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EXTENSIONS OF OPIAL’S INEQUALITY

P. R. BEEsack AND K. M. Das

In this paper certain inequalities involving integrals of
powers of a function and of its derivative are proved. The
prototype of such inequalities is Opial’s Inequality which states

X
that 2\ |yy' |dx < X\ y'?dx whenever y is absolutely continu-

0 0
ous on [0, X] with y(0) =0. The extensions dealt with here
are all integral inequalities of the form

a

b b
S Sly!"ly’lqugK(p,q)S rly |Prda,

measurable functions on I =[a,b], and y is absolutely con-
tinuous on I with either y(a) = 0, or y(b) = 0, or both. In some
cases y may be complex-valued, while in other cases y’ must
not change sign on I, The inequality (as stated) is obtained
in case pg > 0 and either p+¢=1 or p 4+ q < 0, while the
opposite inequality is obtained in case p < 0,9=1,p+ ¢ <0,
or p>0,p+¢q<0. In all cases, necessary and sufficient
conditions are obtained for equality to hold.

(or with < replaced by =), where 7,s are nonnegative,

1. In a recent paper [11], G.S. Yang proved the following
generalization of an inequality of Z. Opial [7]:

If y is absolutely continuwous on [a, X] with y(a) =0, and if
0,9 =1, then

X X
(1) S gl |y de < —9 (X—a)"S |y [P0 ds

a D+ q a
Yang’s proof is actually valid for p = 0,¢=>1. For p=¢=1,a =0,
(1) is Opial’s result. (See also Olech [6], Beesack [1], Levinson [4],
Mallows [5], and Pederson [8] for successively simpler proofs of Opial’s
inequality; as well as Redheffer [9] for other generalizations of this
inequality.) The case ¢ = 1, p a positive integer, was proved by Hua
[3], and the result for ¢ = 1, p = 0 is included in a generalization of
Calvert [2]; a short, direct proof of the latter case was also given by
Wong [10]. If ¢ =1 the inequality (1) is sharp, but it is not sharp
for ¢ > 1.

2. The purpose of this paper is to obtain sharp generalizations of

(1), and to consider other values of the parameters p, ¢; the method
of proof is a modification of that of Yang [11]. To this end, we sup-
pose first that y 1is absolutely continuous on [a, X], where —oco <
a < X < o, and that y' does mot change sign on (a, X), so that
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(2) v = lvwidt, asssX.

If r is nonnegative on (a, X) and the integrals exist, then it follows
from Holder’s inequality that

z z (p+a—1)[(p+q) /(= [(p+a)
(3) S,,I y’]dt < (S ,,.—u/<p+q~mdt> p+g p+a (S rly’ ]p+q dt)l p+q

a

if »p + ¢ > 1, while
( 4 ) le y' ‘ dt Z (Sw/r““/(”‘“”‘1)’dt>(p+q~l)/(p+q)<Sx'r I y, I"""q dt>ll(p+q)

if either p + ¢ < 0 or 0 < p + q < 1. Taking the case p + ¢ > 1, we
suppose first that »p > 0,q > 0. Then,

£ p(p+e—1)/(p+q) /(= pl(P+q)
l Y lr < (S ,r—-(l(p+q—1))dt> (S r l yf lp+a dt)

a

(5)

aswv=X.
x
Now, set 2(x) = S r|y |PHedt. So 2 = |y |, and
a
|y |0 = p-laeo)(gryalrra |

Thus, if s is nonnegative on (a, X),

z

s l Y |p ] y' |q < S’I“““”"’"”(S 7-—(1/(:n+q—1))dt)p(p+q~1)l(p+q)zp/(p+q)(z')ql(p+q) .

a

If we assume the existence of the following integrals, then applying
Holder’s inequality again, with indices (p + ¢)/» and (p + q)/q, we
obtain

* x a/(p+q)
S slyl v |"de < K(X, p, q)<g z”/"z'dx>

(6) ‘ -

= K(X, »,q) Sa’rly’|”+q dx |

since z(a) = 0 and (p + ¢)/q > 0. Here,
K(X,p,9)

(7) - ( i )‘”“”f‘”{sxS(p+q),p,’,_(q,p)(g’”7__(1,(p+,,_1),dt)’”"’“‘dx}""“q’ .
p q a a

Similarly, if » < 0 and ¢ < 0, then (5) again follows from (2) and
(4). As above, since (p + q)/p > 1 and (p + q)/g > 1 again, we obtain
inequality (6). This proves the main part of

THEOREM 1. Let p,q be real numbers such that pq >0, and



EXTENSIONS OF OPIAL’S INEQUALITY 217

either p +q > 1, or p+ q <0, and let r, s be nonnegative, measurable
functions on (a, X) such that Xr—”“’“"”dx < oo, and the constant
K.(X, p,q) defined by (7) s ﬁm’%e, where — o < a< X< o, Ify
1s absolutely continuwous on [a, X], y(a) =0, and y' does not change
sign on (a, X), then

(8) [sturivide s K&Xp,0f rivids.

Equality holds in (8) i¢f and only if either ¢q > 0 and y =0, or

z

. ) p(l—q)/q
(9) s = kl,,.(q—l)/(pfq—l)<s ,,.—(ll(p-rq—-l))dt) ,

a

and
Yy = k2 gx/,-—(l/(wq——l))dt ,

for some constants k(=0), k, real.

It only remains to prove the assertion concerning (9). Now, equality
holds in (8) only if it holds in (3)—or (4)— and in Holder’s inequality
leading to (6); that is, only if both

r l y' ]p+q = Ap—iUete-0b gp y’ — kz/,.—(ll(pw—l)} ,

and

zrlig! — BgP+ulpp—(a/p) <Sz7.-(1/(p+q—1))dt>p+q_l .
The first of these conditions is equivalent to the second of equations
(9) since y(a) = 0. Using this condition and the definition of z, the
second reduces to

Rirtot-ols — C'S(prw)/ln(R')m-} q)(g—1)]q , (R = SzT—{Il(p-%q—l))dt> ,
which is equivalent to the first of equations (9). Finally, if s is given
by (9), it is easy to verify that the corresponding value of K, in (7)
is

q X o rlq
kx <S i /(r—:—q~1ndt> ,
P+ qNe

and hence is finite. Similarly, choosing % as in (9),

a

X x
S r i y’ ip«iq dx = ”52 [pr-‘q S =i & oo ,

completing the proof of the theorem.
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COROLLARY 1. If pg >0, p+ q>1,(8) holds even if y is complex-
valued. Equality holds if and only tf s and y are given by (9) with
k, =0, k, complex.

Proof. The inequality (8) follows as above but in place of (2)
we have

v < |lv@iat, ase<X.
Equality holds in (8) only if, in addition to

z p+a—1
Iyrl — A,,.—(ll(pﬂ—-l)!’ zPlagh — Bs(p+q)/p7.—(qlp><g T—(ll(pw—-l))dt) ,

a

we also have
@) | = [Tvela;
thus only if

'_7/(93) — <AV’I'_“/(D':'q—'l)}dt)ew(x) ,

va

which, in view of the condition on |%’|, leads to #'(x) = 0 and, there-
fore, only if

Yy = Ae® er““’“’“*‘”dt =k, r’r‘“/“’““”’dt .
a

The rest follows as before.
REMARK 1. If pg > 0 and p + ¢ = 1, then in place of (5) we have
e =ae([rivia),

where M(x) = ess. SUD;cp,,.; 7'(f) and 7 is a positive, measurable func-
tion on (@, X). Therefore, if

I?l(X, b, Q) =q° {SXMSI/?T—(q/p)dx}p < oo,
then

X ~ x
(10 syl iy ide s RX,p,0 | rvde.

As in the corollary above, equality holds in (10) if and only if y = 0,
or
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z q
r=-const. >0 and y = k(S s‘“’dt) ,

k complex.
We only state the next theorem, since its proof is the same as
that of Theorem 1, with [a, «] replaced by [z, b] throughout.

THEOREM 2. Let p,q be real numbers satisfying the same condi-
tions as in Theorem 1, and let r, s be nonnegative measurable functions

b

on (X,b), where —o <X <b< o, such that S prterebdy < oo,
X

and

KX, p,q)

(11) _ < q )q“”q){y8(p+q>/p,,.—(q/m<gb,,.—(1/(p+q—1>;dt>p+q_ldx}pm+q)
p -+ q X z

1s finite., If y is absolutely continuous on [X,b], y(d) =0, (and ¥’
does not change sign on (X, bd) in case q < 0), then

b b
(12) |slullyirde < KX, p, 0 7w edo .
X X

Equality holds im (12) if and only if either ¢ > 0 and y = 0, or

b

p(l—a)/q
s = ka,r(q—l)l(p+q—1)<8 ,r.—(l/<p+q—1))dt) ,

z

and
b
Yy = k*S plrra-igy

for some constants k(=0), k, real.

REMARK 2. As above, if pg¢ >0 and » + ¢ > 1, then (12) holds
even if y is complex-valued. Also, if p +¢=1,r is a positive,
measurable function on (X, b), M(x) = ess. SUD,cr.,5; 7 '(f) and

KZ(Xv p, q) = qq{Sszllp,r—(q/p)dx}p < oo,
p.g
then
b ~ b
(13) [slurivide < RX, 0,0 rivids,

where y is again compleic-valued. Equality holds if and only if » =
const. >0 and y = IE(S s"”dt)q .
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COROLLARY 2. Let pg >0 with p +q > 1, and let r,s be non-
negative, measurable functions on (a, b), where — < < a < b < o, such

b
thatg p-lrre-Uldy < o, and

a

(14) (K(p, 9) =) Ki(X,, p, 9) = KX, p,q) < 0,

where K,, K, are defined by (7), (11) respectively, and X(a < X <b)
1s the (umique) solution of equation (14). If y is complex-valued,
absolutely continuous on [a, b], with y(a) = y(b) = 0, then

b b
(1) |slurivide < K@ o) |71y irdo.

Moreover, equality holds if and only if either y =0, or

z »(1—q)/q
al,,.<q—1)/(p+q-1)<g ’r“”(“q“”’dt) , asx< X,
a
s = 5 p(1—9)/q
az,,.(q—l)/(wq—l)(S ,,.—ulm+q—1))dt> , X<az=b,
z
and
z !
‘BIS ptlera-igy a<zr< X,
a
'y =

b
‘828 T—(ll(p+q—~1))dt , X § T é b ,
z

where «,, &, are mnonnegative constants, and B, B. are complex
constants such that

X b
181 S /’-—-(II(P+G—1))dt — Bzg ,r—-(l/(zi-t—q—l))dt .
a X

Proof. The conclusion follows from Corollary 1 and Theorem 2
since, on choosing X to be the unique solution of equation (14), we
have

b X b
Sas'yl”'y’l"d“ Sasiylf’ly'iqdw SXSIyI”Iy’I"dx
x b
= K(X, p, Q)S r|y P de + K(X, p, q)g Ty |t de
e x
= K(p’ q) Sbrly' |P+q dx .

Moreover, equality holds in (15) if and only if it holds in both (8)
and (12).

REMARK 3. As before, if pg >0 and p + ¢ =1, then for » a
positive, measurable function on (a, b),
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(16) [slurivide < Rw, o) | riv1da,

where
(K(»,9) =) K(X, p, q) = KX, D, q) -

Equality holds in (16) if and only if either y = 0, or

e(>0), a << X, 71(stllpdt)q , a=z<X,
®) = { and y = : \
where
X q b q
7,6 s”"dt) - 72<S s””dt) .
a X
EXAMPLES

1. Setting » =s =1 in (8) or (10), we obtain as an improvement
of (1),

q4/(17+<1)

an | furiyiras < 2=

& —ap| |y prode

if pg >0,p + ¢ = 1. It may be remarked that (17) is also true if
p = 0. Equality holds in (17) in case p + ¢ > 1 if and only if either
p=0,0relse y=0,orelse ¢g=1and y=A@x —a); if p+q=1,
equality holds if and only if ¥y = A(x — a). In case ¢ = 1, (17) reduces
to the results of Hua, Yang, Calvert and Wong, while Opial’s original
inequality is obtained for » = ¢ = 1. (Note that if » < 0 and ¢ < 0,
K(X, p,q) = o.)
2. Taking ¢ =1,s =1 in (15), we obtain

b 1 X (b
(274 < —(1/p) ! |p+1
(18) Salywdx:wl(gar dz) Sa’"y' da |

if p =0, and y is complex-valued, absolutely continuous on [a, b] with
y(a) = y(b) = 0. Here, X is the unique solution of

X b
S gy — S
a

b
X,,.—u/p)dw,S gy < oo .

Equality holds in (18) if and only if y = 4 Szr—“/“dt fora<e <X
b a
and y = B\ r~"?dt for X <2 <b. In case p =1, (18) reduces to a

result of Beesack [2].
3. Taking r=1,s = (¢ — ¢)**?/? in Theorem 1,
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19) |"@—ayroniyp |y rde < (X — apre [y peds
¢ p+aq «

Equality holds if and only if either ¢ > 0 and ¥ = 0, or ¥y = Az — a).
As a special case of (19), let ¥y = u'?,p = ¢ = —1,a = 0. Then

* ot " ul :
= dr < X S dx unless % = Ax®.
o |u'| o |u'|*

4. Taking r = (x — a)?»re-2/»+0 g =1 in Theorem 1,

X
Slyl”ly’l"dx

(20) 7 . .
= < ) (X — a)Pl(P+ﬂ) S (x _ a)p(p+q—1)/(p+q) Iy, IPH da .

P+ q .
Equality holds if and only if either ¢ >0 and y =0, or y = A(x — a)*/?*°,
As a special case of (20), let y = >, p=¢q = —1,a = 0. Then

SX dw 1 Sxx_—alil_’_"_l_dx unless u = Ax .

B S xue
T 20 LTI
3. To obtain lower bounds for SXs[ Y7y | de (or Sbs lyl” |y |° dx)
consider first the case when p + ¢ > 1. If, in addition, 1; < 0, (3) yields

(21) ly P = (Sx"'““"""fq“”’dt)pmqml)“p“)(Sz’r |y e dt)p/(mq) .

a

If s is non-negative on (a, X), then

s I Y |1) | y' ,q g sr—(ql(p+q))(§m,r——(ll(p+q—l))dt zp/(p+q)(z')ql(p+q> ,
a

>p(p+q—-1)l(p+q)
where z(x) = Szr |y |+ dt.

Thus, Hiilder’sainequality with indices (p + ¢)/p» and (p + q)/g—note
that the latter lies between 0 and 1-—gives

X X
(22) [slyriyiras z KX, p,0 | r1w o da,

where K (X, p, q) is defined by (7).

Similarly, if p > 0 and » + ¢ < 0, then (4) yields (21). Again, if
s is non-negative on (e, X), Holder’s inequality with indices (p + q)/p
and (p + q)/g—note that 0 < (p + ¢)/qg < 1 still holds—leads to (22).
Equality holds in (22) if and only if it holds in (8)—or (4)—and in
Holder’s inequality leading to (22); that is, if and only if s,y are
given by (9). This proves

THEOREM 3. Let p, q be real numbers such that either p <0 and
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p+qg>l,orp>0and p+ q<0. Letr, sbe nonnegative measurable
X
functions on (a, X) such that S yte+e-Ddy < oo, and the constant

K(X, p,q) defined by (7) is ﬁn’?te, where —o < a< X< o, Ify
is absolutely continuous on [a, X], y(a) = 0, and y' does not change
sign on (a, X), then (22) holds. There is equality in (22) if and only

s and y are as defined in (9).

COROLLARY 3. If p< 0 and p+ q > 1, (22) holds even if y is
complex-valued. FEquality holds if and only if s and y are given by
(9) with k, = 0, k, complex.

The proof of this is essentially the same as that of Corollary 1.

REMARK 4. If »p < 0 and p + ¢ = 1, then in place of (21) we have
iz we(|riviat),
where M(x) = eSS SUD,(,..; 7 (¢) and » is a positive, measurable func-
tion on (a, X).
Thus, if
R(X,p,q) = q"{rMS‘“’r““’“”dx}p < oo,
then
X o x
(23) [sluprlvidez RaX,p,0 | riv1de.
As in the corollary above, equality holds in (23) if and only if

r =const. >0 and y = k(sxs””dty ,

k complex.
Replacing [a, ] by [x, b] throughout Theorem 3, we obtain

THEOREM 4. Let p,q be real numbers satisfying the same condi-
tions as in Theorem 3, and let r,s be mon-negative measurable func-

tions on (X, b), where —co < X < b < oo, such that ' pHPte-Udy < oo,
X
and KX, p, q) defined by (11) is finite. If y is absolutely continuous
on [X,b],y(d) =0, (and ¥’ does not change sign on (X, b) im case
p > 0), then
b b
(24) [sluPiyde = KX, p,0 | rivids.

Equality holds in (24) if and only if
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b p(1—a)/g
s = ks,r(q—l)/(p—w—l)(s ,r—(l/(p+q—1))dt> , and

z

(25) b
Y= k‘S ptra-dy

for some constants k(=0), k, real.

REMARK 5. If p <0 and p + ¢ > 1, then (24) holds even if y is
complex-valued. Also, if p <0, p+ ¢ =1 and r is a positive, measurable
funection on (X, b), and

N ~ [ 2PN
M(x) = ess sup r7'(t), K«(X, p, q) = qqs Ms‘“’r-“’“”dx} < oo,
telz,b] X

then
b ~ b
(26) [sluPlyidez RX,p,0 | rivide,

where y is again complex-valued. Equality holds if and only if
A~ b
r = const. >0 and y = k(g s””dt)q.

COROLLARY 4. Let p<Oand p +q>1. Let r,s be nonnegative,
b
measurable functions on (a,b), — oo < a <b =< oo, such that | r~H@E+i-idy

18 finite. Let y be complex-valued, absolutely continuous on [a, b]
with y(a) = y(b) = 0. Then,

b b
@7 [slul vz K@ o |riy e,

where K(p, q) is defined by (14). Moreover, equality holds if and
only if s and y are defined as in theorem 2.

The proof is immediate in view of Theorems 3 and 4, Corollary 3
and Remark 5.

REMARK 6. Again if p < 0 and p + ¢ = 1, then for r(2) positive,
measurable on (a, b),

(28) [slyrivide =z Rw, o (rivide,

where K(p, q) 1s defined as in Remark 3. Further, equality holds in
(28) if and only if » and y are defined as in Remark 3.

Our next result is an extension of Theorem 3 to the case when
0<p+qg<1and ¢ >1. (Note that in Theorem 3 the restriction
¢ > 1 is implicit since p + ¢ > 1 and p < 0 imply ¢ > 1.)
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THEOREM 5. Let p<0,g>1and0<p+q<1l. Letr,s be non-
negative, measurable functions on (a, X) such that X'r'““’“"“'*‘”dx
and SXS*“""““’dx are finite. If y 1s complex-valued, abgolutely con-
tinuous on la, X1, y(@) = 0, then

(29) [slurividez R& p0 (v,
where

e = q ! SX =g ) SX ENTYIENTARITG S Gl
(30) R.(X,p,q) (p+q>( ") ([ )

Equality holds in (29) if and only if s and y are as defined by (9)
with k, complex.

Proof. Since p/q < 0,
x ?/q
iz ((ly1a)”,  esasx.

Therefore,

X X (p+a)/q
31 S o |y | de = — 2 S 'd .
(31) Jupeiy ez (1 1y dz)

From Holder’s inequality with indices ¢ and its conjugate, it follows
that

SXI yIP? |y |de < (SX3~{1/(q-1);dx)(q"”"’<§Xs T dx)llq ;

and also with indices p + ¢ and its conjugate, that
X x (p4g—1)[(p+a) /(X 1tp+q)
g | y' l doc 2 (S T—(ll(p+q-—1)ldx> (S r l y' |p+q dx>

In view of the above inequalities, (29) follows from (31).
Again, equality holds in (29) if and only if

wi={lyldr, s =siypiyr,
and

Ar=eHa=D) — | g |pra

that is, if and only if

Iy'l - az,r—-(ll(p+q—1)} , Iyl = a, Sm,,.—(ll(zwq—hldt ,
a
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and

z

p(1—q)/q
s = ks,,.(q—l)/(pﬂ—-l)(s ,,.—-{1/(p+q-1)}dt> ;

a

thus, as in Corollary 1, if and only if s and y are as defined by (9)
with %k, complex.

REMARK 7. If p<0,0<p+ ¢<1and q=1,s(x) positive and
measurable on (a, X), then in place of (29) the following holds:

a

X M*—l x p (X
32 S » ' de > S. —~(1/p)(]. S ’ P+t ,
6 | slylividez (| romda) | iy e de

where M* = M*(X) = esS SUD.e(q,x s"‘(x;. Equality holds in (32) if
and only if s = const. > 0 and y = k* \ r~*/?dt, k* complex.
Replacing [a, ] by [x, b] throughout Theorem 5, we obtain

THEOREM 6. Let p,q be real numbers satisfying the same con-
ditions as in Theorem 5. Let r, s nonnegative, measurable functions

b b

on (X, b) such that \ r—Wr+teidy qud \ s Vidy are finite. If y
X X

18 complex-valued, absolutely continuwous on [X, b], y(b) = 0, then

(33) gbs lyl? |y |*de = KX, p, q) Sb’r |y [Pt da
X X
where
7% — q Y gb —l g ) Sb —lra— g )
R(X, p, q) (p L q)( s dx) < K d:c) .

Equality holds in (83) if and only if s and y are defined by (25)
with k, complex.
As a direct consequence of Theorem 5 and 6 we have

COROLLARY 5. Let p,q be real mumbers satisfying the same
conditions as im Theorem 5. Let r,s be monnegative measurable

b b
functions on (a, b) such that \ r~**+dx and S s7HeD qre finite. If
y 18 complex-valued, absolutely continuous on [a,b] with y(a) = y(b) = 0,
then,

b N b
(34 [slurividezRe, o rivrods,
where K(p, q) = K(X, p, q) = KX, p, q), with X the unique solution

(@ < X < b) of the latter equation. Moreover equality holds in (34)
if and only if s and y are defined as in corollary 1.
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REMARK 8. Let p<0,0< » + g <1 and g = 1; s(x) positive and
measurable on (X, b). Then, for complex-valued, absolutely continuous
y on [X, b] such that y(b) = 0,

b 7 % —1 b b
@ [sluriviaez 2Zo(( ey ey pear,

where M* = M*(X) = ess SUD,erx,0 S(T).

Finally, if y is complex-valued, absolutely continuous on [a, b] such
that y(a) = y(b) = 0, and if s is positive and continuous on (a, b), then
(82) and (85) yield

b M-—-l z p(bd
P 4 > —1/p ! |p+1
@ | slylividez 2({Trrdn) iy peda,

where M = M*(X) and X is the unique solution (¢ < X < b) of the
N X X

equation M*(X )( ‘ 7"‘““”d90>p =M *(X)(S r““/P’dxy. Equality holds in

(36) if and only if s = const. > 0 and ‘

o= w(rma (a(roe)

according as a < x = X(X <2 < b).

Examples can be constructed for special cases of r» and s as
before. However, we content ourselves with noting that if s(x) =1,
(32) reduces to the following inequality of Calvert’s paper [2, p. 75],

1 1 1

X X p—1¢X
Siu”“‘%’lz"(ﬁ ,,1_.,) g"l%’l”, 0<p<l and =+ ==1.
a P a a q P

4. Let w be a given function and let
Y = dleta) (p +q# 0) .

If p and ¢ are such that ¢/(p + q) > 0, then it is obvious that y is
absolutely continuous on an interval if and only if « is, and that y
vanishes at a point if and only if % does. A simple computation gives

Pyl = (L)l and |y = (=LY upr e,

»+4q p+q
that is,
37)
4 P+QP+Q ! |P ! P+QQ ’
¢ — +Q +e — P Q
iy = (552w and v (EEE) e,

where p = —P,p + q = Q.
In view of (387) and Theorem 1 we have
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THEOREM 7. Let P, Q be real numbers such that either P < 0,
Q>1land P+Q>00r P>0and P+Q<0. Let r,s be nonnegative,

X
measurable functions on (a, X) such that S s~HeNdy < co. Let the

a

constant
(38)

Kl*(X P Q) _ ( Q ((P+Q)IQ)—P{SXfr"(Q/P)s(P“'Q’/P(Szs"“/(Q“”’dt)Q—ldx}Pm
’ ’ P + Q “ "

be finite. If w is absolutely continuous on [a, X], u(a) = 0, and w’
does mot change sign on (a, X), then

(39) SXs wl [ 1°ds = K2(X, P,Q@ | 7w P da.

Equality holds in (38) +f and only if

z P—(P[/(P+Q)}

s~ ‘Q“”’dt) , and

)Q/(P+Q)

r = kl*s(P+Q—1)I(Q~—1)(S

a

b

U = k;"(sws“”‘q—‘”dt
for some constants k¥(=0), k¥ real.
Theorems 3 and 7 lead to

COROLLARY 6. Let p,q be real numbers as in Theorem 3. Let
r, s be nonnegative measurable functions on (a,X) such that K(X,»,q),
K*(X, p, q) defined by (7), (38) respectively are finite. If y is abso-
lutely continuwous on [a, X], y(a) = 0, and ¥’ does not change sign on
(a, X), then

SXS |y 179" do = max (K,, K)¥) er |y [P+ da
Moreover, equality holds if and only if s and y are defined by (9) or

2 p—{p/(p+q)}
) , and

r = k;ks(p+q—l)l(q—1)(g S-—-(ll(q—l))dt

a

(40) z a/(p+a)
Yy = k;‘(S s—(l/(q—mdt) ,

a

for some constants kf(=0), kF real.

Proof. The inequality is immediate in view of (22) and (39) and
the fact that ¢ > 1 is implicit if »p < 0. Again, a straight-forward
computation shows that (9) holds if and only if (40) holds. Thus,
equality holds in (22) if and only if it holds in (39). Also, then K, =
K*. This completes the proof.
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REMARK 9. If r =s =1, K* are meaningful constants when
P+ q > 0and g > 0 respectively. Therefore, in Corollary 6 if r =s=1
and p < 0,p+¢q>1,

qq/(p+q)

K, =

_ g _
pra W S g T
It is easy to verify that ln«/(1 — ') is an increasing function of 2
for # > 1. Thus,

1 Ing > 1
1L 11
q p+4q

In(p + q),

whence
qp—(pl(p+q)) < (p + q)p—(p/q) .

Consequently, in this case K* > K.
Another example where K*=> K, is when r = (x — q)rtpre-bite+a)
s=(x —a)* 4 p<0and p+q>1. Then,

1— (p+4q) ‘
I{1 — ( q ) p( q )pl pra (X _ a)!pl(p+q))+{(1—q)p/q> )

p+q g+ @+ 9l —q)
and
K* = a9 ( p+q vle X — q)ple+ol+u-onle
p+q\q+(p+q)(l—Q)) X —a

If ¢g<2,9g+ (p+ q)(1 — ¢q) > 0 and therefore, in view of
0< —p/p+)@g -1 <1
and —Inz convex if # > 0, we have

(q + (p + q)(l — q))—-(pl(pﬂ)(q—l)v,q1+(p/(p+q)(q——1)} § P + q,

whence

A

<q + (pp++qf(1 —q) )M <p 3— q>-q“°+q>( g+ +qq)(1 - q) )‘1 ’

that is,

v

(p -qk q )ﬂp ( qg+(p +qq)(1 ) )M(M

if2zq9q>p+q¢>1,

(q + (pp++q;l(1 - q) >m

proving that K* = K, in this case.
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As above, in view of (37) and Theorem 3 we have

THEOREM 8. Let P,Q be real mumbers such that PQ >0, and
either @ > 1or Q < 0. Let r,s be nonnegative, measurable functions

on (a, X) such that ‘Xs‘”‘q““dw < oo, and the constant K* defined by

(38) is finite. If y is absolutely continuous on [a, X], y(a) = 0, and
Yy’ does not change sign on (a, X), then

(40) SXs|u|P | |0 de < K SX'r | [P+ das .

Equality holds in (40) if and only if r and uw are as defined in
Theorem 1.

REMARK 10. If P and @ above satisfy
P>0,P+@Q@>1 and 0<Q<1,
then (37) and Theorem 5 yield

(41) SXS lu|? |w|ede < K(X, P, Q) SXT |u' [P+eds |

where K, is defined by (30). Here u can be taken as complex-valued.
Equality holds if and only if it holds in (29), that is if and only if
s and u(=y) are as defined by (9) with k, complex.

If P> 0 and Q = 1, then (37) and (23) yield

X A~ X
(42) Ss|u|P|u']dng§»r|u'|P+ldx
where s is a positive, measurable function on (a, X) and

X P
M*s"’“”"r‘“””dx) , M*(x) = ess sup s7(t) .

a tela,z]

Equality holds in (42) if and only if s = const. >0 and u = k(Szr—““”dt),

k complex.
Combining Theorems 1 and 8 and Remark 10 we have

COROLLARY 7. Let p,q be real numbers such that pq > 0. Let
r, s be nonnegative, measurable functions on (a, X) such that

x x
S ,r—(ll(zz+q~1))dx’ S s—ta-Didyp
a

a

(or M*(x) if p>0,q =1) exist, and the constants K,, K*, K, and
K(p) are finite. If y 1is absolutely continuwous on [a, X], y(a) =0,
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and y' does mot change sign on (a, X), then

X X

S Siy\P\yW”dxzé.KS riyPidae,

where K = min (K, K*)if @) ¢q>1 or q <0, =min (K, I&) if B)
0<g<landp+q>1, =min(K, K)if v) ¢ =1. Moreover, equality
holds if and only if it holhs in both (8) and (40), (8) and (41), (8)
and (42) according as «), B),¥) 1s the case.

REMARK 11. If r =s=1 and ¢ > 1 (so p > 0) in Corollary 7, the
fact that In /(1 — 27!) is an increasing function of z for = > 1 leads
to K* > K, and thus K = K,. Again, if r = s =1 and ¢ = 1 above,
K=K =K. Also,if r=s=1and 0<q¢<1l<p+ q then

q/(p+q)

K =4 X —a)y, K, = 7 YV(x —ay.
p+(]( ) <p+q>( )

That K, > K, follows from the fact that for 0 < ¢ <1 < p + ¢,

9 Ing<l<—PT% Im@p+yq,
e p— (» +9)

whence

<l~%>ln(p+q)< (1— piq)lnq.

Similar results could be stated on [X, b] and [a, b].
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