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The purpose of a Postnikov-decomposition of a covariant
functor Φ: ̂  -> (£ is to approximate Φ by simpler functors
Ψ' $ -» & (so called Postnikov-functors for Φ) which reflect cer-
tain properties of Φ but are simpler to handle. There is
always a functor transformation T: Φ -+Ψ and a "coincidence-
category" £w = {X116 $ , Γ: 0(X) « ^(X)}. A Postnikov-reso-
lution 21 is a family of Postnikov-f unctors for Φ. There is
always a maximal Postnikov-resolution. Under certain con-
ditions each object J e β can be decomposed into a family of
objects {XΨ} where XΨ e 2Ψ and Ψ e 21. The whole theory can
be dualized and one gets the theory of dual Postnikov-resolu-
tions. Let π = Φ be the homotopy-f unctor, π — {πm}; it turns
out, that the maximal Postnikov-decomposition of π gives
exactly the classical theory of Postnikov-complexes of topological
spaces or Kan-complexes. A similar result is proved for Φ —
H = {Hm}, the homology functor and dual Postnikov-resolutions
as well as for dual Postnikov-resolutions of π and their connec-
tion to Cartan-Serre-fibrations.

The original idea of M. M. Postnikov [7], to build up a space X
by simpler spaces Xin} in order to characterize its homotopy type, has
been extended, generalized and clarified in many different directions.
First of all there is J. C. Moore's natural approach in the category of
Kan complexes [6]. D. W. Kahn gave, in a series of more recent
papers, answers to many geometrical problems concerning the natu-
rality of Postnikov decompositions (see e.g. [5]). A. Dold [4] suc-
ceeded in decomposing a given half exact functor in a way similar to
Postnikov's. There appear in the literature many different types of
Postnikov-theories which are to a certain extend dual to Postnikov's
idea. There is, for instance, the theory of Cartan-Serre-fibrations
which was worked out for ess-spectra by D. Burghelea and A. Deleanu
[3] and which gives a satisfactory dualization of a Postnikov decom-
position of a ess-spectrum. There is also the (nonnatural) co-Postnikov-
theory of B. Eckmann and P. Hilton, where homotopy is replaced by
homology. In the author's opinion all these different theories need a
common categorical approach to clear up what a Postnikov-decomposi-
tion of "something" in fact is.

We will start with an arbitrary con variant functor Φ: 5Ϊ—>(£ where
5ί and (Σ are arbitrary categories. We investigate certain functors
¥:&—>E which are closely related to Φ and which are called "Postnikov-
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functors" for Φ. (Definition 1.2); a family 5ί of Postnikov functors is
called a resolution of the given functor. We then define a Postnikov-
system (in a given resolution) and a Postnikov decomposition of a
given object. The main theorems of theoretical interest are theorems
1 and 2 where a given object is characterized by its Postnikov-system.

All of this can easily be dualized in a categorical way (§ 3). In
the next four sections we prove that all known Postnikov-theories can
be subsumed under our general scheme: The known Postnikov-
decompositions of the functor in question are Postnikov-decompositions
in our sense and there are no others. The functors which are dis-
cussed in this connection are: The homotopy functor π with its
classical Postnikov decomposition and with its dual (which is closely
related to the theory of Cartan-Serre-fibrations); the homology functor
and a dual Postnikov-theory. In the last section (§ 9) we treat the
theory of filtered spaces in connection with a suitable functor A.

We are not going to give new algebraic invariants or to improve
the known investigations on Postnikov's original theory. The only
purpose of this paper is to give a general frame work in which every-
thing that deserves the name "Postnikov-theory" seems to fit.

1* Postnikov-functors* Let Φ: Sΐ —* (£ be a given covariant func-
tor. We are going to define what we call a decomposition functor
?F: ££-+(£ of Φ.

DEFINITION 1.1. A triple a = {¥, T,P) where T:Φ-+Ψ and P:W~+
Φ are transformations is called a d-functor for Φ if the following condi-
tions are fulfilled:

(dl) TP = 1:
(d2) If Φ(f) is an isomorphism for / : X — Y in SB, then ψ(f) is

an isomorphism.
We consider the full subcategory S α c S defined by the following
objects:

8α = {XI Xe Λ, T: Φ(X) ** Ψ(X)} .

DEFINITION 1.2. A d-functor a = (Ψ, T, P) for Φ is a Postnikov-
functor for Φ if a satisfies the following two conditions:

(PI) For each I e S there is a map k:X~>Xa such that

Xa G Sα and Ψ{k) = isomorphism .

(P2) If k': X->X'a is another map which fulfills (PI), then there
is a unique map r: Xa —> Xή with rk — k'.
Obviously Φ(r) is an isomorphism.

A cί-functor which fulfills only (PI) is called a "weak-Postnikov-
functor".
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Let a = (¥, T, P), β = (Ω, Tu PJ be two d-functors to Φ. We write
a ig /9 if there is a factorization of functor-transformations:

T=STί9 P =

such that 1 = 50, and if fl(/) = isomorphism, f e k implies Ψ(f) —
isomorphism.

1.1. One has a <; a; a <: /S, β ^ γ => α: ̂  τ; if α: ̂  /S ̂  α then S
is a functor isomorphism and Q is its inverse.

Proof. Only the last assertion needs proof. In addition to Q and
S there are transformations Q: Ω~> ?Γ and S :Ψ —+ Ω such that

= r l f SQ =

Thus the following identities hold:

Therefore QS — 1 and this proves 1.1..

1.2. If a^β then Sα S S .̂

Proof. On 8α the transformation Γ is an isomorphism and P is
its inverse. Since T — S2\, we have established the equality (PS)^ =
1. But 5 - ΓPi (everything on Sβ) and thus T^PS) = T.PTP, - TγPx = 1.
Therefore Γx is an isomorphism on Sα, proving the desired inclusion.

The greatest Postnikov-functor is obviously μ = (Φ, 1,1), 1: #—>(P
where Sμ — S holds.

DEFINITION 1.3. By a Postnikov resolution of functor Φ we mean
a family 21 — {α:} of Postnikov-functors for Φ.

This is the essential definition which will enable us to define
Postnikov-systems and Postnikov-decompositions of an object J e S .
It is not necessarily required that 21 contain all Postnikov-functors
for Φ.

Let Φ: B -> (£, A: (£ -> 6/ be convariant functors. If ?Γ: S -* K is
a d-functor for Φ, one sees immediately that W — ΛΨ fulfills (dl)
for Φf — AΦ. The same is true for weak Postnikov-functors: If Ψ is
a weak Postnikov-functor for Φ we conclude that Ψf is a weak Post-
nikov-functor to Φf provided (d2) holds. A corresponding statement for
(P2) is only true under the following restriction on Φ:

( * ) If φ e S, Λ(φ) is an isomorphism, then φ itself is an isomor-
phism. In case (*) is valid, 8α will be transformed onto S« = {X \ Xe β,
-4(Γ): Λ0(X)^ ^r(X)}, which proves (P2) for Φ and (?'. We have
therefore proved:
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Let Φ:® —»(£ and Λ: (£-*&' be covariant functors such that (*)
is true if a—(Ψ, T, P) is a (weak) Postnikov-functor for <Z>, then
a' = (ΛΨ, AT, ΛP) is a (weak) Postnikov functor for J<P. Moreover,
whenever (*) is fulfilled, a', is in fact a Postnikov functor for AΦ.

2* Postnikov-systems and Postnikov-decompositions Let 21 =
{a} be a Postnikov-resolution of <P and let a ^ /? in 21. We consider
mappings h = hβ

a: Xβ —• Xα such that

Ψa(h) is an isomorphism, a = {Ψ, T, P) .

We will need the following condition:

( I ) If Φ (/) is an isomorphism in & then / is an isomorphism
in $t.

In the fourth section we will discuss the nature of this assump-
tion.

DEFINITION 2.1. A Postnikov-system α = {hβ

a} consists of an object
Xa e %>a for each a e 21 and a map h = hi: X? —> Xa for each a <L β, such
that

(1) ha

a = identity

i.e., a Postnikov-system is a projective spectrum with connecting maps

hi.
Let 21 be a given resolution of Φ\ we define 21 = 21 U μ to be the

resolution obtained from 2ί by just adding μ as terminal object. A

Postnikov decomposition of a given object X e B in $ is a Postnikov-

system ax = α = {/&£} in 21 such that Xμ = X. We will prove the existence

of ά x under condition (I): By Definition 1.2. there is for each ae%

a map ha = hμ

a: X—>Xα with the properties stated in (PI). If a ^ β

in 2ί, we have a diagram:

X hβ > χβ a = (^r? ŷ  p )

where Ψ(s) is an isomorphism, Ya e Sα, and £ is in Sα. We define
hβ

a = is, which is obviously a map with Ψ(hβ

a) = isomorphism. The
map ft£ apparently depends on the choice of s and £; we prove the
independence of ts. Let s: Xβ —> Fα and ϊ": Ϋα - ^ I α be a different
pair of maps. We then have a diagram of the following kind:
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X

\ha

where r comes from (P2) in Definition 1.2. and makes this diagram
commutative. This implies that ts — ts. Now let a <^ β ig 7 in 2ί;
the proof that hβ

ah
r

β — hΊ

a runs along the same line.
This completes the existence proof of a Postnikov-system α x for

given l e f l .

2.1. If condition (I) is fulfilled, then there exists a Postnikov-
decomposition α x in 31 for each l e S . There may exist of course,
more than one άx for a given I G S ; we must therefore compare two
different Postnikov-decompositions of the same object Xe $ . For this
purpose we introduce the notion of an isomorphism k = {ka} for two
Postnikov-systems α and α. If a = {hβ

a},a = {hβ

a}, an isomorphism kβ =
{ka}: α-^α is a family of maps ka: Xa—>Xa such that kah

β

a — hβ

akβ and

Ψ(ka) = isomorphism .

2.2. Let α x, α x be two Postnikov-systems for a fixed J e S . Then
there exists a unique isomorphism k = {&α}: αA —>αx such that kμ: X—+X
is the identity.

Proof. Consider the diagram

ha/

/

X
/ \ha

where ka exists by Definition 1.2. Obviously Ψ{ka) is an isomorphism
and ka unique. One has to prove that the diagram:

X.-

kβ
5

ka
i

•X

1"
•X

is commutative. Again by Definition 1.2. we get a map ma: Xa-+Xa

such that



14 F. W. BAUER

The commutativity of

X

I
i

and the uniqueness of ka implies that ka = mα. Thus & = {&α} is an
isomorphism of ax and αx with the desired properties.

2.3. Let f:X—>X be a map in $ϊ with $(/) = isomorphism an
ax a Postnikov-decomposition of X, α^ a Postnikov-decomposition of
X. There is a unique isomorphism k = {fcα}:α,γ—>θγ such that kμ:X-+
X is exactly /.

The proof is a mere repetition of the arguments used in the
proof of 2.2..

THEOREM 1. Let %be a resolution of Φ, and let % = 2t u μ. If
(I) is true, then there exists for each X e l a Postnikov-decomposi-
tion ax. If f: X—»X in & and Φ(f) is an isomorphism one can find
an isomorphism k = {ka}: ax—>ax of Postnikov-systems, which is u-
niquely determined by kμ — /.

Let ax be a Postnikov-decomposition of an object J in t . By
dropping all those terms in ax which involve μ — (Φ, 1, l)(e.g. Xμ = X,
ha: Xμ —+ Xβ etc.) we get a Postnikov-system in 21 which we call ax.
In case μ is already contained in 21, and therefore 21 = 21, we define
ax = ax.

A Postnikov-system α in 21 is called convergent (or convergent to
X) if there is an object I G S with ax = σ.

To give a first application of our theory we assume £ to be the
category of sets:

DEFINITION 2.2. A resolution 2ί is called complete if the following
is true:

(1) Φ(X) = \JaPΨ(X), I G S
for all a = (¥, T, P) e 2ί.

( 2 ) Let X, Xf G $, let αx, ax, be two Postnikov-decompositions of
X resp. X' and k = {ka}: ax —> ax, an isomorphism. Then there is a map



POSTNIKOV-DECOMPOSITIONS OF FUNCTORS 15

/ : X —»X' in S such that all diagrams

X -JUx'

κ\

ka

are commutative.
( 3 ) If α, /9 e SI then there is 7 e 21 such that 7 ^ a, β.

One can easily prove:

2.4. Let 2t be a complete resolution, and let α, α' be convergent
and isomorphic (i.e. α = az, a' — az,, k:az—>z, an isomorphism). Then
there is an isomorphism k: ax —» α ,̂ which extends Zr.

Proo/. Note that &,: Xμ = X->X; = X' is the map / and that
#(/) an isomorphism by Definition 2.2. (1), (3).

THEOREM 2. Given two objects X, X' e B and Postnikov decom-
positions ax, aχf in a complete resolution 21. The following two condi-
tions are equivalent:

(1) ax and az, are isomorphic,
( 2 ) there is a map f:X—*X' such that Φ(f) is an isomorphism.

This is the root of a classical theorem on the determination of the
homotopy type of a space by its Postnikov decomposition.

3* Dualization. Everything that was developed in § 1 and §2
can be dualized in several different ways:

First, one can replace covariant functors by contravariant functors.
This type of dualization is not so interesting from the theoretical
point of view.

Second, one can dualize formally: A (dual) d-functor to Φ is a
triple (¥, T, P) where T:Ψ -+Φ, P:Φ -*Ψ with PT = 1 and (d2) in
Definition 1.1. In spite of the fact that every dual d-functor is itself
a d-functor (by exchanging the roles of P and T) and vice-versa, we
will preserve our notations (of P and T) for dual d-functors.

The dualization of a Postnikov-functor is something more sub-
stantial. (PI) is replaced by:

(PI) For given J e S there is a map k: Xa->X such that Xa e2a

and Ψ(k) is an isomorphism,
and (P2) by:

(P2) If &': X'a -+ X is another map which fulfills (PI), then there
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is an unique r: X'a —+ Xa with kr = k'.
Because this dualization process is categorical, all theorems have

a dual counterpart which does not need an extra proof.

4- The category ®φ. Let $ be a given category and Φ: Sϊ -»(£
a covariant functor. We defined in [l] a category $ϊφ and a functor
η: & —• 5ΪΦ with the following properties:

(τ?l) Ύ] is the identity on the objects.
(Ύ]2) If ^(/) is an isomorphism, then τ](f) is an equivalence.
0?3) If X:®-+2 is any functor with the properties of ^(i.e.^l),

7]2)) there is a unique functor p: Bφ —» S with /ewy = λ.
Since Φ itself has properties (#L), ()?2)(after a suitable interpretation
of Φ on the objects: two different objects in β are always mapped
into different (but maybe equivalent) objects in (£) there is a uniquely
determined functor Φf\ $tφ —• (£ with 0')? = 0. Later on we will have
to deal with functors such that η is epimorphic in the following sense:

If a: JSΓ—• Y is a map in $lφ there is a / : J5Γ-> Γ in β with )?(/) = α:.
Under this restriction, the functor Φf:$ίφ—*(£ has property (I) in last
section:

Φ'(f) an isomorphism if and only if / is an equivalence in βφ. In
the next section we will meet categories with homotopy where η turns
out to be an epimorphism of this type.

5. The functor τz\ There are numerous categories in topology
and algebra where a homotopy functor is defined. All these functors
have in common the image category (£ = © where © is the category
of group systems G = {Gn}, n — 0,1, where Gn is a group and
φ = {φn}: {Gn} —>{Fn} is a family of homomorphisms φn: Gn—>Fn. We
will be concerned with the following categories:

(1) B = ^E — category of ess-complexes with Kan condition (i.e.
Kan's extension condition [6]).

( 2 ) S = £ category of all topological spaces and continuous maps.
(3) S = £0 based spaces and basepoint preserving maps.
( 4 ) S = Xs simply connected spaces
( 5 ) ® = spo> spβ)_β τ h e g a m e a g i n (2)-(4) but CίΓ-spaces instead

of arbitrary spaces.
6. fi = 8^ ess-spectra with extension condition [3].

All these categories are equipped with a homotopy. Thus it makes
sense to speak of the homotopy type of a given object. The homotopy
functor which is defined (in different ways) for all of these categories
has for ί?E, S

5^, β̂0 the following property (Whitehead's theorem):
(W) A map f: X—• Y is $ is a homotopy equivalence if and only

if π(f) is an isomorphism.
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We will prove that under this condition the category $ΐπ is isomorphic
to the category RH9 the homotopy cotegory of ί£ (objects are as in $
but maps are homotopy classes of maps in St). In other words: Two
maps /0, f,: X—> Γ in ίE are homotopic, fQ~fu if and only if τj(f0) = ηif,).
The proof is rather easy: Consider the natural functor H: 5ΐ—>$tH and
verify conditions (ηl), (η2) in the preceding paragraph. There is a
unique functor p: ®π-+®H with pη = H. Now take two maps /0,/x: X-> Y
which are homotopic. In all cases (l)-(6) there is an object Px in $,
maps i0, ix: X-> Px, r: Px ->X,F:PX-+Y such that:

ij} r are homotopy equivalences

rί0 = rίι

f3 = FijΊ j - 0, 1 .

Since r is a homotopy equivalence it follows 7](i0) = ηii^ and therefore

= η(F)η(i0) =

This shows that there is a functor p: ®H —> £" which fulfills (y?l) and
pH — Ύ] and proves:

5.1. In a category ίϊ where TΓ fulfills W), for two maps /0,/i: X—> F
in ^ the following two conditions are equivalent:

(a) y(fo) = V(fύ
(b) fo = Λ.

The candidates for a Postnikov-decomposition of π are the functors

in other words: π{n) = {Gm}, where Gm = 1 for m > n (homotopy groups
are written multiplicatively) and Gm = πm for m ^ n. One proves
easily:

5.2. a = (ττ(%), T(w), P(%)) is a d-functor for π where Γ(%) resp. P ( w )

are the projection resp. the inclusion.
The verification of (PI), (P2) is done for the category 8^. By applying
the functors R: ^ E o ^ ^ o and S: ^30-^^ε0 (realization and singular complex)
one easily obtains properties (PI), (P2) for φo itself. To each I G ? E O

we find an %-stage Postnikov-decomposition [6] in the classical sense,
i.e., a fibre map p:X—>X{n) where πm(p) is an isomorphism for
m^n and πm(Xin)) = 1 for m > n. Since X{n) is contained in 2a =
{X\ πm(X) — 1, m > n} we obtain (PI). Now let Xx be any object in
2a and kι:X-^X1 a suitable map which fulfills (PI). By the naturality
of Postnikov-decompositions (in the classical sense) we get in ^Eo a
commutative diagram:
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X

/ \
Xy X™

\ /
Pi\ /k[n)

where pι is the w-stage Postnikov-map for Xt and k[n) is induced by
klm However pγ is a homotopy equivalence (since Xγ e 8α) and we there-
fore have a map r: X{n) —*XX such that rp = &1# If r is another map
in S)

Eo with rp ~ k1 we have to show that r ~ r. O n l B , the ^-skeleton
of X the map p is an isomorphism (by the construction of p by J. C.
Moore [6]). Therefore r \ (X{n))n = r | (X{n))n. On the higher dimensional
skeleton r and r are again homotopic since there are no nontrivial
homotopy groups and consequently no obstructions against the exten-
sion of a homotopy.

This completes the proof of:

5.3. In the categories ί?E0H and φ0 H, a = (π{n), T{n\ P{n)) is a Post-
nikov-functor for π.

5.4. The statement of 5.3 remains true if we replace S* by $PE.
See [3] where a Postnikov-theory for WP£ is developed. Details are
left to the reader. See [3] for further references.

6. All Postnikov-decompositions of 7Γ* In the last section we
proved that all functors πin) are Postnikov-functors for π (with T{n) =
inclusion). In this section we are going to determine all Postnikov-
functors for π (moreover: all weak Postnikov-functors) and it will be
proved that they are all of the form Ψ = πin).

THEOREM 3. On the category %Os (see last section for definition)
every weak Postnίkov-functor a — (Ψ, T, P) for π is isomorphic either
to (π{n\ T{n\P{n)) or to (π, 1,1).

Proof. Let a e πn(X), T(a) Φ 1. Then there is a map fea, f:Sn-+X
withπ(f)v=:a1levyl:S

n — Sn. This implies T(v)Φl. TakePT:πn(Sn)-+
πn(S). We clearly have PT{v) = vr where r φ 1. Thus

Γ(i ) = TPT(v) = T(vr)

and T{vr~ι) = 1.
This implies that r = 1 since Ton πn(Sn) has trivial kernel. Thus

we have proved PT(v) - v. If a e πn(X), fea, we get immediately
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the following relation:

PT(a) = π(f)PT(v) = π(f)v = a .

In other words: If there is an a e πn(X), T(a) Φ 1, then T maps πn(Y)
for all 7 G S injectively into Ψ{Y). Our proof will be finished as
soon as we are able to prove that T(vr) Φ 1 for vf e T Γ ^ S * " 1 ) , the
homotopy class of the identity (one dimension less). This would mean
that the existence of an a e τtn(X) with T(a) Φ 1 implies that T maps

πm) injectively into Ψ. We have to discuss two cases:
(1) There is an index n and an αe τcn(X) with T(a) Φ 1 but no

a9 e πn+ι{φ) with Γ(α') Φ 1.
( 2 ) There is no such n.

In the first case we get immediately:

π(n) ^ ψ

and in the second case

7Γ ^ Ψ .

We now prove T{v') Φ 1 under our assumptions. Take the Hopf-map
h: Sn -> S"- 1^ > 2) and recall that b = π(h)v Φ 1 and thus T(b) Φ 1.
Condition (PI) in Definition 1.2. guarantees the existence of an object
Xx e 2a and a map k:Sn~1—*X1 such that Ψ{k) is an isomorphism. Since
T(b) Φ 1 it follows T(π(k)b) Φ 1 and consequently that π(k)b Φ 1.
Assume T{v') = 1! This implies that

Ψ(k)T(v') = T(π(k)vf) = 1

and therefore π(k)v' — 1 (since Xι e 2a). This is, however, a contra-
diction because it follows from π(k)vr = 1 that k is homotopic to the
constant map and therefore that T(π(k)b) must be trivial. This com-
pletes the proof of theorem 3.

COROLLARY 1. For the functor π all weak Postnikov-functors are
Postnίkov functors.

REMARK. The proof carries through if we replace XQs by any of
the categories ^Eo or $PE . Again details are left to the reader.

7* Dual Postnikov-decompositions of π. The functor π on the
category $ — ZOs admits a dual Postnikov-decompositions. To show
that, we define the functor

in other words:
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π(») = {Gn}, Gm = 1 for m ^ w, Gm = πm ίoτ m> n .

For T(w): π ( n ) —> π and P{n):π-*π{n) we take the inclusion resp. the
projection. We get immediately P{n)T{n) = 1. If / : X—> F and τr(/)
is an isomorphism, then so is π{n)(f). This proves:

7.1. α = (ττ(9l), T(n),P(w)) is a dual d-functor to π.
Now let 2a be the "coincidence-category": Sα = {X | πm(X) = 1 for

m Sn} and let I e S be an arbitrary space. We will construct a
map k: X1—>X with J^eS* and τrw(fc) = isomorphism for m> n, in
the following way: We know that RS{X), the geometric realization

of S(X), admits a Cartan-Serre fibration XL—ίUiίS(X) such that
πm(p) = isomorphism for m> n and TΓ^X^ = 1 for m ^n. Our map fc
is the composition

fc = ωp

where ω is the natural weak homotopy equivalence ω: RS(X) —»X.

7.2. α: = (π(w), Γ(w), P(w)) is a weak dual Postnikov functor (i.e., it
fulfills (PI)).

7.3. Our a is a dual Postnikov-functor to π.

Proof. Take any other map k': X2—+X with πm{k') = isomorphism
for m> n, and πw(X2) — 1 for m^n. Then there is a map ga: Sα

m —* -Xi,
a e 7rm(Xx) such that kfga = k \ Sα

m which is uniquely determined up to
homotopy. Thus the map g = V ga: B —> X2 can be extended in a unique
way to a map (/: 5 = Xt —* X2 such that k = krg.

We are now going to verify the dual statement to Theorem 3.

THEOREM 4. On the category XQ and XQjI every weak dual Post-
nikov-functor a = (Ψ, T, P) for π is isomorphic either to (π{n)J T{n),Pin))
or to (π, 1, 1).

Proof. The proof is similar to that of Theorem 3. Let a Φ 1,
αe Ψ{X), so we can find an a = T(a) Φ 1. If feaeπn(X) we get
π(f)v = a and Ψ(f)P(v) = a and therefore TP{v) = vr,rΦ 0. We will

prove the existence of an veΨ(Sn) with T(v) = y. Let vr = T(b),
be Ψ(Sn); we find a map g: Sn—>Sn such that τr(̂ )v = vr and such that
π(g) is injective. Thus, by the same argument which we used before,
there is an element ceπn(Sn) which lies in the image of T and has
property π(g)c = vr. However under these circumstances we must have
c = v which proves the existence of a v e Ψ(Sn) with T(v) = v.

If now aeπn(Y) is an arbitrary element in πn(Y) we get imme-
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diately (by the same reasoning) a n α e Ψ(Y) with T(a) = a. In other
words: If a Φl, ae rcn(X) is in the image of Γ, the total group πn(Y)
for arbitrary Y e $ is contained in the image of T. Now let again
h:Sn+1-+Sn be the Hopf map1 and k:R->Sn a map, which fulfills all
requirements of (PI). Since ve image πn(k) there is a map r:Sn—>R
with fcr ~ l:Sn->Sn. Therefore rh 5* 0 and there is an a e ¥(R)(f& π(R))
such that T(a) = [rh]. Now we can apply again all the arguments
used before and obtain a v'e¥(Sn+1) such that T(vr) = 1/ e ^ f t f l(S f t + 1),
1 6 iΛ The rest of the proof runs as the corresponding part of the
proof of Theorem 3.

COROLLARY 1. For the functor π all dual weak Postnikov-functors
are dual Postnikov-functors.

REMARK. In the case of Φ = π the maps k: X—>Xa in (PI) can
be realized by Postnikov-fibrations (i.e. by fibrations with an Eilenberg-
Mac Lane complex as fiber). In the dual case which we just treated
the corresponding maps k: Xa —> X can be taken as Cartan-Serre-fibra-
tions. For 8^E, the category of ess-spectra, the authors of [3] give
a completely parallel treatment of Postnikov-decompositions and of
Cartan-Serre-decompositions of a spectrum. There are many aspects
in this duality which are not yet sufficiently explored.

8* Homology, We will consider the category ^ of all simply-
connected CTF-complexes and the corresponding homotopy-category
P̂βίr We define the homology functor H( ) = {Hm( )} as well as

jjw _ [Hm)m^n in the same way as the homotopy functor. We are now
going to determine all weak dual Postnikov-functors for H on Sββ.
Our first statement is again:

8.1. a = (H{n), T{n\P{n)) is a dual weak Postnikov-functor to H
where T{n) and P(n) are the inclusions resp. the projection.

Obviously a is a cί-functor. Take the category 2a = {X | Hm(X) = 0,
m > n). If Xe?fis is an object, one has to construct a space Γ G S ,
and a map k: Xf —> X such that Hm(k) is an isomorphism for m < n.
This however is the purpose of a homology decomposition of a CW-
complex (simply connected) and can be found in [2] This proves (PI).

In [2] there is also a counterexample which proves that (P2) is
not true in general for our triple a. It is comparatively easy to
verify on Sββ that all weak dual Postnikov-functors a = (Ψ, T, P) for

1 In a standard notation this means h = En~2η, where η'.S^—yS2 is the classical
Hopf-map and E is the suspension.
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H are isomorphic to (H{n\ T{n\ P{n)) for suitable n or to (H, 1,1),
1:H-+H. We establish a proof of this in several steps:

8.2. If under our assumptions there is an αe Ψ{X), ΰ Φ 0, T(a) —
aeHn(X), then Sne2a.

Proof. There is a space X ' e φ s and a map f:X—*Xf with the
following properties: Hm(f) is a monomorphism for m > n and
Hm(X') = 0 for m < w. One erects the cone over the (n — l)-skeleton
of X and for / one takes the inclusion map. Since Hn(f)a is in the
range where the Hurewicz-theorem holds we get a map f'\Sn-+X'
such that H(f')β = H(f)a for suitable βeH(Sn). We can assure the
existence of a βeΨ(Sn) with T(β). Thus β = rv, where veHn(Sn)
is the fundamental class. Since there is a map r: Sn —* Sn with
fl"(r)i; = rv = /3 and Jϊ(r) is a monomorphism, we find a v e τ/r(Sπ) with
T(v) = v. This proves: P: H(Sn) -^ψ(Sn) is an isomorphism.

8.3. Under the same assumptions as in 8.2. each b e Hn(Y) for
arbitrary Fe^β s possesses a counterimage b under Γ, i.e., T(b) = 6.

Proof. Carry out the same construction as in 8.2.: We obtain a
F ' and / : Y —> Yf with the corresponding properties and accordingly
a map f':Sn-> Yr such that H(f')T(v) = H(f)b. That proves that
H(f)b e image T; and since Hn{f) is a monomorphism, that 6 e image T.

8.4. Under the same assumptions as in 8.2. each b e Hr(Y)y r <, n
possesses a counterimage b under T.

Proof. Set k = n - r, Dn = D = Sr x SΛ. The fundamental
classes in the homology groups of Sr,Sk,D are resp. sr, sk, and
cf\ It is clear that d e image T. We are going to prove that
sr,ske image T. There is by property (PI) a map h:R-+D where
Re2a and Ψ(h) = isomorphism. There is furthermore a b e H(R) with
H(h)b = d. Our statement would be proved as soon as we are certain
that there are counterimages of sr and sk in H(R) under H{h) because
H(R) f& ¥(R) by assumption; and this is furnished by a simple cup-
product argument: Let sr, sk and d be the corresponding cohomology
elements to sr, sk, and d in H*(D). One has sr U sk — d. Assume
sr £ image H(h)\ This implies H*(h)sr = 0 which is impossible since

H*(h)d = H*(h)sr U H*(h)sk Φ 0 .

We are now in a position to prove the following theorem along
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the same line as we did for Theorems 3 and 4.

THEOREM 5. Every dual weak Postnikov-functor is isomorphic to
(H{n\ T{n\ P{n)) or to (H, 1,1), 1: H-+H on the category 5ββ.

9* Filtered spaces* Our next and last example comes again
from topology. Take a category $ of based filtered spaces X =
{Xn}, c Xn c Xn+1 c X = U^o Xn and continous maps which
preserve the filtration (i.e., f(Xn) a Yn for / : X —> Y in &). We assume
that with each collection XL e $t the wedge y L XL is also contained in
Λ. The category of C TF-complexes may serve as an example. For
future applications we assume the following condition:

(c) For X, Y e $ and xeXn,yeYnxί Xn~i there is always a map
/:X~+ Γ (for ί ϋ G Γ c I e f c ) in Λ such that /(a?) - y.
The background of condition (c) is that there are no other partitions
in Sΐ of a fixed X which are preserved by maps in the category. We
will now deal with the functor Λ:$t—>$ΐ which is defined by:

for all n such that I . g X If / : X —• Y in 5£ one puts:

Λ(f) = V Λ, Λ: X >Y*,fn=f\Xn.

We are going to construct all dual Postnikov-decompositions of A. To
this end we introduce the functors Λ{n):$i~-*& which are defind by
A{n)(X) = ymt£nXm and correspondingly for the maps. There is a
transformation T{n): A{n) —> A (the inclusion y m^n Xm c Vm^oXJ and a
transformation P{n);Λ-+ A[n) (the projection V^ o X m —• y m^n Xm where
all terms Xm, m ̂  n + 1 are mapped into the base point) such that
PT — 1. This proves that A{n) is a dual d-functor to A. Accordingly
2a (where a = (A{n\ T{n\ P{n))) is the full subcategory of & which
consists of all spaces X with Xn = X. We consider the inclusions
k:Xn—>X which induce by definition isomorphisms under A(n); this
proves (PI). Now let Ye2a be any space and k': Y —>X a map with
A{n)(kr) — isomorphism. In r — kr

n: Yn — Y—*Xn we have a map with
Jcr = kf which is moreover uniquely determined by that equation.

We have proved:

9.1. The triples a{n) = a = (A{n\ T{n\ P{n)) are dual Postnikov-
functors for A,

Up to this point we have not used condition (c). Now let a =
(Ψ, T, P) be any Postnikov-functor A. Without affecting generality
we may assume that T:Ψ-+A is an inclusion i.e., Ψ(X)aA(X),
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ψ(f) = Λ(f) I Ψ(X) for an /eΛ. By using condition (c) we find that
there is not much choice for Ψ(X): It must be either Ψ{X) = Λ(X)
or Λ{n) for a certain w. We sum this up in the following theorem:

THEOREM 6. The triples a{n) = (A{n\ τ{n\P{n)) are dual Postnikov-
functors for A. They are the only dual Postnikov-functors for A
provided (c) holds.

CLOSING REMARKS. In our abstract theory of Postnikov-decompo-
sitions there are up to this point no ^-invariants. The reason for
this is that for such a system of invariants one needs a suitable
cohomology. A construction of such a general cohomoly theory (on
this abstract level) will be given in a later paper.

REFERENCES

1. F. W. Bauer and J. Dugundji, Categorical homotopy and fibrations, Trans. Amer.
Math. Soc. (to appear).
2. E. H. Brown, Jr., and A. H. Copeland, Jr., An homology analogue of Postnikov
systems, Michigan Math. J. 6 (1959), 313-330.
3. D. Burghelea and A. Deleanu, Resolution de Cartan-Serre et de Postnikov dans la
categorie homotopique des spectres, C. R. Acad. Paris (A) 263 (1966), 361-364.
4. A. Dold, Halbexakte Homotopiefunktoren, Lecture Notes in Mathematics, 1965.
5. Donald W. Kahn, The spectral sequence of a Postnikov-system, Comment. Math.
Helv. (3) 4 0 (1966).
6. J. C. Moore, Semi-simplicial complexes and Postnikov-systems, Sympos. intern.
Mexiko, 1956.
7. M. M. Postnikov, Investigations in homotopy theory of continous mappings, Trudy
Stecklov 46 1955.

Received May 25, 1967.

RICE UNIVERSITY




