsets, and all Borel
measures are finite, We use the symbol “=” for set inclusion, “c”
being reserved for proper inclusion. The symbol “\” denotes set
theoretic difference and the characteristic function of a set S will be
denoted by ys.

A set _y~ of subspaces of a Hilbert space H is called a complete
nest if:

(i) it is totally ordered by inclusion,

(ii) (0) and H are members of _7~,

(iii) given any subset _#; of _#~, the subspaces M {N: Ne_+5},
cl[U{N: Ne_7;}] are both members of _s".

If 1~ is a complete nest and Ne _ys~, N # (0), we define N_ by
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N_=cl[U{M: Me 4+, M N}].

Then N_e_4~. If N_= N, we call N_ the immediate predecessor
of N(in _77). (The above definitions are reproduced from [8].)

Let & be the set of projections onto the members of a complete
nest _#°. If F is a projection and Fe &’, then &, is a totally
ordered set of projections whose ranges clearly form a complete nest
of subspaces of the range of F'. We shall denote this nest by _/7.
The weak closure of the algebra generated by & (that is, &), will
be called the core of _7#7(cf.[4]). A nest _# is defined to be
countably decomposable if its core is countably decomposable.

We obtain a complete set of unitary invariants for countably
decomposable complete nests. It is a trivial consequence of results
in [8] (Lemma 3.2 and Theorem 3.4) that this will also be a complete
set of invariants for the corresponding nest algebras.

2. Complete nests as ordered sets. An ordered set {w, <} is
a set of elements w = {a, b, ---} which are totally ordered by the
relation <. When the relation is understood we shall speak of w as
an ordered set. The relation = is defined in the natural way. The
subsets of @ defined by {z:a <a <b}, {z:a =2 <b},{x:a <z = b}
and {¢:a = o« = b} will be denoted by (a,b), [a,b), (a,b] and [a, b]
respectively. We establish terminology for ordered sets following
Kamke [5] and Kelley [6] (p. 58 problem I), If there exists an
element @, in ® such that a, < @ for all a € w\q, then a, is called the
first element of w. Similarly if o <a, for all acw\a, then a, is
called the last element of .

Two ordered sets {w, <}, {?, <} are order isomorphic if there
exists a one to one map ¢ from ® onto 2 such that ¢ < b if and
only if p(a) < o(b). Such a map ¢ is called an order isomorphism.
A subset 7 of w is called order dense if, for arbitrary a,becw with
@ < b, there exists an element ¢ of » such that ¢ < ¢ <b. A subset
a of w is said to be order bounded if there exist elements b, ¢ of w
such that, for all aca, b < a < c¢. If every order bounded subset of
an ordered set @ has a supremum and an infimum then @ is said to
be order complete. If w is order complete, for each element acw
(except for the first element of w if it -exists) we denote by a_ the
element sup{x:x < a}. If a_ is distinct from a, it is called the
immediate predecessor of a. The following theorem follows easily
from the theory of ordered sets.

THEOREM 2.1. If {w, <} s an ordered set such that
(i) w has a first and a last element,
(ii) w 1is order complete,
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(ili) ® has a countable order dense subset.
Then w is order tsomorphic to the real numbers of the closed interval
[0, 1] ordered by the natural ordering.

Proof. Note that the property of being order complete is
equivalent (in the terminology used e.g. in [5]) to the property of
having no gaps. The theorem is then a trivial deduction from
Theorem 3 p. 77 of [5].

If {w, <} is an ordered set, the sets (a,b) for all a,bc® form
a base for a topology on w. This topology is called the order
topology. If two ordered sets are order isomorphic then their order
topologies are homeomorphie,

From the definition of a complete nest 7", it is clear that {_#", C}
is an order complete ordered set with a first and a last element, and
is homeomorphic under the order topology to {&, <} where & is the
set of projections onto the members of /",

THEOREM 2.2. The following statements are equivalent.

(i) The ordered set w is order isomorphic to some countably
decomposable complete nest 4",

(ii) The ordered set w 1s compact and metrisable in the order
topology.

(iliy The ordered set w 1is order tsomorphic to the points of
some closed subset S of [0, 1] containing 0 and 1 and ordered by the
natural ordering.

Proof. (i) =(ii). If w is order isomorphic to the nest _#", it
follows, from the completeness of _#7, as in [6] (p. 162 problem C),
that .+ is compact under the order topology. Since .4 is countably
decomposable, there exists a vector x that is separating for the set
% of projections onto the members of _#". It is easy to verify that
the metric defined by

d(Ely Ez) = || (El - Ez)x ||

defines the order topology on & . Hence .4+~ is metrisable.
(ii) = (iii). If w is compact and metrisable then it has a countable
base {v;:1=1,2, ...}, Let a, be the last element of w and let

a={aacw,a_*a}l.

Then for each ac«,|a, a,] = (a_, a,] is an open subset of @ containing
a. Hence there exists an integer n(a) such that

ac Vutla) g [a” al] .
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Since @ = min v,,, distinct members of a give rise to distinct members
of the base. Hence « is a countable set.
Let f be a function defined on @ into w x [0, 1] by

fla) = (a, 0) for acw\x .
fla) = (a,]) for aca .

Let @’ be the set
{(a,0):acw\a} U {(a, r): aca, re (0, 1]}

ordered by the dictionary ordering of w x [0,1]. It is easy to see
that @’ is order complete and has a first and a last element. Since
® is compact and metrisable, it is separable and thus contains a
countable subset 7 which is dense in the order topology. Let 7’ be
the union of the image of » under f and the subset of @’ defined by

{(a, 7): @ € ¢, » rational, » < (0, 1]} .

Then it is easily verified that 7’ is a countable order dense subset of
®'. Hence by Theorem 2.1, w’ is order isomorphic to the closed
interval [0,1]. Let g be the map effecting this order isomorphism,
As f is order preserving, we have that gf is an order isomorphism of
® onto a subset S of [0,1] and as the extreme elements of ' are in

the range of f, S contains 0 and 1. The complement of S in [0, 1]
congists of the set

U {(glfla))], glf(@)]: a e a}

which is a countable union of open intervals. Hence S is a closed
subset of [0, 1].

(iii) = (i). Let S be a closed subset of [0,1] and consider the
projections of .&(L*0, 1]) corresponding to multiplication of elements
of L*0,1] by Xw. for xeS. Then, the ranges of these projections
form a complete nest in L’[0, 1] and are order isomorphic to the points
of S. Since L*0,1] is separable this nest is countably decomposable.

The preceding theorem characterises the ordered sets that are
order isomorphic to some complete countably decomposable nest. It
is, however, an open question whether every nest which is compact
and metrisable in the order topology is necessarily countably decom-
posable.

THEOREM 2.3, If w is an ordered set, order isomorphic to a
closed subset S of [0, 1] then the order isomorphism is a homeomor-
phism when w has the order topology and S has the relative topology
induced on it by the wusual topology of the real line.
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Proof. This is equivalent to proving that the order topology of
S and the usual induced topology coincide. Since S is closed, it is
easy to show that for arbitrary real numbers a, b the set (a,b) N S
can be written as (p,q) NS where p and ¢ are points of S. The
theorem then follows from the fact that the sets {(a, ) N S: a, b real}
and {(p,q) N S:p,qe S} form bases for the induced topology and the
order topology respectively.

COROLLARY 2.4. If w is as in Theorem 2.3, any subset of w
which s open in the order topology cam be written as a countable
disjoint umion of open order intervals.

Proof. Using Theorem 2.3, this is an immediate consequence of
the similar result for the open subsets of the real line.

3. The measures associated with a nest. For the whole of
this section, .+~ shall denote a complete nest of subspaces of a Hilbert
space H such that ./~ is metrisable in the order topology. Let R be
the ring of subsets of _#~ generated by all open order intervals of .7,
Then it is clear that any member R of R can be written as a finite
disjoint union, Y%, R;, where each R; is either an open order interval
(N,, N,) or a single point {N,}. Let z be any vector of H and define
the set function g, on R as follows. For open order intervals and
single points let

t((Ny, N)) = (B — B))w, x)
/“w({Nl}) = <(E1 — B, ), {L>

where E,, E,_ are the projections onto the subspaces N;, N,_, (7 = 1, 2),
and for a general member R of R

((B) = 5 (R
where U R; is the representation of R as above.
Lemma 3.1, p, is a countably additive set function on R.
Proof. This proof is a modification of the similar result for the
real line, (see e.g. [2] pp. 32-35). Suppose {R:%¢=1,2, ---} is a

countable disjoint set of members of R and suppose U7 R; = RcR.
It is required to prove that

pe(B) = 3% (R .
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Clearly, it is sufficient to consider the case where R and each R; are
either single points or open order intervals. The result is obvious
if R is a single point.

Suppose R = (N, N,) and E,, E, are the projections onto N,, N,.
As the supremum of an ordered set of projections is a strong limit
point of the set, if N,- = N, then for any e > 0, there exists N; < N,
such that N/ e .4 and

(N, N)) < ¢/3.
If N,- # N,,let NJ = N,_. Similarly there exists N/ D N, such that
t((Ny, NY)) < ¢/3.
Thus there is a closed interval [Ny, N;] included in (N,, N,) such that
t((Nyy N)) — o (INT, NY]) < 2¢/3 .

Similar considerations show that if R, is a single point, it is contained
in an open order interval R/ such that

U(R]) — 1 (R;) < /3.2,

If R, is an open interval, let R/ = R;. Then the set {R;:7=1,2, ...}
is an open cover of [N/, NJ] and by picking a finite subcover, it fol-
lows easily that

(AN, N) = S (R

As the opposite inequality is easy to prove, the lemma follows,
Standard measure theory (see e.g.[2] p. 41 et seq.) shows that
/., may be extended to a measure on some o-ring S,. It should cause
no confusion if this measure is denoted by s,. As for each x¢ H,
S, contains all open intervals, and hence by Corollary 2.4, all open
sets, it follows from the compactness of .4~ that each S, contains
the Borel sets of _#". Hence, for all ve H, as g, is clearly finite,
. is a Borel measure on .#". We shall denote the set of Borel sets

of 4 by .

THEOREM 3.2. If f(N) and g(N) are bounded, Borel measurable
Sfunctions defined on _1°, there exists a bounded linear operator T,
belonging to the core & of 4", such that

T,y = | g

Also,
(i) kT, = T,;(k a complex number)
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() T,+T,=T,,
dil) T, T, = T,,

(V) <Ty, Ta> = | fadp.
(v) T = T, if and only if f=g p,-almost everywhere.

Proof. Define the complex valued measure v,,, by

4”9::2/ = /J:c+1/ - f"x—y + i#x%—iﬂ - ?’ﬂx—iy .

Then, from the definition of y,, it is clear that for any open order
interval (N,, N,), v,.,((N,, N,)) is a bilinear form on H. But the rela-
tions expressing this bilinearity are equations between linear combina-
tions of measures and therefore they hold on a o-ring. As this o-ring
contains the open intervals, it follows, using Corollary 2.4, that for
all Borel sets 6 of .#", v,,,(0) is a Dbilinear form on H. It is now
easy to show that in the equation

iy _sas.,

the right hand side is a bounded bilinear form on H and hence defines
the operator T'.

We show that T,e (= ©z”). If Ae ', the relation

”Aa:yy(a) = ”x,A*y(B)

is easily verified if 0 is an open interval and hence holds for all 6 € 7.
Therefore, for all x, ye H,

<Tfo’ y> = ijd Ytzry

=< Tz, A*y»
= <Afoy y>

and so T,e &.

The properties of T, are easily proved using approximations to f
and ¢g by simple functions. The details are omitted.

If ¢ is a Borel set of .47, we denote the operator 7, by ().
From Theorem 3.2(iii), FE(6) is a projection and, if 9,0’ € &,
E@© N o) = E@©)-E(0"). As {E(-)x,x) = ), it is clear that FE(-)
is countably additive on <7 in the strong operator topology. We call
E(.) the projection valued measure for the nest .#". We shall denote
the range of E(3) by N(9).

For each x ¢ H we define the subspace M(x) of H by

M(z) = cl[span {E(d)x: 6 € Z#}]
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where <7 is the set of Borel sets of /",

LEMMA 3.3, (i) M(x) = M(kx) (k a complex number).
(ii) M(E(®)x) = N(O) N M(x).
(iiil) If E@, Nd) =0 and x;€ N6, (t =1,2,) then

M(x, + »,) = M(w,) S>, M(w,).

(iv) The projection onto M(x) belongs to the commutant &' of
the core & of 1"

Proof. (i), (ii) and (iii) are simple consequences of the definition
of M(x). To prove (iv), we note that if & is the set of projections
onto the members of _#7, M(x) is invariant under each member of
& . Hence, if P is the projection onto M(x), for all Fe &,

EP = PEP
— (PEP)*
— PE

and hence Pe &' = &',
If ¢ is a measure on .47, we denote by L*.#", ¢) the Hilbert
space of functions f defined on _#" such that S | flPdp exists and is
A
finite.

THEOREM 3.4. There exists a unitary transformation U taking
M(x) onto L7, p,), such that for amy Borel subset o of 47,
UE@©)U* is the operator on L* (A", p,) which multiplies the functions
of LHA", 1) DY %o.

Proof. Using the notation of Theorem 3.2,
M(x) = cl{Tx: f a simple function} .

The transformation T,z — f, by Theorem 3.2, (i), (ii), (iv) and (v), is
a linear, isometric and one to one transformation from a dense subset
of M(x) onto a dense subset of L.+, ¢t,). Hence it may be extended
by continuity to a unitary transformation.

If f is a bounded, Borel measurable function,

UEGU*f = UT.,- Ty
— Xs.f .

But E(5) is a bounded operator and the bounded, Borel measurable
functions form a dense subset of L*(_#", ). Therefore the above
relation holds for all fe L./, p,).

COROLLARY 3.5. M(x) is separable.
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Proof. As 4~ is compact and metrisable, it is separable and
therefore, if {N;:7 =1,2,.--} is a countable dense subset of ./, it
is easy to see that the smallest o-ring containing all intervals of the
form (N;, N,) consists of the Borel sets of _#7. The fact that
L.y ,p,) is separable now follows from [2], (Theorem B, p.168 and

Problem (1) p. 177).
As in [2], we write g, ~ p, if g, and e, are equivalent measures,
and g, < g, if g, is absolutely continuous with respect to f,.

THEOREM 3.6. If ¢ is a Borel measure on 4+ and, for some
xe H, p<p, then there exists a wvector ye H such p=p,. If
pn~ o, then y may be chosen so that M(x) = M(y).

Proof. As p < p,, by the Radon-Nikodym Theorem (see e.g. [2]
p. 128), there is a real valued, positive function & defined on ./~ such that

1) = | hN e,

for all e . As p is a Borel measure, g is finite and hence
(WMN))*e L.+, 1t,). Let U be the unitary transformation found in
Theorem 3.4. Then if y = U*hY, using the properties of U,

1,(0) = {EQ)y, v
= (UE@©0)U*Uy, Uy,
= b, B
- gshd#’c
= () .

With y as chosen, y € M(x) and thus M(y) & M(x). Suppose the
inclusion is proper and let ze M(x) © M(y) and put f= Uz. Then
for all 6 e &7,

| i, = <Oz, U

= (E(d)y, 2y
~0.

Now if g ~ g, then A(N) > 0 p,-almost everywhere and hence f = 0.
Thus in this case, M(x) = M(y).

We now prove a result which shows that .7~ is a countably
decomposable nest if and only if there exists a separating vector for
the set of projections {E(d): 6 ¢ &#}.

THEOREM 3.7. If x is a separating vector for {E(d):0¢ &} then
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it is separating for the core & of the mest 1.

Proof. Suppose 2 is not separating for &. Then for some
nonzero operator F'e &, Fao = 0. As & is a commutative * algebra,
F is normal. By the spectral theorem, the spectral projections of F'
commute with {F'} and hence with =, and thus belong to = = .
Hence we may assume that F' is a projection.

Let y be a nonzero vector in the range of F, and let P,, P, be
the projections onto M(x) and M(y) respectively. Since FE(0)y =
E()Fy = E(0)y, and FE(@)x = E(@)Fx =0 for all de &, we have
that FP, = P, and FP, = 0. By Lemma 3.3 (iv), P,, P,e %’. Then,
for all Te &', as Few,

P,TP, = FP,TP,
— P,TFP,
=0.

Similarly P,TP, = 0. Also as . has « as a generating vector, by
Theorem 1.1, it is maximal abelian and hence if 7,Se %,

p,SP,.P,TP, = P,TP,.P,SP, .

Similar relations hold for P,.
Now let P = P, + P,. Clearly the range of P is M(x) D M(y).
Then if T, Se %’, from the previous paragraph it follows that

TP'SP = SP' TP

and hence (Z")r (=(%%)’) is abelian. Hence %’» is a maximal abelian
algebra of operators on M(x)PM(y). As by Corollary 3.5, M(x)PM(y)
is separable, & is countably decomposable, and hence by Theorem 1.1
there exists a separating vector z for <. Considering z as a vector
of H, we have that M(z) = M(x) @ M(y) for the projection onto the
orthogonal complement of M(z) in M(x) D M(y) is a member of
&i(=%p) (Lemma 3.3 (iv)), annihilates 2z, and so must be zero.
Therefore M(x) & M(z). But

1£0) = 0 = E(3) = 0
= 11,00) = 0

and so p, ~ p,. By considering the unitary transformation of M(z)
onto L*(_7", 1,), an argument identical to that in the proof of Theorem
3.6 shows that M(z) = M(x). This contradicts the fact that y = 0
and thus the theorem is proved.

We shall sometimes refer to a vector that is separating for the
core of a nest as a separating vector for the nest.
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If w is any ordered set which is compact and metrisable in the
order topology, by a basal measure for @ we mean a Borel measure
¢ on w such that, if a,bew

(i) #((a,bd)) = 0 if and only if (a, b) is empty,

(i) p(a) = 0 if and only if a = a_.

LemmA 8.8. If 47 is a countably decomposable, complete mest
with core &, then the class of measures {{,: © 1s separating for &}
1s an equivalence class of basal measures for A",

Proof. If x is separating for & and p ~ p, then by Theorem
3.6 4 = p, for some y. Let E(-) be the projection valued measure
of .47, and let <Z be the set of Borel sets of _#". Then for all
e #,

E@)y = 0= f1,0) = 0

=) =0
= E@®)z =0
—E@() =0.

Therefore y is separating for {F(d): 6 € <&}, and thus by Theorem 3.7,
y is separating for &. Conversely if x and y are separating for &,

1,(0) = 0 = E(6) = 0
= 1“1/(3) =0

and thus {g,: > separating for &’} is an equivalence class of Borel
measures, The fact that these measures are basal follow easily from
the definition of g, and the fact that = is separating for <.

4. Order measure multiplicity types. For the remainder of
this paper, the term mest shall be used to mean complete, countably
decomposable mest, unless the contrary is explicitly stated. If _#" is
a nest of subspaces of a Hilbert space H with projection valued
measure F(.), and ¢ is a Borel subset of _#~, then we shall write _#3
for the nest _47%).

Two vectors z, y of H are said to be wery orthogonal (with
respect to the nest _#7) if M(x) and M(y) are orthogonal subspaces
of H. This is equivalent to the statement that for all Borel subsets
9, o' of 17, {E(6)x, E(0")y> =0, or to the statement that = is
orthogonal to M(y). Note that this definition of very orthogonality
differs from that used in [3]. If = and y are very orthogonal with
respect to 4 then E()x, E(d)y are very orthogonal with respect to
45, Conversely, if # and y are very orthogonal with respect to _#3
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then, (considered as vectors of H) they are very orthogonal with
respect to 7",

If _#" is a countably decomposable nest, by Theorem 1.1 the set
of vectors separating for (the core of)_#~ is nonempty. A simple
application of Zorn’s Lemma yields a set of separating vectors for ./~
which is maximal with respect to the property that any two members
are very orthogonal. Such a set will be called a maximal set of
very orthogonal separating wvectors for 4.

LEmMMA 4.1, If @ is a maximal set of very orthogonal separating
vectors for a nest .4, then there exists a Borel set § of A~ such
that FE(0) #= 0 and

N(9) = @ {M(E(©)v): x € 2},

where F() is the projection valued measure of 4~ and N(9) ts the
range of E(5).

Proof., Let P be the projection onto the subspace @ {M(x): x ¢ }.
Then from Lemma 3.3, Pc &’ and thus _#{,_p, is a nest. Let z be
a separating vector for .#7;,_p,. Then z (considered as a vector of H)
is very orthogonal to each member of @ and by the maximality of @,
z is not separating for _#~. Hence, using Theorem 3.7, there exists
a Borel set 6 of _#~ such that

E@©) +0 and
E@®)z = EG) (I — Pz
=0,

But as z is separating for _#7,_» and Pe %’ this implies that
(I — P)E(6) = 0 and hence
N©) = N©) N @ {M(z): v c @)
= @ {N(©O) N M(x): x ¢ @}
= @ {M(EQ©)2): € 0},
using Lemma 3.3 for the last step. This completes the proof.

If @ is any set, we denote the cardinality (or power) of @ by
|@].

THEOREM 4.2, If @ and @ are two maximal sets of very orthogonal
separating vectors for a mnest 4" then

2] =16].

Proof. The method of this proof is identical to that in [3], p.
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99. We divide the proof into two cases.

(i) Ir |®], | @] are both infinite.

For any vector « of H, let P, be the projection onto M(x). For
each xc® let

K,={y:ye@, Pw =+ 0}.

By the maximality of @, no member of @ is very orthogonal to each
member of @, Thus for each ye @, there exists some xe€@ such
that P,x = 0 or equivalently such that ye K,. Thus @ is a subset
of U{K,:xc60}. But since

NP = > || Py |?
yED

for each x €6, K, is an at most countable subset of @. Therefore,
as |0 | is an infinite cardinal, ||J{K,:2x€®}| < |6|. So we have that
|@| = |6| and by symmetry, equality must hold.

(i) If 10|, |@| are not both infinite.

Suppose |#| = n is finite. We shall prove that |@| < n and the
result will then follow by symmetry. Let § be the Borel subset of
", provided by Lemma 4.1 such that FE(d) == 0 and

N(©9) = @ {M(E(d)x): x €6},

and let the set of vectors {E(d)x:xc®} be {#;:1 =17 =mn}. Then as
@ is a set of separating vectors it follows that the measures {1, } are
equivalent. If p, =p, from Theorem 3.6 there exist vectors
{#:1 = ¢ = n} such that ¢, = ¢ and M(z;) = M(»;). Then

NG) = @ Mz) -

Let U, be the unitary transformation, provided by Theorem 3.4, of
M(z;) onto L4, ¢) and let U = @ U,. Then U takes N(d) onto

éLg(‘/I/’ ) .

Now suppose that |@| > n and let {y,: 1 =4 = n + 1} be a subset
of n + 1 elements of {E(0)y: yc @}. For all Borel sets v of _#~ such
that E(® N v) = 0, as @ is a very orthogonal set of separating vectors,
we have that (E(v)y,, E(v)y,> = 0 if and only if ¢ = j. Hence

CUE(mU*Uy;, UE()U*Uy;» = 0

if and only if ¢ == 5. Now ¢@; = Uy, is an ordered set (fi, -+, fi.) of
n functions of L+, ) and it follows from the above relations and
the properties of U that
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gyé.‘ifikfjkdﬂ =0,

if and only if ¢ = j. Hence at all points Ned except possibly for a
p-null set, the ordered sets of complex numbers (fi(N), «--, fi(N))
form an orthogonal set of % + 1 nonzero vectors of an n-dimensional
Hilbert space. This contradiction shows that |@| < » and the theorem
follows.

For a given nest _#", we define a function m(-) with domain the
Borel sets of 4" and range the cardinal numbers as follows. Let
E(-) be the projection valued measure of .+~ and suppose é is a Borel
subset of _#~. If E(5) + 0, then we define m(d) to be the cardinality
of a maximal orthogonal set of separating vectors for the nest _73.
If E@©) = 0, m(0) is defined to be zero. Theorem 4.2 shows that m(-)
is uniquely defined.

Let w be any ordered set that is compact and metrisable in the
order topology and let [¢] be some equivalence class of basal
measures for w. Then a function p(:) with domain the Borel sets of
® and range the cardinal numbers, satisfying

(i) p(0) = 0 if and only if (6) = 0 for pe[pl.

(ii) If 4 is any countable set of Borel subsets of @ such that
U {0: 0 € 4} is not p-null for pe[p], then

(U {0: 0 € 4}) = min {p(d): 0 € 4, p(3) + 0}

is called a multiplicity function for (w,[p]).

LEMMA 4.3, If 47 is a mest and [p] is the set of measures
{¢t.: @ separating for A"} then the function m(-) defined above is a
multiplicity function for (.1~ [p]).

Proof. Properly (i) is obvious from the definition, If 4 is a
countable set of Borel subsets of _#" let o = |J{0: 0 € 4} and suppose
that (o) = 0 for some pe[y¢]. Let @ be a maximal set of very
orthogonal separating vectors for .#,. Then for each o€ 4 such that
1(0) = 0, {E(0)x: x € @} is a set of very orthogonal separating vectors
for .#;. Hence from the definition of m(.), if p(d) = 0,

m(p) = m(d) .
But from Lemma 4.1, there exists a Borel set v & o such that
N(v) = @ {M(E()x): € @} .

We then have that m(v) = m(3). Now for some member §, of 4,
26, N 7) # 0 and clearly
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m(d; N 7v) = m(7) .
By an argument similar to that above,

m(0,) = m(6, N 7) = m(p)

and the lemma follows.

By an order measure multiplicity set (abbreviated to o.m.m. set
in the sequel), we mean a set {_77, [¢], m(-)} whose members satisfy
the following.

I. 7 is an ordered set which is compact and metrisable in
the order topology.

II. [z] is an equivalence class of basal measures for 7.

III. m(-) is a multiplicity function for (.7, [¢]).

It {_7",[¢], m(-)} is an o.m.m, set and & is a Borel subset of _#~, we
call the cardinal number m(6) the multiplicity of 6. If 6 has the
property that for every Borel subset v of 6 such that p(v) = 0 we
have m(0) = m(v), we say that 6 has uniform multiplicity.

If o is an order isomorphism of .7/~ onto another ordered set _#
then it is a homeomorphism with respect to the order topologies of
A" and 2. If 6 is any subset of .7~ we write »(8) = {p(N): Ned}.
It is easy to see that if <& denotes the Borel sets of _7#~, the set
{p(9): 0 € &'} is the set of Borel sets of 7. If {_77,[¢], m(-)}is an
o.m.m, set we define

(P(<///, [#]’ m(')} = {‘//’ [IJ], p(')}

where [v] is the class of measures such that ve[v] if for some pe[p]

gp(+)) = fo(+)
and p(-) is the function defined by

p(p(+)) = m(-) .

A simple verification shows that {_~", [v], »(-)} is an o.m.m. set.

Two o.m.m, sets {7+, [¢], m(:)}, {-#,[v], p(-)} are said to be
equivalent if there exists an order isomorphism o¢:. 4" — _# such
that

plA7, (1], m()} = {2, [V], p(-)} .

It is clear that this is a genuine equivalence relation. The order
isomorphism ¢ is said to tmplement the equivalence. We call an
equivalence class of o.m.m. sets an order measure multiplicity type
(o.m.m. type).

The preceding results shows that every nest gives rise to a
unique o.m.m, type. We shall prove that the o.m.m. type of a nest
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is a complete unitary invariant.

THEOREM 4.4. If two mests are wunitarily equivalent, they
determine the same o.m.m. type.

Proof. Let the two nests be 4 and .~ and let U be the
unitary transformation taking .+~ onto .. Then U clearly induces
an order isomorphism ¢: . #"— _# where p(N) is the image of the
subspace N under U. If E(.), F(-) are the projection valued measures
of .4 and _# respectively, then

UE(0, N)U* = F([0, p(N)])
and hence for all Borel sets o of 77,
UEG)U* = F(p(d)) .

A routine verification shows that @ is a maximal set of very orthogonal
separating vectors for _#; if and onlf if @ = {Ux: ze @} is a similar
set for _#,;. Also if x is separating for the core of _#7, then
Ux = y is separating for the core of _# and

(B Y, 5y = CUB(-)U*Us, Uz
— (Pl W, 3 .

Therefore ¢ implements an equivalence between the o.m.m. sets of
" and . and hence _#" and _# determine the same o.m.m. type.

5. Nests of uniform multiplicity. Let {_#", [¢], m(-)} be the
o.m.m, set of a nest _#" of subspaces of a Hilbert space H. We say
that the nest is of uniform multiplicity if the Borel set .#" is of
uniform multiplicity for the function m(.). In this section we prove
the converse of Theorem 4.4 for nests of uniform multiplicity. If
" is nest of uniform multiplicity, we take A as an index set with
typical member a such that m(_#") = | A|.

Before we prove the next lemma, it is of interest to show by an
example that it does not hold trivially. If »e[0,1], let V., be the
subspace of L°[0,1], (Lebesgue measure), consisting of functions f
such that f(¢) = 0 almost everywhere for ¢ >». Now let V., =1V,
for »r < % and V,, = V,, for r = } and for integers ¢ = 21let V,, = V,.
Then if

Nr = é Vri ’
i=1

the set {N,:r¢€[0, 1]} forms a complete nest .4~ of subspaces of H =
LY0, 31 p @D, L0, 1];, (where for each ¢ =2, LA0,1], = L0, 1]).
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If 6 is a Borel subset of [0, 1] let y,L’[0,1] denote the subspace of
L0, 1] consisting of functions vanishing almost everywhere outside
0. For convenience we identify a Borel set 6 of [0, 1] with the Borel
set of _#~ defined by {N,: re€d}. Then if E(-) is the projection valued
measure of _#~, it is easily verified that E(0) is the projection onto

Tontoar L2 [0, 2| @ @ 1L710, 11

Let e; be the unit function in L*0, 1]; and zero elsewhere. Then the
set {e;:1 =2,3, ...} is a maximal set of very orthogonal separating
vectors for _#”, as no vector of L*[0, 1] is separating for .+~ and no
vector of L0, 1]; is very orthogonal to ¢;. Also, if 6 is any Borel
set of [0, 1], either the set {E(d)e;: ¢ = 2,3, ---} or this set together
with E(d)e, (where e, is the unit function in L’[0, ] and zero elsewhere)
forms a countable maximal set of very orthogonal separating vectors
for _#;. Hence, /" is of uniform multiplicity, However it is easy
to see that

@ M) = @ L0, 11;
= H.

Therefore not every maximal set @ of very orthogonal separating
vectors for a nest .4~ of uniform multiplicity generates the Hilbert
space H of 4" in the sense that

H=@{Mx):xc®}.
However we have the following result.

LEMMA 5.1. If 4" is a mest of subspaces of H having uniform
multiplicity | A| (A an index set), then there exists a set {x,: ae A}
of very orthogonal separating vectors such that

H=@ M(z,) .
a€4

Proof. Let p = p, for some vector x that is separating for 4.
Consider the set 4 of Borel sets of 4~ with the properties;

(i) members of 4 are disjoint,

(ii) for each de 4, p(6) =+ 0,

(iii) for each 6 € 4, there exists a set {#3: @ € A} of very orthogonal
vectors such that

NG) = @ M) .

Lemma 4.1 shows that such sets exist and hence, by a Zorn’s lemma
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argument there exists a maximal set 4, with the above properties,
As p is a finite measure, properties (i) and (ii) imply that 4, is an at
most countable set, say, 4,, = {0;:4 =1,2, ---}. Now if u("\Uro:)+#
0 then, as .4~ is of uniform multiplicity, an application of Lemma
4,1 to _#5 where v = _#"\Ur0; contradicts the maximality of 4,,.

It is clear that we may assume that the sets {xi} satisfying (iii)
for 0, consist of unit vectors. Let

1
1(13“.

wa=i2=12.

It is easy to see that {x,} is a set of very orthogonal separating
vectors. Then, using Lemma 3.3,

@ Mw,) = @ @ ME(G)w.)
= © & M)
::H.

If ¢ is any Borel subset of _#~, we denote the subspace of
L*_4~, pt) consisting of all functions vanishing p-almost everywhere
on the complement of 6 by the symbol y,L*(_+", p).

THEOREM 5.2. If _4” is a nest of uniform multiplicity | A| then
for any vector x that is separating for _4~, there exists a unitary
transformation from H onto

D LA A", 1)
a€d

where p, = p, for all ac A. The image of a member N of 14"
under this tramsformation is

g X[O:N]Lg('/lfy #a) .

Proof. From Lemma 5.1,

H= @ M.)

ag€4

where {x,: «c A} is a set of very orthogonal separating vectors. Then
for each ae A, p, ~ p, and by Theorem 3.6 there exists a vector
z, such that M(z.) = M(x,) and p, = p,. Hence

H =@ Mz, .

ag€4d

Let U, be the unitary transformation found in Theorem 3.4 taking
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M(z,) onto L¥_+", tt,) and let
U= U,.

a€4

Then U is a unitary transformation taking H onto

@ L1, 1),

ag4

where p, = p, for all ac A.

If K is the projection onto the member N of _#", in the notation
of §3, E=T,,,. Hence, by Theorem 3.4, for each ac A the
operator U,EU} acts on L*_4", tt,) by multiplying the functions by
Xw.xw- Therefore, as the image of N is the range of UEU*, the
theorem follows.

THEOREM 5.3. If two mests, both of umiform multiplicity,
determine the same o.m.m. type then they are unitarily equivalent.

Proof. Let the nests be .4 and _# with o.m.m. sets
{7, e, m()}, {#,[¥], p(+)}. These o.m.m. sets belong to the same
o.m.m, type and hence there exists an order isomorphism ¢ implement-
ing an equivalence between them. From the definition of equivalence
m(1") = p(#Z)=|A| where A is some index set and if pe[y],
there exists v e[v] such that

Vip(+)) = i) .

Since _4~ and _# are of uniform multiplicity, Theorem 5.2 shows
that they are unitarily equivalent to the nests

{a% Yo LAV, tta): N e J/}
{6 X[OIM]LE(‘///y va): Me /»//}
a€d

where ¢, = ¢t,v, = v for all ee A and ¢ and v satisfy the relation
above. Hence it is sufficient to establish the unitary equivalence of
the nests

o L1, t1): Ne 17}
o LA, v): Me 7} .

Define a transformation U from L*(_~,v) to L*(_+", 1) by
Ug(p(N)) = f(N) .

As ¢ is a homeomorphism from _#~ to ., this transformation is
well defined and is clearly one to one and linear, Also if
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0, 9: € L*(_# ,v) and Uy, = f,, Ug, = f,,
| 0.0 = | | 0N )7. () dp()
= | A@NFN)dp)

and hence U is a unitary transformation. If Ug = f we have that
Sf(N) =0 p-almost everywhere for N > N, if and only if g(M) =0
p-almost everywhere for M > o(N,). Hence the two nests are
unitarily equivalent under the transformation U,

COROLLARY 5.4, If 4 and _# are two mests of uniform
multiplicity and @ implements an equivalence between their o.m.m.
sets then there exists a umitary transformation U taking _4~ onto
A such that for each Ne _4~,

UN = o(N).

Proof. The implementing order isomorphism was chosen arbitrarily
and the unitary transformation found satisfies the required condition,

6. The general case. In order to use the results for the case
of uniform multiplicity to prove the general case, it is necessary to
extract from a general o.m.m. set certain Borel sets of uniform
multiplicity. We do this in the two lemmas which follow.

LEmmA 6.1, If {4, [p], m(:)} @s any om.m. set and 0 is a
Borel set of 4~ such that m(d) = 0, then there exists a Borel subset
v of & such that

(1) v has uniform multiplicity m(d).

(il) Either m(6\y) = 0 or m(d\y) > m(d).

Proof. Consider the set 4 of Borel subsets of § defined by

4 = {p: m(p) > m(9)} .

If 4 is empty then 6 has uniform multiplicity and by taking v = g,
the lemma follows for this case. If 4 is not empty, pick some member
¢ of [¢] and let

a = sup {{(p): p€ 4} .
Now let {p;:7 =1,2, ---} be a sequence of members of 4 such that

lim [1(0))] = a .
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Put p = Jp; and let v = d\po. Then as p;e4 for all 7, using the
properties of the multiplicity function,

m(0\y) = m(p)
= 11312 [m(0;)] > m(3) .

This shows that v satisfies condition (ii). Also since m(5) #= m(o), v
is not p-null and so

m(9) = min [m(v), m(0)] = m(v) .

Now if v, is any Borel subset of v with p(v,) # 0, then m(y) =
min [m(v,), m(Y\7,)] and so m(v,) = m(v). But if m(v,) > m(y) then
©Uvedand p(o U 7v,) > a contradicting the definition of a. Thus
m(v)) = m(v) and so v has uniform multiplicity m(9).

LEMMA 6.2. If {7, [¢], m(-)} s any o.m.m. set then there
exists an at most countable set {6;:1 = 1,2, ---} of Borel sets of _+~
such that if pelp]

( i ) '/I/ = §°=1 Biy

(ii) 0, has uniform multiplicity,

(i) m(9;) < m(d;1),

(iv) p@;Nd;) =0 for i+~ 7.

Proof. For any nonzero cardinal ¢ in the range of m(.), by
Lemma 6.1 there exists a Borel set of _#~ that has uniform multiplicity
c. It is clear that for any pe[y], any two sets of differing uniform
multiplicities intersect in a g-null set. Thus the finiteness of z implies
that the range of m(-) is an at most countable set of cardinals
{e:1=1,2, ---}. As the set of all cardinals is well ordered, we may
index this set so that ¢; < ¢;4,.

From the properties of multiplicity functions, it is clear that
m(_1") = ¢;. We define inductively a sequence of Borel sets of _s".
Let 6, be a set of uniform multiplicity ¢, obtained from _s~ as in
Lemma 6.1, and for each integer k, let §, be a set obtained in the
same way from _¢#"\U!Z'0; providing this set is not of uniform
multiplicity, and let 06, = #"\Uiz'o;, if this set is of uniform
multiplicity. In the latter case the process terminates with 4,. That
the set {6;:7 =1,2, ...} has properties (ii) and (iii) follow directly
from properties (i) and (ii) of Lemma 6.1 and the indexing of the
range of m(-). Property (iv) is obvious from the construction, as the
sets are disjoint.

If the process terminates, property (i) follows from the construc-
tion. If the process does not terminate, we prove that
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y(w\(’lj ai) ~0.

For if this is false, then for some integer £,

m(W\L:] 5i> =e¢.

From the construction and property (ii) of Lemma 6.1, m(_#"\J¥d,) =
Cri.  But

Yo = (0 8)u U

k+1

and so as m(-) is a multiplicity function we also have that
k
m(.///\U 5i) <e,.
1

Therefore p(_+"\UJrd:) =0 and putting J, U (#"\Ur9d;) in place of
0, in the set {0,:7 =1, 2, -.-} does not destroy properties (i), (iii) or
(iv). The set then also satisfies (i).

LEMMA 6.3. Suppose two nests ¢~ and 7 determine equivalent
om.m. sets {47, [¢], m(:)}, {Z[v],p(:)} and @ implements this
equivalence, Let 6 be a Borel set of 1~ having uniform multiplicity.
Then if @(0) = v, the mests A5, _#y determine equivalent o.m.m.
sets.

Proof. The difficulties of this proof are largely notational. Let
E(-) be the projection valued measure of _s~ and for each Ne_s",
denote by N, the range of E([0, N] N ) regarded as a subspace of
the range of E(6). For each Me _~, we define M, in a similar way.
Then the nests ¢35, _#, are {N;: Ne_y"} and {M,: Me _#} re-
spectively. Let + be a map from _#; onto _, defined by

P(Ns) = [p(N)], .

This map is clearly order preserving. Also, if N;, N{ are distinct
members of _#; then E(N,N’'|Nd)+0 and hence for pelpy],
LN, N'] N 6) #+ 0. Therefore, as for each ve[v], v(o(+)) = u(-) for
some pely], if p(N)= M, oN') =M, v(M,M'] Nv) = 0. Hence
if F(-) is the projection valued measure of _#, F(M, M'] N v) # 0 and
thus M,, M, are distinct. Therefore « is an order isomorphism
between _#; and _#,.

Let <7 be the set of Borel sets of _¢~. If Be <# let B be the
subset of .75 defined by {N;: Ne 8}. The set {£:Be.<#} is clearly
a o-ring containing the open order intervals of _#; and hence contains
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the Borel sets of _#;. Now if E’(-) is the projection valued measure
of _#3, a routine verification shows that

E'(B') = E(B)E(&) .

If x is separating for .~ then E(é)x is separating for _#; and thus,
by Lemma 3.8, the set of measures [z¢'] of the o.m.m. set of _#; is
the equivalence class of p, where

1B = LE'(B8)E(d)x, E(d)x)
= 1,6 N PB) .

Therefore, for each ¢’ € [¢'] there exists € [¢] such that p/(8') = p(6 N B).
A similar result holds for _Z,. Hence, if [v'] is the set of measures
of the o.m.m. set of _/,

(B) = (B N o)
= vpB) N 7)
= V(p(B))
where p(8) = {M,: Me »(B)}. But then

P(B) = {¥(Nys): Ne 8}
= (8

and thus for each g’ e[z'] there exists V' e [V'] with g/(+) = V'(y(+)).

As ¢ is a set of uniform multiplicity it is easy to see that _+;
is a nest of uniform multiplicity and as m(-) = p(p(-)), .7 is a nest
of the same uniform multiplicity. Hence the o.m.m. sets of _/; and
7, are equivalent,

THEOREM 6.4. If two mnests .4~ and _Z determine the same
o.m.m. type then they are unitarily equivalent.

Proof. Let o be the order isomorphism implementing the
equivalence of the o.m.m. setsof /" and .~ and let {0,:7 =1,2, .-}
be Borel sets of _#~ of uniform multiplicity, obtained from the o.m.m.
set of _/~ as in Lemma 6.2. Then if v, = ¢(,), {vii? =1,2, ---} are
Borel sets of _# having similar properties. By Lemma 6.3, for each
¢ the o.m.m, sets of 75, _#; are equivalent and as these nests are
of uniform multiplicity, by Theorem 5.3 there exists a unitary trans-
formation U, taking A%, onto ..

Let E(-) be the projection valued measure of _#~ and for each
Ne_+ let N; be the range of E([0, N] N d;). Define M, similarly
for each Me .. Then from the proof of Lemma 6.3, the map
from _#5 onto _, defined by + (N, = @(N); implements the
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equivalence between the o.m.m. sets of .75 and _#, . Hence by
Corollary 5.4 we may suppose that U,N;, = M, where M = o(N).

As v~ = Urd;, for each Ne_ys",
N: éN@ .
1
If U =@ U, we have that if p(IN) = M,

UN = é U.,;N.,'

o

:‘@Mi

1

=M

and hence the nests .4~ and _# are unitarily equivalent,

In the theorem below we complete the proof that the class of
o.m.m, types form a complete set of invariants by constructing, for
an arbitrary o.m.m. type a (complete and countably decomposable)
nest which gives rise to it. We then also have a typical member of
each unitary equivalence class of nests. This typical nest, as it
depends on the choice of an o.m.m. set from the given o.m.m. type,
is not unique, It follows from Theorem 2.2 that it is possible to
choose, from any o.m.m. type, an o.m.m. set whose ordered set is a
closed subset of [0,1]. The typical nest corresponding to this o.m.m.
set may be useful in applications.

THEOREM 6.5. For any o.m.m. type, there exists a mest which
gives rise to it.

Proof. Let {_+",[¢], m(-)} be some member of the given o.m.m.
type and let {§;:7 =1,2,---} be a set of Borel sets obtained from
{7, 1], m(+)} as in Lemma 6.2. Define a set {8;:7=1,2, ...} of
Borel sets of _/ by 8, = _4" and B, = B,\0;:. Let x, €[x¢] and define
t: by

1:(9) = (0 N 5Y)

for all Borel sets 6 of _#". From Lemma 6.2 (iii), {m(d;):7 =1,2, .-}
is a set of cardinals increasing with ¢ and we may thus pick suitable
index sets A, with typical members «; such that |A,| = m(§,) and
[A;| = m(8;) — m(,_,). For each Ne_s~ define N’ by

N!

H

é D Ywow L (A7, 1)

i=1 ;€45

where p,. = p; for all a;e A;. Consider the set {N:Ne._s}. We
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shall prove that this is a complete and countably decomposable nest
and gives rise to the given o.m.m. type.

It is clear that _4~’ is a totally ordered set of subspaces of a
Hilbert space. We first show that it is order isomorphic to _s~. Let
o be the map from _#~" onto "’ defined by o(N) = N’. Then ¢ is
order preserving. Also if N, and N, are distinct members of _s~,
say N, < N,, then as f, is a basal measure for _7°, ((N,, N,J) # 0
for either N, = N,- or the interval (IV,, N,) is nonvoid. Hence

oo

N;©ON/ = % Xiwypwg LA )

1 «a

is nonzero and ¢ is thus an order isomorphism.

We now show that the nest _#"’ is complete. Let A’ be any
subset of _#" and let 4 be the corresponding subset of _#~. Suppose
that

N, =sup{N: Ned}.
If the supremum is attained, it is clear that
N; =U{N":N'ed}.

If the supremum is not attained, then N, = N,- and as o, is a basal
measure, £4,({N,}) = 0. Since .4~ is metrisable in the order topology,
there exists an increasing sequence {N,} of points of _7~ such that
sup, (Vi) = N,. For any fe Yow L' (1", tt:) let fi = Yo.w,f. Then

1F = £l = | Aowpma | £ 1 it
= S/X(Nkvl\fo) LI de

since #({N)}) =0. But Xu,~y tends to =zero pointwise, and
Xiw,wol P = | F[°, hence by the dominated convergence theorem (see
e.g. [2] p. 110)

| f—=felf—0.
Therefore it is easy to see that
c[U{N':N'ed}] =Ny .

A routine verification shows that the intersection of any set of members
of " is also a member of _s'.

As _#" is complete and is metrisable in the order topology, the
projection valued measure E’(-) of _#"' can be set up asin §3. It is
easy to see that if 6 is a Borel set of _#~, the range of E’(p(d)) is
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Q @ XGL2(=/V‘1 #“i) ~

i=1 ;€ 4;
Let z, be the vector that is the unit function in L*(_s", #.,) for some
a,€ A, and zero elsewhere. Since E’'(p(d))x, is the function %, in
LX.4", tta,) and zero elsewhere, it is easy to see that w, is separating
for the set of projections {E’((d)): 0 a Borel set of _/"}. Hence, as
o is a homeomorphism, using Theorems 1.1 and 3.7 it follows that
" is countably decomposable. Also for each Borel set ¢ of _¢,

<EI(¢(5))W1’ 901> = 14,(0)

and therefore the class of measures of the o.m.m. set of _#" is an
equivalence class [v] such that for each ve([v], there exists pe[y]
with

v(p(+)) = p(¢)

Let p(-) be the multiplicity function of _#"’'. It remains to prove
that p(p(-)) = m(-). For each integer k let v, = p(d,), where
{6::2=1,2, ...} are the sets introduced previously. We show first
that m(,) = p(v,). Let x, be the vector that is the unit function
in L1~ t.,) and zero elsewhere. Put z,, = E'(7,)2,,. Then [z, [[*=
K (0r) = £,(0; N 8,), and thus from the definition of 7,2, =0 for
t>k. Clearly the set @ ={z,:a;¢4;7=1,2,.--} is a very
orthogonal set for _#5,. It is easy to verify that each member of is
olso separating for _#7/. As the range of E’(v,) is

k

D D 1, (1, )

i=1 a;€4;
and M(z,,) = X5, L (", tta,), @ is a maximal set of very orthogonal
separating vectors. This also shows that ~, is a set of uniform
multiplicity, Now

0] = ﬁ | A, |
= m(,) + z | m(6:) — m(3:_,) |
- m(ak) .
Thus m(0;) = p(Vi).

Now if 6 is any Borel set of ", as the range of m(.) is
{m©,):1=1,2, ...}, for some k,m(d) = m(d,). By property (ii) of
multiplicity functions, if £,(0 N d;) # 0,

m(d) = m(d N 6;) = m(9;)
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and hence for @<k, p(@0No)=0. Also if p@G6naso) =0, by
properties (i) and (iii) of Lemma 6.2,

m(0) = min {m(d N 8,): 1 > k}
> m(0,) .

Hence 4,(6N0,) = 0. Now if v = @(0) and if v,(+) = t(p(+)), vi(vyNv:) =
0 for © < k and v, (v N vx) = 0. Hence, since v, is a measure of the
om.m, set of " and " = U7,

p(v) = min {p(v N v,): vi(y N 7;) # 0}
= p(v N 7

= (")
= m(ak)
= m(9) ,

using the fact that v, is of uniform multiplicity. This completes the
proof,

I wish to thank Professor J. R. Ringrose for his encouragement
and for many helpful suggestions during the preparation of this paper.

Added February 2 1967: The question referred to at the end of
Theorem 2.2 has been settled by J. R. Ringrose who has constructed
a nest which is metrisable in the order topology but is not countably
decomposable.
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